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Abstract

Searching for Optimal Caterpillars in General and

Bounded Treewidth Graphs

Masoud Khosravani

Department of Computer Science

Doctor of Philosophy

In this thesis we are interested in optimization problems on caterpillar trees.
A caterpillar is a tree with this property that if one removes its leaves only a path
is left. The majority of this thesis is devoted to studying the Minimum Spanning
Caterpillar Problem (MSCP). An instance of the MSCP is a graph with dual costs
over its edges. In the MSCP our goal is to find a caterpillar tree that spans the
input graph with the smallest overall cost. The cost of the caterpillar is the sum
of the cost of its edges, where each edge takes one of two costs based on its role
as a leaf edge or an internal one.

We first show that the problem of finding a spanning caterpillar in a graph
is NP-complete. As another result on the hardness of the MSCP, we show that
there is no f (n)-approximation algorithm for the MSCP unless P = NP. Here
f (n) is any polynomial-time computable function of n, the number of nodes of
a graph. Then we introduce a quadratic integer programming formulation for
the MSCP. By using the Gomory cutting method iteratively, we show that one
can find a near optimal solution. We then show that our integer programming
formulation can be transformed to a semi-definite programming problem.

A parametrized algorithm that finds an optimal solution for the MSCP in
bounded treewidth graphs is given in Chapter 4. Our algorithm is fast and
practical for outer-planar, series parallel, Halin graphs and other graphs with
small treewidth.



The Maximum Caterpillar Problem (MCP) is the topic of the last two chap-
ters of this thesis. We show that there is a polynomial-time algorithm for finding
a caterpillar of the largest order in directed acyclic graphs. Then we introduce
a heuristic algorithm for the MCP. Finally, in Chapter 6 we prove that every in-
terval graph has a spanning caterpillar and also we present an algorithm for the
MCP in block graphs.
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Chapter 1

Introduction

Whenever one wishes to model relations or dependencies among objects, the
first model that comes to mind is a graph. That is why graphs are ubiquitous in
computer science and related fields. By making such a model many questions
can be addressed using the language of graph theory. For example:

• What is the largest set of objects with no mutual relationships? In graph
theory term we are looking for a maximum independent set.

• How can one partition the objects into disjoint sets such that each set con-
tains non-relating objects? A proper vertex colouring gives the answer to
this question.

• How large is a set of objects in which every pair of objects are related?
Here we wish to find a maximum clique.

In some applications one may wish to find a specific substructure within a
graph. For example one may want to find a spanning tree to check the connec-
tivity. In the Hamiltonian path problem we are looking for a path within a graph
that covers all nodes in the graph. There are other applications where weights
are assigned to links and/or nodes, to represent cost or traversal time. In this
group of problems we look for a substructure with the optimal cost. The trav-
elling salesman problem is a well studied example of such problems, where the
goal is to find a spanning cycle with the minimum travel cost.

Many of those graph problems are computationally intractable. That is, no
one knows a polynomial-time algorithm for solving any of them. So researchers

1



1.1 Caterpillar Trees 2

are using different techniques to find some solutions that are as good as possible.
Here we focus on some of those hard problems about caterpillar trees.

1.1 Caterpillar Trees

In this thesis we are interested in problems concerning caterpillar trees. A cater-
pillar is a tree that is reduced to a path when one removes its leaves. We shall in-
troduce the formal definition in the next chapter. As a subgraph we can consider
a caterpillar as a path that holds its neighbours. Despite the fact that caterpillars
are simple in structure, we show that almost all natural problems about them
are hard to solve. Like finding a minimum spanning caterpillar in an edge-
weighted graph or finding a caterpillar with the largest number of nodes in a
graph.

Let us first mention a few of our motivations for studying caterpillar trees.
Consider a graph with no Hamiltonian path. Then we may relinquish finding
a spanning path in favour of a spanning caterpillar. In another scenario sup-
pose that the cost of a minimum route in an instance of the travelling salesman
problem is too large. In such a case a natural alternative is to consider a path
and its neighbouring nodes as the desired substructure. In the following section
we will introduce more real world problems whose solutions rely on finding a
caterpillar.

