organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Kai T. Meilert, George R. Clark,* Tania Groutso and Margaret A. Brimble

Chemistry Department, University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail: g.clark@auckland.ac.nz

Key indicators

Single-crystal X-ray study T = 83 K Mean σ (C–C) = 0.004 Å R factor = 0.041 wR factor = 0.092 Data-to-parameter ratio = 9.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(1*S*,2*S*)-1-{2-[(4-Methoxybenzyl)oxy]ethyl}-2-methyl-3-butenyl (1*S*,4*R*)-4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carboxylate

The title compound, $C_{25}H_{34}O_6$, crystallizes in the orthorhombic space group $P2_12_12_1$. The crystal structure has been determined to establish the absolute configuration of the parent compound by introducing a chiral auxiliary of known structure.

Received 1 November 2004 Accepted 25 November 2004 Online 4 December 2004

Comment

The spirolides A-D comprise a novel family of pharmacologically active macrocyclic imines that cause potent and characteristic symptoms in the mouse bioassay (spirolide A: LD₁₀₀ 250 µg kg⁻¹) and are activators of type L calcium channels (Hu *et al.*, 1995, 1996, 2001; Cembella & Lewis, 1999). 1-[(4-Methoxybenzyl)oxy]-4-methylhex-5-en-3-ol, (1) (see scheme), is a synthetic intermediate for these compounds. In order to establish the absolute configuration at C1'' and C2'', the camphanoate derivative, *i.e.* the title compound, (2), has been synthesized by authentic methods (Gerlach, 1978; Fourneron *et al.*, 1989). As the stereochemistry at C1' and C4' in the camphanoate moiety is known to be 1*S*,4*R*, the absolute configuration at C1'' and C2'' (C15, C13 in the crystallographic numbering scheme; Fig. 1) has been assigned as 1*S*,2*S*.

Experimental

To a solution of 1-[(4-methoxybenzyl)oxy]-4-methylhex-5-en-3-ol (0.91 mmol), (1), in dry dichloromethane (1 ml) was added triethylamine (1.27 mmol) and 4-dimethylaminopyridine (0.091 mmol), followed by (1S)-(-)-camphanic chloride (1.36 mmol). After 2 h the solution was diluted with CH₂Cl₂ (5 ml) and 1 N HCl was added (5 ml). After phase separation the organic layer was further extracted with saturated NaHCO₃ (5 ml) and the organic layer was dried over MgSO₄. Flash chromatography (SiO₂, n-hexane/ether 4:1) afforded 327 mg of the title compound, (2), as a white solid that was recrystallized from diethyl ether to give colorless needles (yield 83%, m.p. 337 K). MS (EI): 430 (5, [*M*⁺]), 294 (4), 203 (10), 176 (17), 137 (23), 121 (100), 109 (5), 95 (12), 83 (15). HR-MS (EI): calculated for $C_{25}H_{34}O_6$ 430.23554; found 430.23516 (Δ p.p.m. = 0.9). IR (NaCl): v 2965, 1790, 1750, 1610, 1515, 1465, 1305, 1265, 1250, 1175, 1100, 1060, 1035, 930, 820. ¹H NMR (400 MHz, CDCl₃): δ 7.23 (*d*, 2H, ³*J* = 8.6 Hz, H-C_{arom}), 6.86 (d, 2H, ${}^{3}J$ = 8.6 Hz, H-C_{arom}), 5.76 (ddd, 1H, ${}^{3}J$ = 7.2 Hz, ${}^{3}J = 10.0$ Hz, ${}^{3}J = 17.4$ Hz, H–C3^{''}), 5.18 (*ddd*, 1H, ${}^{3}J = 3.2$ Hz,

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The structure of (2), showing 50% probability displacement ellipsoids for non-H atoms. H atoms have been omitted.

