Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Kai T. Meilert, George R. Clark,*
 Tania Groutso and Margaret A. Brimble

Chemistry Department, University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail:
g.clark@auckland.ac.nz

Key indicators

Single-crystal X-ray study
$T=83 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.092$
Data-to-parameter ratio $=9.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(1S,2S)-1-\{2-[(4-Methoxybenzyl)oxy]ethyl\}-2-methyl-3-butenyl (1S,4R)-4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carboxylate

The title compound, $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{6}$, crystallizes in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$. The crystal structure has been determined to establish the absolute configuration of the parent compound by introducing a chiral auxiliary of known structure.

Comment

The spirolides $A-D$ comprise a novel family of pharmacologically active macrocyclic imines that cause potent and characteristic symptoms in the mouse bioassay (spirolide $A: \mathrm{LD}_{100}$ $250 \mu \mathrm{~g} \mathrm{~kg}^{-1}$) and are activators of type L calcium channels (Hu et al., 1995, 1996, 2001; Cembella \& Lewis, 1999). 1-[(4-Methoxybenzyl)oxy]-4-methylhex-5-en-3-ol, (1) (see scheme), is a synthetic intermediate for these compounds. In order to establish the absolute configuration at $\mathrm{C}^{\prime \prime}$ and $\mathrm{C} 2^{\prime \prime}$, the camphanoate derivative, i.e. the title compound, (2), has been synthesized by authentic methods (Gerlach, 1978; Fourneron et al., 1989). As the stereochemistry at C^{\prime} and C^{\prime} in the camphanoate moiety is known to be $1 S, 4 R$, the absolute configuration at $\mathrm{C}^{\prime \prime}$ and $\mathrm{C} 2^{\prime \prime}$ ($\mathrm{C} 15, \mathrm{C} 13$ in the crystallographic numbering scheme; Fig. 1) has been assigned as $1 S, 2 S$.

Received 1 November 2004 Accepted 25 November 2004 Online 4 December 2004

(1)

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt

(2)

Experimental

To a solution of 1-[(4-methoxybenzyl)oxy]-4-methylhex-5-en-3-ol (0.91 mmol), (1), in dry dichloromethane (1 ml) was added triethylamine (1.27 mmol) and 4-dimethylaminopyridine (0.091 mmol), followed by $(1 S)-(-)$-camphanic chloride (1.36 mmol). After 2 h the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and 1 N HCl was added $(5 \mathrm{ml})$. After phase separation the organic layer was further extracted with saturated $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$ and the organic layer was dried over MgSO_{4}. Flash chromatography (SiO_{2}, n-hexane/ether $4: 1$) afforded 327 mg of the title compound, (2), as a white solid that was recrystallized from diethyl ether to give colorless needles (yield 83%, m.p. 337 K). MS (EI): $430\left(5,\left[M^{+}\right]\right), 294$ (4), 203 (10), 176 (17), 137 (23), 121 (100), 109 (5), 95 (12), 83 (15). HR-MS (EI): calculated for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{6} 430.23554$; found 430.23516 (Δ p.p.m. $=0.9$). IR $(\mathrm{NaCl}): v$ $2965,1790,1750,1610,1515,1465,1305,1265,1250,1175,1100,1060$, $1035,930,820 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23\left(d, 2 \mathrm{H},{ }^{3} J=8.6 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-\mathrm{C}_{\text {arom }}\right), 6.86\left(d, 2 \mathrm{H},{ }^{3} J=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}_{\text {arom }}\right), 5.76\left(d d d, 1 \mathrm{H},{ }^{3} J=\right.$ $\left.7.2 \mathrm{~Hz},{ }^{3} J=10.0 \mathrm{~Hz},{ }^{3} J=17.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{C} 3^{\prime \prime}\right), 5.18\left(d d d, 1 \mathrm{H},{ }^{3} J=3.2 \mathrm{~Hz}\right.$,