Due to our knowledge, the term of caterpillar is traced back to a paper of
Harary and Schwenk [40]. Though afterwards many papers were published
about combinatorial properties of them, there are a few results addressing the
algorithmic point of view. In recent years, there have been more interests in
algorithmic studies of caterpillars. In [32] Feige and Talwar present an approx-
imation algorithm for bandwidth of caterpillar. In [35] Gonçalves proves that
every planar graph can be covered by four edge disjoint caterpillars and he also
presents an algorithm to find such caterpillars.
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1.2 Applications

In this section we mention a few more applications of caterpillars. In many
problems where a path plays a main role, a caterpillar tree can be considered as
an alternative. So their applications are not restricted to the following ones.

1. In network design, we may wish to find a cost effective linearly arranged
backbone to place our communication routers. Here the backbone is the
spine of a caterpillar and leaves are the sites that are connected to the back-
bone. Generally the cost of backbone links is different with the cost of links
that connect a site to a router.

2. In a facility transportation problem, where the task of distributing facilities
is divided among one global but costly distributor and some local and
cheap ones. Here the global distributor follows the spine path to deliver
facilities to warehouses and the local ones use the leaf edges to distribute
them among end users. The goal is to find a transportation route that has
the minimum overall cost.

3. In chemical graph theory caterpillars are considered as a model for ben-
zenoid hydrocarbon molecules; see [29].

4. Caterpillars also appear in designing algorithms for solving RNA align-
ment and comparing evolutionary trees; see [23] and [45].

For more applications in combinatorics and mathematics (in general) we re-
fer the reader to [56, 57].

1.3 Contributions and Outline of the Thesis

We now review the outline of the thesis, with the main results summarized in
Table 1.1. In this table we present the complexity of computing the Maximum
Caterpillar Problem (MCP) and the Minimum Spanning Caterpillar Problem
(MSCP) in general and some special classes of graphs. We sketch the contents
of each chapter with more details in the following section.
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Table 1.1 Summary of results.

Graph Classes MCP MSCP Remarks
general and planar graphs NP-hard NP-hard Chapters 2, 3

bounded treewidth linear linear Chapter 4
bounded pathwidth linear linear Chapter 4

series-parallel linear linear Chapter 4
outerplanar linear linear Chapter 4

Halin graphs linear linear Chapter 4
interval graphs linear NP-hard Chapter 6

block graphs linear NP-hard Chapter 6

1.3.1 Chapter 2: Preliminaries

To crack the complexity wall of the problems concerning caterpillars, we use
different tools. In Chapter 2, after introducing the required definitions in graph
theory and combinatorics, we review the main concepts in approximation algo-
rithms, which is the main theme of Chapter 3. Also we give an introduction to
linear and integer programmings that will be used in designing and analysing
approximation algorithms. Then we introduce the notion of path and tree de-
composition, which are concepts that are used in our parametrized algorithm
for solving the minimum spanning caterpillar problem.

1.3.2 Chapter 3: Minimum Spanning Caterpillar Problem

Graphs with given weights on their edges are models for many real world prob-
lems. In Chapter 3 we study the minimum spanning caterpillar problem, where
we have dual costs on each edge. As our first result we show that if P 6= NP
then there is no f (n)-approximation algorithm for the minimum spanning cater-
pillar problem, where f (n) is any polynomial-time computable function. Then
as a base for heuristic algorithm we introduce a quadratic integer programming
formulation for the problem. We show that by using Gomory cuts iteratively,
one can find any desirable approximation in exponential time.
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1.3.3 Chapter 4: MSCP in Bounded Treewidth Graphs

Parametrization plays a key role when coping with the hardness of a problem.
The main idea in parametrization is to restrict the input to some special classes
that are accompanied by preprocessing knowledge. In Chapter 4 we give a
linear time algorithm for the minimum spanning caterpillar problem when re-
stricted to bounded treewidth graphs by assuming that a tree/path decomposi-
tion of the input graph is given.

1.3.4 Chapter 5: Maximum Caterpillar Problem

Finding a largest caterpillar in a graph is the topic of Chapter 5. We first give an
integer programming formulation for this problem. Though our basic formula-
tion is not linear, we can transform it to an equivalent linear programming prob-
lem. The main price that we pay is a linear increase in the number of variables.
Then we use the solution to the relaxation of our integer linear programming
problem, to present an approximation algorithm.