 ${}^{3}J = 5.5 \text{ Hz}, {}^{3}J = 9.1 \text{ Hz}, \text{H}-\text{C1}''), 5.08-5.03 (m, 2\text{H}, \text{H}-\text{C4}''), 4.46 (d, 100)$ 1H, ${}^{2}J$ = 11.6 Hz, CH₂C_{arom}), 4.36 (*d*, 1H, ${}^{2}J$ = 11.6 Hz, CH₂C_{arom}), 3.79 (s, 3H, CH₃OC_{arom}), 3.49–3.35 (m, 2H, H–C1^{'''}), 2.48 (m, 1H, H-C2"), 2.31 (m, 1H, Ha-C6'), 1.98-1.77 (m, 4H, 2H-C2", Ha- $C5', H_b - C6'$, 1.64 (*m*, 1H, $H_b - C5'$), 1.09, 1.03 [2s, 6H, (CH₃)₂-C7'], 1.04 (d, ${}^{3}J$ = 6.8 Hz, CH₃-C2''), 0.91 (s, 3H, CH₃-C4'). ${}^{13}C$ NMR (100.6 MHz, CDCl₃): δ 178.1 (s, C3'), 166.9 (s, C1), 159.1 (s, Carom), 139.1 (d, C3"), 130.1 (s, Carom), 129.3 (d, 2C, Carom), 115.8 (d, C4"), 113.7 (d, 2C, Carom), 91.1 (s, C1'), 75.7 (d, C1"), 72.3 (t, CH₂C_{arom}), 66.0 (t, C1^{'''}), 55.2 (q, CH₃OC_{arom}), 54.7 (s, C4'), 53.8 (s, C7'), 41.2 (d, C2''), 31.5 (d, C5'), 30.7 (d, C6'), 28.9 (d, C2'''), 16.7, 16.6 [q, 2C, (CH₃) ₂C7'], 14.7 (q, CH₃C4'), 9.6 (q, CH₃C2'').

Crystal data

C ₂₅ H ₃₄ O ₆	Mo $K\alpha$ radiation	
$M_r = 430.52$	Cell parameters from 4366	
Orthorhombic, $P2_12_12_1$	reflections	
a = 6.8297 (1) Å	$\theta = 2.2-25.7^{\circ}$	
b = 12.0970(2) Å	$\mu = 0.09 \text{ mm}^{-1}$	
c = 27.8762 (4) Å	T = 83 (2) K	
V = 2303.10 (6) Å ³	Needle, colorless	
Z = 4	$0.42 \times 0.16 \times 0.10 \text{ mm}$	
$D_x = 1.242 \text{ Mg m}^{-3}$		
Data collection		
Bruker SMART CCD	2511 independent reflections	
diffractometer	2171 reflections with $I > 2\sigma(I)$	
ω scans	$R_{\rm int} = 0.057$	
Absorption correction: multi-scan	$\theta = 25.7^{\circ}$	

(Blessing, 1995) $T_{\min} = 0.964, T_{\max} = 0.992$ 4366 measured reflections

 $h = -8 \rightarrow 8$ $k = -14 \rightarrow 14$ $l = -33 \rightarrow 33$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0387P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 0.8019P]
$wR(F^2) = 0.092$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
2511 reflections	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
280 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1 Selected geometric parameters (Å, °).

C1-C10	1.516 (4)	C13-C14	1.532 (4)
O3-C10	1.206 (3)	C13-C15	1.541 (4)
O4-C10	1.341 (3)	C15-C16	1.515 (4)
O4-C15	1.480 (3)	C16-C17	1.509 (4)
O5-C17	1.425 (3)	C18-C19	1.506 (4)
O5-C18	1.427 (3)	C19-C20	1.385 (4)
C11-C12	1.322 (4)	C19-C24	1.401 (4)
C12-C13	1.508 (4)		
C10-O4-C15	117.4 (2)	C12-C13-C15	109.6 (2)
C17-O5-C18	110.79 (19)	C14-C13-C15	113.3 (2)
C22-O6-C25	118.1 (2)	O4-C15-C16	106.9 (2)
O3-C10-O4	125.9 (2)	O4-C15-C13	107.8 (2)
O3-C10-C1	124.5 (2)	C16-C15-C13	116.1 (2)
O4-C10-C1	109.6 (2)	C17-C16-C15	113.4 (2)
C11-C12-C13	127.3 (3)	O5-C17-C16	109.4 (2)
C12-C13-C14	114.1 (2)	O5-C18-C19	110.3 (2)

H atoms were placed in calculated positions (C-H = 0.93-0.98 Å) and refined using the riding model, with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$. Friedel pairs were merged before the final refinement; the absolute configuration is known from the synthesis.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXL97.

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Cembella, A. D. & Lewis, N. I. (1999). Nat. Toxins, 7, 197-206.
- Fourneron, J. D., Archelas, A. & Furstoss, R. (1989). J. Org. Chem. 54, 4686-4689
- Gerlach, H. (1978). Helv. Chim. Acta, 61, 2773-2776.
- Hu, T., Burton, I. W., Cembella, A. D., Curtis, J. M., Quilliam, M. A., Walter, J. A. & Wright, J. L. C. (2001). J. Nat. Prod. 64, 308-312.
- Hu, T., Curtis J. M., Oshima Y., Quilliam, M. A., Walter, J. A., Watson-Wright, W. M. & Wright, J. L. C. (1995). J. Chem. Soc. Chem. Commun. pp. 2159-2161.
- Hu, T., Curtis, J. M., Walter, J. A. & Wright, J. L. C. (1996). Tetrahedron Lett. 37, 7671-7674.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1994). SHELXTL. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1995). SMART and SAINT. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.