Figure 1
The structure of (2), showing 50\% probability displacement ellipsoids for non-H atoms. H atoms have been omitted.
$\left.{ }^{3} J=5.5 \mathrm{~Hz},{ }^{3} J=9.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}^{\prime \prime}\right), 5.08-5.03\left(m, 2 \mathrm{H}, \mathrm{H}-\mathrm{C} 4^{\prime \prime}\right), 4.46(d$, $\left.1 \mathrm{H},{ }^{2} J=11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}_{\text {arom }}\right), 4.36\left(d, 1 \mathrm{H},{ }^{2} J=11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}_{\text {arom }}\right)$, $3.79\left(s, 3 H, \mathrm{CH}_{3} \mathrm{OC}_{\text {arom }}\right), 3.49-3.35\left(m, 2 \mathrm{H}, \mathrm{H}-\mathrm{Cl}^{\prime \prime \prime}\right), 2.48(m, 1 \mathrm{H}$, $\left.\mathrm{H}-\mathrm{C}^{\prime \prime}\right), 2.31\left(m, 1 \mathrm{H}, \mathrm{H}_{a}-\mathrm{C}^{\prime}\right), 1.98-1.77\left(m, 4 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}^{\prime \prime \prime}, \mathrm{H}_{a}-\right.$ $\left.\mathrm{C}^{\prime}, \mathrm{H}_{b}-\mathrm{C}^{\prime}\right), 1.64\left(m, 1 \mathrm{H}, \mathrm{H}_{b}-\mathrm{C}^{\prime}\right), 1.09,1.03\left[2 s, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}-\right.$ $\left.\mathrm{C} 7^{\prime}\right], 1.04\left(d,{ }^{3} J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C}^{\prime \prime}\right)$, $0.91\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C} 4^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 178.1\left(s, \mathrm{C}^{\prime}\right), 166.9(s, \mathrm{C} 1)$, $159.1(s$, $\left.\mathrm{C}_{\text {arom }}\right), 139.1\left(d, \mathrm{C}^{\prime \prime}\right), 130.1$ ($\left.s, \mathrm{C}_{\text {arom }}\right), 129.3$ (d, 2C, $\left.\mathrm{C}_{\text {arom }}\right), 115.8(d$, $\left.\mathrm{C} 4^{\prime \prime}\right), 113.7\left(d, 2 \mathrm{C}, \mathrm{C}_{\text {arom }}\right), 91.1\left(s, \mathrm{C}^{\prime}\right), 75.7\left(d, \mathrm{C} 1^{\prime \prime}\right), 72.3(t$, $\left.\mathrm{CH}_{2} \mathrm{C}_{\text {arom }}\right), 66.0\left(t, \mathrm{C}^{\prime \prime \prime}\right), 55.2\left(q, \mathrm{CH}_{3} \mathrm{OC}_{\text {arom }}\right), 54.7\left(s, \mathrm{C}^{\prime}\right), 53.8(s$, $\left.\mathrm{C} 7^{\prime}\right), 41.2\left(d, \mathrm{C}^{\prime \prime}\right), 31.5\left(d, \mathrm{C}^{\prime}\right), 30.7$ ($\left.d, \mathrm{C}^{\prime}\right), 28.9\left(d, \mathrm{C} 2^{\prime \prime \prime}\right), 16.7,16.6$ [$\left.q, 2 \mathrm{C},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}^{\prime}\right], 14.7\left(q, \mathrm{CH}_{3} \mathrm{C} 4^{\prime}\right), 9.6\left(q, \mathrm{CH}_{3} \mathrm{C}^{\prime \prime}\right)$.

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{6}$

$M_{r}=430.52$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.8297$ (1) £
$b=12.0970$ (2) \AA
$c=27.8762$ (4) \AA
$V=2303.10(6) \AA^{3}$
$Z=4$
$D_{x}=1.242 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD
\quad diffractometer
ω scans
Absorption correction: multi-scan
\quad (Blessing, 1995)
$\quad T_{\min }=0.964, T_{\max }=0.992$
4366 measured reflections

Mo $K \alpha$ radiation
Cell parameters from 4366 reflections
$\theta=2.2-25.7^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=83$ (2) K
Needle, colorless
$0.42 \times 0.16 \times 0.10 \mathrm{~mm}$

2511 independent reflections
2171 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=25.7^{\circ}$
$h=-8 \rightarrow 8$
$k=-14 \rightarrow 14$
$l=-33 \rightarrow 33$

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041
$$

$w R\left(F^{2}\right)=0.092$
$S=1.08$
2511 reflections
280 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0387 P)^{2}\right. \\
& +0.8019 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.22 \mathrm{e}^{\circ} \mathrm{\AA}^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

C1-C10	$1.516(4)$	C13-C14	$1.532(4)$
O3-C10	$1.206(3)$	C13-C15	$1.541(4)$
O4-C10	$1.341(3)$	C15-C16	$1.515(4)$
O4-C15	$1.480(3)$	C16-C17	$1.509(4)$
O5-C17	$1.425(3)$	C18-C19	$1.506(4)$
O5-C18	$1.427(3)$	C19-C20	$1.385(4)$
C11-C12	$1.322(4)$	C19-C24	$1.401(4)$
C12-C13	$1.508(4)$		
C10-O4-C15	$117.4(2)$	C12-C13-C15	$109.6(2)$
C17-O5-C18	$110.79(19)$	C14-C13-C15	$113.3(2)$
C22-O6-C25	$118.1(2)$	O4-C15-C16	$106.9(2)$
O3-C10-O4	$125.9(2)$	O4-C15-C13	$107.8(2)$
O3-C10-C1	$124.5(2)$	C16-C15-C13	$116.1(2)$
O4-C10-C1	$109.6(2)$	C17-C16-C15	$113.4(2)$
C11-C12-C13	$127.3(3)$	O5-C17-C16	$109.4(2)$
C12-C13-C14	$114.1(2)$	O5-C18-C19	$110.3(2)$

H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$) and refined using the riding model, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$. Friedel pairs were merged before the final refinement; the absolute configuration is known from the synthesis.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXL97.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Cembella, A. D. \& Lewis, N. I. (1999). Nat. Toxins, 7, 197-206.
Fourneron, J. D., Archelas, A. \& Furstoss, R. (1989). J. Org. Chem. 54, 46864689.

Gerlach, H. (1978). Helv. Chim. Acta, 61, 2773-2776.
Hu, T., Burton, I. W., Cembella, A. D., Curtis, J. M., Quilliam, M. A., Walter, J. A. \& Wright, J. L. C. (2001). J. Nat. Prod. 64, 308-312.

Hu, T., Curtis J. M., Oshima Y., Quilliam, M. A., Walter, J. A., Watson-Wright, W. M. \& Wright, J. L. C. (1995). J. Chem. Soc. Chem. Commun. pp. 21592161.

Hu, T., Curtis, J. M., Walter, J. A. \& Wright, J. L. C. (1996). Tetrahedron Lett. 37, 7671-7674.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). SHELXTL. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SMART and SAINT. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.