1.3.5 Chapter 6: Miscellaneous Algorithms

The last chapter is devoted to miscellaneous caterpillar algorithms. We present
an algorithm that finds a maximum caterpillar in a block graph. We show that
every interval graph has a spanning caterpillar, we also present an algorithm
to extract such caterpillar. Finally, we generalize breadth first search and depth
first search to k-trees.

1.3.6 Publications

This thesis is based on the results of the following papers.

1. Hardness of Approximation and Integer Programming framework for Searching
for Caterpillar Trees, Michael J. Dinneen and Masoud Khosravani, In Alex
Potanin and Taso Viglas, editors, Computing: The Australian Theory Sym-
posium (CATS 2011), volume 119 of CRPIT, pages 145–150, Perth, Aus-
tralia, 2011.
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2. A Linear Time Algorithm for the Minimum Spanning Caterpillar Problem for
Bounded Treewidth Graphs, Michael J. Dinneen and Masoud Khosravani,
In Boaz Patt-Shamir and Tinaz Ekim, Structural information and Com-
munication Complexity (SIROCCO 2010), LNCS 6058, 237-246, Springer
Berlin/Heidelberg, 2010.

3. Searching for spanning k-Caterpillar and k-trees, Michael J. Dinneen and Ma-
soud Khosravani, CDMTCS Report 336, University of Auckland, Auck-
land, 2008.

Here are my other publications that their topics are out of the scope of the
current thesis.

1. Arithmetic Progression Graphs, Michael J. Dinneen, Nan R. Ke and Masoud
Khosravani. CDMTCS Report 356, , University of Auckland, Auckland,
2009.

2. Using OpenCL for Implementing Simple Parallel Graph Algorithms, Michael J.
Dinneen, Masoud Khosravani and Andrew Probert, PDPTA’11, 2011.



Chapter 2

Preliminaries

In this chapter we introduce basic concepts and tools that are used in the thesis.
In the first section we introduce the main definitions and notations in graph the-
ory and combinatorics. In Section 2.2 we give a short review on approximation
algorithms and the notion of approximation ratio. Then in Section 2.3 we have a
short review on linear programming. The topics of Section 2.4 are tree and path
decompositions. We also introduce the concepts of partial k-trees and k-paths
that are closely related to tree and path decompositions. Then we give formal
definitions of some classes of graphs with small treewidth. Finally, in the last
section we give a simple proof for the hardness of finding a spanning caterpillar
in a graph.

2.1 Basic Combinatorial Structures

In this section we introduce the main definitions in graph theory and combina-
torics. These concepts are used throughout this thesis. We follow the definitions
and notations that are used in the standard text books of Diestel [24] and Bondy
and Murty [13].

A graph is a pair G = (V, E), where V is the set of nodes and E is a subset of
[V]2 = {{u, v} | u, v ∈ V}. In this thesis we assume all graphs have no loops or
multiple edges. We refer to the elements of E as edges of G. A directed graph D =

(N, A) consists of a set of nodes N and a set of arcs, A ⊆ V×V \ {(v, v) | v ∈ V}.
When dealing with more than one graph and to make discussion more clear we

7
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denote the nodes and the edges of a graph G by V(G) and E(G), respectively.
A weighted graph is a graph that has weights over its nodes or/and edges. If

the weights are assigned just to nodes or edges of a graph, then we refer to that
graph as a node-weighted graph or an edge-weighted graph, respectively.

The order of a graph G = (V, E) is the number of nodes in the graph, that
is denoted by |V|. The size of a graph, |E|, is the number of edges. The same
definitions apply to directed graphs. For every edge e = {u, v} we say u and v
are ends of e and we also say u is adjacent to v. We also refer to adjacent nodes as
neighbours. The degree d(v) of a node v is defined as the number of edges that
are attached to v. For a node v in a directed graph D we also define in-degree of
v, in(v), as the set of arcs that are pointing to v, i.e. in(v) = {(u, v) | (u, v) ∈ A}.
We also define out-degree of v, out(v), as the number of arcs that emanate from
v, i.e. out(v) = {(v, w) | (v, w) ∈ A}.

A path P = v0, e0, v1, . . . , en−1, vn in a graph G is an alternating sequence of
distinct nodes and edges, where each edge ei, i = 0, . . . , n − 1, connects two
adjacent nodes vi and vi+1. The length of a path is the number of edges on the
path. A graph is connected if there is a path between each pair of its nodes. A cycle
C = v0, e0, v1, e1, . . . , en−1, v0 is an alternating sequence of nodes and edges such
that all nodes on it but the first and the last one are distinct and the subsequence
v0, e0, . . . , vn−1 makes a path.

