1-(2-Vinyl-pyridin-3-yl)propanal O-methyloxime and 1-(6-Vinyl-pyridin-3-yl)propanal O-methyloxime

Vittorio E. Caprio, Michael W. Jones and Margaret A. Brimble*

Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand, Fax: (+64 9) 3737599; E-mail: m.brimble@auckland.ac.nz

Received: 8 December 2000 / Accepted: 15 December 2000 / Published: 25 March 2001

The general part of the experimental section [1] has been presented elsewhere. Boron trifluoride diethyl etherate ($313 \mathrm{mg}, 2.21 \mathrm{mmol}$) was added dropwise to a solution of oxime $\mathbf{1}(100 \mathrm{mg}, 0.735 \mathrm{mmol})$ in toluene (8 mL) at $-78^{\circ} \mathrm{C}$ under nitrogen and the mixture stirred for 5 min . Vinylmagnesium bromide (1 M in THF) ($2.2 \mathrm{~mL}, 2.20 \mathrm{mmol}$) was added dropwise over 10 min and the resultant orange coloured solution stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h [2]. Water (1 mL) was added and the reaction warmed to room temperature. The mixture was extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$), dried over magnesium sulfate and concentrated under reduced pressure to give a dark red solid. Further purification by flash chromatography using diethyl ether-hexane (1:9) gave the title compounds $2(9 \mathrm{mg}, 8 \%)$ and (3) (14 mg, 10\%) as pale yellow oils.

1-(2-Vinyl-pyridin-3-yl)propanal O-methyloxime 2

IR (neat): 2917s, $2847 \mathrm{~m}, 1696 \mathrm{~m}, 1627 \mathrm{bm}, 1460 \mathrm{~m}, 1054 \mathrm{~m}$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\left.1.23(3 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}, \mathrm{H} 3), 2.67(2 \mathrm{H}, \mathrm{q}, J 7.8 \mathrm{~Hz}, \mathrm{H} 2), 4.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH})_{3}\right)$, $5.54(1 \mathrm{H}, \mathrm{dd}, J 1.9 \mathrm{~Hz}, J 10.8 \mathrm{~Hz}, \mathrm{H} 2$ "A), $6.26(1 \mathrm{H}, \mathrm{dd}, J 1.9 \mathrm{~Hz}, J 17.4 \mathrm{~Hz}, \mathrm{H} 2$ "B), 6.82 (1 H , dd, $J 10.8$ Hz, J $\left.17.4 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime \prime}\right), 7.35$ (1H, m, H5'), 8.06 (1H, bs, H4'), 8.66 (1H, d, J2.0 Hz, H6').

EI-MS: $190\left(\mathrm{M}^{+}, 23 \%\right), 189\left((\mathrm{M}-\mathrm{H})^{+}, 28 \%\right), 159(100 \%), 144$ (87\%), 136 (10\%), 91 (12\%), 77 (15\%).
Anal. Calc. For $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}, 190.1106$; found M^{+}190.1103.

1-(6-Vinyl-pyridin-3-yl)propanal O-methyloxime 3

IR ($\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): $3053 \mathrm{~m}, 2972 \mathrm{~m}, 2938 \mathrm{~m}, 1452 \mathrm{~m}, 1422 \mathrm{~m}, 1265 \mathrm{~s}, 1054 \mathrm{~s}, 739 \mathrm{~b}, 705 \mathrm{~s}$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\left.1.24(3 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{H} 3), 2.67(2 \mathrm{H}, \mathrm{q}, J 7.6 \mathrm{~Hz}, \mathrm{H} 2), 4.01(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH})_{3}\right)$, $5.56(1 \mathrm{H}, \mathrm{dd}, J 1.9 \mathrm{~Hz}, J 10.8 \mathrm{~Hz}, \mathrm{H} 2$ "A), $6.28(1 \mathrm{H}, \mathrm{dd}, J 1.9 \mathrm{~Hz}, J 17.0 \mathrm{~Hz}, \mathrm{H} 2$ "B), 7.06 (1 H , dd, $J 10.8$ $\left.\mathrm{Hz}, J 17.0 \mathrm{~Hz}, \mathrm{H} 1^{\prime \prime}\right), 7.87$ ($\left.1 \mathrm{H}, \mathrm{d}, J_{4}{ }^{\prime}, 5^{\prime} 2.2 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 8.39\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 2^{\prime}\right), 8.45$ ($\left.1 \mathrm{H}, \mathrm{d}, J_{4}, 5^{\prime} 2.2 \mathrm{~Hz}, \mathrm{H} 4^{\prime}\right)$.

EI-MS: $190\left(\mathrm{M}^{+}, 26 \%\right), 189\left((\mathrm{M}-\mathrm{H})^{+}, 28 \%\right), 159(100 \%), 144(84 \%), 130(11 \%), 117(10 \%), 77(15 \%)$. Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right), 190.1106$; found M^{+}190.1099.

References

1. Brimble, M. A.; Duncalf, L. J. Molecules 2000, 5, 162-166.
2. Dieter, R.K.; Datar, R. Can. J. Chem. 1993, 71, 814-823.

Sample availability: available from the authors.
© 2001 MDPI. All rights reserved. Molecules website www.mdpi.org/molecules/