A graph H = (V′, E′) is a subgraph of a graph G = (V, E) if V′ ⊆ V and
E′ ⊆ E. We denote it by H ⊆ G. A clique is a subgraph in which every two
nodes are connected by an edge.

We say H is an induced subgraph of a graph G if for every u, v ∈ V(H) if
{u, v} ∈ E(G) then we have {u, v} ∈ E(H). We say that H ⊆ G is a spanning
subgraph of G if V(H) = V(G).

If G = (V, E) is a graph and U ⊆ V is any set of nodes, G[U] denotes the
induced subgraph on U. For each H ⊆ G we denote its neighbourhood (or 1-
neighbourhood) by

N(H) = {v | ∃u ∈ V(H), (u, v) ∈ E(G) and v /∈ V(H)}.

The closed neighbourhood of H is denoted as N[H] = N(H) ∪V(H).
A tree is a graph that is connected and has no cycle. If a tree has more than
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Figure 2.1 A caterpillar: spines (black), heads (white), and leaves (gray)

one node then every node of degree one is called a leaf of a tree. A complete graph
Kn is a graph of order n such that every pair of its nodes are connected by an
edge. A star Sn is a tree with n + 1 nodes that has n nodes of degree one.

A caterpillar tree is a tree that is reduced to a path when all its leaves are
deleted. We refer to the resulting path as the spine of a caterpillar. The heads of a
caterpillar are nodes that are connected to the two ends of degree one or a single
node of the path representing the spine. In Figure 2.1 we see a caterpillar tree
with designated spines (black), heads (white), and leaf nodes (gray).

Let S be a set, we say Q = {S1, S2, . . . , Sm} is a partition of S if

1. Si ⊂ S, for each i, 1 ≤ i ≤ m, and

2. Si ∩ Sj = ∅, for each pair i, j, 1 ≤ i 6= j ≤ m, and

3. S =
⋃m

i=1 Si.

The number of partitions of an n-element set is called the n-th Bell number and
is denoted by Bn. Berend and Tassa in [8] show that the n-th Bell number Bn is
restricted by the following bound.

Bn <

(
0.782n

ln(n + 1)

)n
.

2.2 Approximation Algorithms

When one proves that an optimization problem is NP-hard, his hope for finding
an exact solution for the problem fades. In such cases finding a proper approx-
imation algorithm is another choice. For more on approximation algorithms
consult the text book [59] of Vazirani.
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There are two measures to express the closeness of an approximating solu-
tion to the optimal one. The first one is approximation factor f (n), where f (n) is
any computable function of input. Suppose that we have a maximization prob-
lem Π. We say an approximation algorithm A is an f (n) factor approximation
for Π if the solution SA of the algorithm has the following relation with the
optimal solution OPTΠ.

f (n)OPTΠ ≤ SA ≤ OPTΠ

note that here we have f (n) ≤ 1. In this case we say the algorithm is an f (n)-
approximation for the maximization problem.

If Π is a minimization problem and A is an approximation algorithm, then
we say A is a g(n) factor approximation if the following holds for a solution sA

with respect to the optimal solution optΠ.

optΠ ≤ sA ≤ g(n)optΠ,

where 1 ≤ g(n). We refer to such an algorithm as a g(n)-approximation for the
minimization problem.

Another measure of closeness of the solution of an approximation algorithm
is approximation ratio. Let Π be a maximization problem and also suppose we
have an approximation algorithm A for it. As before, assume that SA is the
value of algorithm and OPTΠ is the optimal value, then we define

σA =
SA

OPTΠ
.

If Π is a minimization problem and and sA is the solution of the algorithm
then we have

σA =
optΠ

sA
.

Note that the value of an approximation ratio is always greater than one.
When we analyse an approximation algorithm for an NP-hard problem, the

value of optimal solutions are not revealed to us. So we cannot compare the
exact value of an optimal solution with the approximation solution. To deal with
that problem we try to find upper bounds for maximization problems. Since by
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having an upper bound U in a maximization problem Π we have

OPTΠ ≤ U.

Now for the solution SA if we have f (n)U ≤ SA then

f (n)OPTΠ ≤ f (n)U ≤ SA.

Which says that our algorithm is an f (n)-approximation for Π.
If Π is a minimization problem then we find a lower bound L for the optimal

value of the problem and since

L ≤ optΠ,

if we have sA ≤ g(n)L then

sA ≤ g(n)L ≤ g(n)optΠ.

Which means the algorithm is a g(n)-approximation algorithm.
If we have an integer linear programming formulation for an optimization

problem, then we can find an upper or lower bound for the problem. In the next
section we present elements of integer programming.

2.3 Linear and Integer Programming

As mentioned in the former section, to analyse an approximation algorithm a
key step is to find a proper upper or lower bound for the optimal value. Inte-
ger programming plays not only an important role in finding upper or lower
bound for optimization problem, but also it is a base for designing an approx-
imation algorithm. There are many text books on this subject. Here we follow
Papadimitriou and Steiglitz [46]. As an another well known reference we have
to mention the book by Bazaraa et al. [7].

There are two main obstacles on this way. First of all the problem should
have an integer programming formulation with a polynomial size. Also the
formulation should belong to the group of integer programming problems that
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their relaxations have polynomial-time solutions or at least they have a near-
optimal approximation algorithm.

Let us first define a general nonlinear programming problem. The goal is
to find a value of x ∈ Rn such that it maximizes (minimizes) the value of f (x)
while satisfying the following constraints.

gi(x) ≤ 0, 1 ≤ i ≤ m,

hj(x) = 0, 1 ≤ j ≤ p.

Here gis and his are functions from Rn to R. A value that satisfies the constraints
is called a feasible solution.

In a linear programming problem our goal is to find a vector

x0 = (x1, x2, . . . , xn) ∈ Rn

such that an objective function

f (x) =
n

∑
j=1

cjxj

takes the maximal value for x = x0 subject to constraints

n

∑
j=1

aijxj ≤ bi , i = 1, . . . , m and xj ≥ 0, j = 1, . . . , n.

If we have an extra condition in which all xj should also be integer then we say
the formulation is an integer linear programming problem.

2.3.1 Transforming to Binary Problems

Here we show how a polynomial integer programming problem can be trans-
formed to a formulation with binary solutions. In this and the following subsec-
tion we are using the same procedure as explained in [60].

We first need to impose this condition on the problem that the objective func-
tion is bounded.
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By having that condition then we can transform the problem into the equiv-
alent binary problem by substituting each integral variable by its binary rep-
resentation. If 0 ≤ xj ≤ dj, then we substitute each variable xj by its binary
representation

xj = 20y1 + 21y2 + . . . + 2rj−1yrj ,

where yt ∈ {0, 1} for t = 1, . . . , rj and also 2rj−1 ≤ dj ≤ 2rj − 1 for j = 1, . . . , n.

2.3.2 Linearization

In this section we assume that we have a nonlinear binary integer programming
problem. Our goal is to transform it to a linear binary problem.

To this end we first substitute each product Πj∈Nk xj = xj1 xj2 · · · xjq of vari-
ables xj1 , . . . , xjq by a binary variable yk, such that

yk = Πj∈Nk xj = xj1 xj2 · · · xjq . (2.1)

Here we assume that there are k products in the nonlinear problem. We also
assume that Nk is the index set of those variables that are involved in the kth
product and q =| Nk |.

Then we add two linear constraints to link the values of the binary variables
with the values of the products. The constraints are

∑
j∈Nk

xj − yk ≤ |Nk| − 1, (2.2)

1
|Nk| ∑

j∈Nk

xj − yk ≥ 0. (2.3)

We show now that the suggested formulation determines exactly the same value
of yk as 2.1. If xj = 1 for all j ∈ Nk, then from Inequality 2.2 we have yk ≥ 1 and
also 2.3 gives yk ≤ 1. So in this case, yk = 1, exactly as in 2.1. If on the other
hand at least for one j ∈ Nk, xk = 0, then from 2.3, yk < 1, and thus yk = 0,
again the same as in 2.1.
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2.4 k-Trees and Tree Decompositions

Having a spanning tree is considered a measure of reliability in a network and
one may need to find a spanning k-tree or k-caterpillar as a more reliable sub-
structure in a network; since a network with such substructure would be im-
mune to k− 1 nodes or k− 1 links failures [4, 51].

A graph G is a k-tree if G is a complete graph with k+ 1 nodes or G is obtained
recursively from a k-tree G′ by attaching a new node to an induced k-clique of
G′. The first k-clique in this process is called the base of a k-tree. Each node of
degree k in a k-tree is called a k-leaf. A partial k-tree is any subgraph of a k-tree.
Informally, a k-caterpillar is built when one restricts the process of attaching a
new node to k nodes of one of those last k-cliques that has been formed. To
define a k-caterpillar formally we need a few more definitions that are given in
the following paragraph.

A simplicial node of a graph is a node whose neighbourhood induces a clique.
An ordering of the nodes σ = [v1, . . . , vn] is called a perfect elimination scheme if
for every 1 ≤ i ≤ n, vi is a simplicial node in G[vi, . . . , vn]. If vi is a node in a
perfect elimination scheme then we refer to each clique in N(vi) ∩ {vi, . . . , vn}
as a parent of vi. We say two k-cliques are smooth neighbours if the induced sub-
graph of their union has a perfect elimination scheme. Note that each k-tree has
a perfect elimination scheme.

A (k + 1)-boundaried graph is a pair (G, ∂) of a graph G = (V, E) and an
injective function ∂ from {0, . . . , k} to V. The image of ∂ is the set of boundaried
nodes and is denoted by Im(∂). When it is clear from the context, we abuse the
notation and refer to Im(∂) as ∂.

A graph is a k-caterpillar if it is

1. a (k + 1)-boundaried complete graph with (k + 1) nodes, or

2. a (k + 1)-boundaried graph (G, ∂) that is made by attaching a new node
v to k nodes of Im(∂′) from a (k + 1)-boundaried graph (G′, ∂′), such that
Im(∂) = N[v].

It is easy to see that each k-caterpillar is also a k-tree. Some authors use the term
k-path instead of k-caterpillar but since k-path also refers to a different concept in
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Figure 2.2 A 4-star.

the Mathematics and Computer Science literature, we use the term k-caterpillar
to avoid any confusion, for example see [37, 43].

If one deletes all k-leaves of a k-caterpillar we refer to the remaining sub-
graph as a k-spine. A k-star is a k-caterpillar that has a k-clique as its k-spine. See
Figure 2.2. If a k-caterpillar G is not a k-star, then its k-spine can be considered as
an alternating sequence of distinct k-cliques and (k+ 1)-cliques (e0, t1, . . . , tn, en),
where eis are k-cliques and tis are (k + 1)-cliques, and the sequence starts and
ends with k-cliques, e0 and en; see Proskurowski [47]. Each k-caterpillar has at
most two heads. Each head is a subgraph induced by the union of ej, where
j = 0, n, and the k-leaves attached to it.

Bern [9] showed that for all k ≥ 2 the problem of deciding whether a graph
has a spanning k-tree is NP-complete. He also gave an approximation algo-
rithm for finding a minimum spanning k-tree in a weighted graph, using an
idea of Farley [31]. Cai and Maffraye [17] proved that the problem remains
NP-complete even when it is restricted to split graphs, graphs with maximum
degree 3k + 2, and planar graphs (for k = 2). Later, Cai [16] presented an ap-
proximation algorithm for finding a minimum spanning 2-tree in graphs whose
edge weights satisfy the triangle inequality and graphs that are complete Eu-
clidean graphs on a set of points in the plane.

For results concerning spanning 2-trees see Farley [31]. Recently, Tan and
Zhang [57] used caterpillars to solve some problems concerning the Consec-
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utive Ones Property. They also showed that the spanning caterpillar prob-
lem in graphs with maximum degree 3 is NP-complete. Gupta et al. [38] pre-
sented O(n3) algorithms for some related problems, such as subgraph isomor-
phism, topological embedding and minor containment problems in k-connected
k-caterpillars.

One can define partial k-trees as graphs with treewidth at most k. A tree (path)
decomposition [50] of a graph G = (V, E) is a pair ({Xi , i ∈ I}, T = (I, F)), with
{Xi , i ∈ I} a collection of subsets of V, that are called bags, and T = (I, F) a tree
(path), such that

1.
⋃

i∈I Xi = V.

2. For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.

3. For all v ∈ V, Tv = {i ∈ I | v ∈ Xi} forms a connected subtree of T.

The width of a tree (path) decomposition ({Xi , i ∈ I}, T = (I, F)) is de-
fined as maxi∈I |Xi| − 1. The treewidth (pathwidth) of G, tw(G) (pw(G)), is the
minimum width over all tree (path) decompositions of G. A tree (path) decom-
position of width k is a smooth tree decomposition if each bag contains k + 1 nodes
and adjacent bags differ by exactly one node.

The concept of treewidth became widely known by Robertson and Seymour’s
work on graph minors [50]. Although, the concept had appeared under different
names and definitions in the literature. As the first papers on this topic we refer
the reader to Halin [39] and Rose [51]. Here we use the constructive definition
of partial k-trees, since as we show later, it is closer to our k-parse data struc-
ture for representing graphs of bounded treewidth. For an up-to-date survey on
treewidth refer to Bodlaender [12].

One natural question that arises is whether the problem of finding a span-
ning k-caterpillar is easier than finding a spanning k-tree. In the next section
we give a negative answer to this question by showing that the problem re-
mains NP-complete even when we are restricted to searching for a spanning
k-caterpillar in a graph, for any k ≥ 1. Graph structures that are expressible
by Monadic Second Order Logic [21] are recognizable in linear time on partial
k-trees. So does the property of having a spanning k-caterpillar in graphs. The
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main disadvantage of this method is that it is very hard to implement, even for
small values of k.

2.5 Graphs with Small Treewidths

In Chapter 4 we introduce a linear time algorithm for solving the minimum
spanning caterpillar problem for bounded treewith graphs. In this section we
give the formal definitions of three classes of graphs that have treewidths less
than 4. They are: outerplanar graphs, Halin graphs and series parallel graphs;
see Figure 2.3.

A graph is an outerplanar graph if it can be embedded on the plane with no
crossing among the edges such that all of its nodes appear on the unbounded
outer face. Note that with respect to the definition we can add an extra node
to an outerplanar graph that is adjacent to all other nodes with no crossing. An
outerplanar graph has treewidth at most two.

A Halin graph [55] is constructed from a tree by the following process. We
first embed the tree on the plane with no crossing. Then we connect its leaves
via a cycle with the same order as their appearances in clockwise order on the
unbounded face. Every Halin graph has treewidth at most three.

A two terminal graph is a graph (G, s, t) with two distinguished nodes s and
t, called sink and source, respectively. Every series-parallel graph is constructed
by the following recursive process.

1. The complete graphs K1 and K2 are series-parallel graphs.

2. If (G1, s1, t1) and (G2, s2, t2) are series-parallel terminal graphs, then the
graph obtained from the disjoint union of G1 and G2 by identifying t1 and
s2 is also a series-parallel graph.

3. If (G1, s1, t1) and (G2, s2, t2) are series-parallel terminal graphs, then the
graph obtained by identifying the sinks and also the sources is a series-
parallel graph.

A graph has treewidth at most two if and only if it is a series-parallel graph.
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(a)

(c)

(b)

Figure 2.3 Graphs of small treewidths: (a) a Halin graph, (b) an outer-
planar, and (b) a series-parallel graph

2.6 Hardness of Finding Spanning Caterpillars

As we noted earlier, Bern [9] showed that, for a fixed k, finding a spanning k-
tree in a graph is NP-complete. In the following theorem we prove that when
the problem is restricted to finding a spanning k-caterpillar, it still remains in-
tractable. Let us state the problem formally.

Problem: SPANNING k-CATERPILLAR

Instance: A graph G = (V, E),
Question: Does G contain a spanning k-caterpillar?

Theorem 1 For each k ≥ 1, SPANNING k-CATERPILLAR is NP-complete.

Proof. We prove the theorem by transforming the Hamiltonian path problem
to the spanning k-caterpillar problem. Let G = (V, E) be an instance of the
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Figure 2.4 (a) A graph G and (b) its corresponding 2-caterpillar G̃

Hamiltonian path problem. We construct a graph G̃ = (Ṽ, Ẽ) such that |Ṽ| =
(k + 1)|V| and |Ẽ| = (k/2)(k + 1)(|E|+ |V|). To each v ∈ V we assign a k-clique
K̃v that we label its nodes by

{
ṽ1, . . . , ṽk}. For each two adjacent nodes v and w

in G we assign k(k+ 1)/2 edges in G̃ by connecting each ṽ to
{

w̃1, . . . , w̃(k−i+1)
}

,

1 ≤ i ≤ k. It is easy to see that by this process each w̃j is also adjacent to{
ṽ1, . . . , ṽ(k−j+1)

}
, 1 ≤ j ≤ k. Then for each k-clique K̃v in G̃ we add a new node

l̃v and we connect it to all nodes in K̃v. In Figure 2.4 the process is shown for a
graph G when k = 2.

Now let G = (V, E), |V| = n, be a graph with a Hamiltonian path, P =

v1, v2, . . . , vn. We show G̃ has a spanning k-caterpillar, too. To construct an span-
ning k-caterpillar for G̃, we first choose K̃v1 as the base and connect l̃v1 to all its
nodes. Then for each fixed i, i = 2, . . . , n, we choose ṽj

i , j = 1, . . . , k from K̃vi

and we attach it to the nodes
{

ṽ1
i−1, . . . , ṽ(k−j+1)

i−1

}
in K̃vi−1 . Note that by this pro-

cess the set
{

ṽ1
i , . . . , ṽj

i , ṽ1
i−1, . . . , ṽ(k−j+1)

i−1

}
forms a (k + 1)-clique and they are
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the nodes of the boundary value set. Then we attach l̃vi to K̃vi and continue the
process for i + 1, i < n.

Now consider a graph G whose corresponding graph G̃ has a spanning k-
caterpillar, H̃. The construction of H̃ from a base K imposes an ordering on the
nodes of G̃, especially on the k-leaves.

Let
{

lvi1
, . . . , lvin

}
be the order of the k-leaves in the construction of H̃. We

show that P = vi1 , . . . , vin is a Hamiltonian path of G. Let lvi and lvi+1 , i =

1, . . . , n − 1 be two consecutive k-leaves and also let K̃vi = N(lvi) and K̃vi+1 =

N(lvi+1) be the attached k-cliques, respectively. Because of our method for con-
structing G̃ from G, there is at least an edge between K̃vi and K̃vi+1 .

Since lvi is just attached to K̃vi , in ordering of H̃ it appears exactly after the
last node of K̃vi , also it is the same for lvi+1 and K̃vi+1 . So the nodes of K̃vi+1 should
be attached to K̃vi . �

The previous theorem is not the only bad news about the caterpillar problem.
We shall show in the next chapter that it is even hard to find a proper approx-
imation algorithm for the minimum spanning caterpillar problem. That is the
reason why we concentrate on parametrized algorithm or finding a theoretical
basis for heuristic algorithms such as branch and cut.



Chapter 3

Hardness of Approximation and IP
Framework

3.1 Introduction

In this chapter we study the Minimum Spanning Caterpillar Problem (MSCP). We
remind the reader that by a caterpillar we mean a tree that reduces to a path by
deleting all its leaves. We refer to the remaining path as the spine of the cater-
pillar. The edges of a caterpillar H can be partitioned into two sets, the spine
edges, S(H), and the leaf edges, L(H). An instance of the MSCP is denoted by
a triple (G, s, l), where G = (V, E) is an undirected graph and s : E → N and
l : E→N are two (cost) functions. For each caterpillar H as a subgraph of G we
define the cost of H by

c(H) := ∑
e∈S(H)

s(e) + ∑
e′∈L(H)

l(e′).

In the MSCP one wants to find a caterpillar in a graph with the minimum
cost that contains all nodes; see Figure 3.1. As shown in Chapter 2, it is not
hard to prove that the problem of finding a spanning caterpillar in a graph is
NP-hard.

In some applications, in addition to finding an optimal cost spanning cater-
pillar, we also need to satisfy some restrictions on the final output. For example
one may wish to have a caterpillar whose total spine cost is bounded by a fixed

21
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Figure 3.1 A graph and its minimum spanning caterpillar, where each
(s, l) label on an edge represents the spine and leaf costs.

number, or one may wish to have an upper bound on the largest degree of a
caterpillar.

Simonetti et al. [53, 54] presented a heuristic algorithm that finds a spanning
caterpillar by branch and cut method. Their method is based on an Integer Lin-
ear Programming (ILP) formulation by transforming the MSCP to the Minimum
Steiner Arborescence Problem. In this chapter we present an integer program-
ming formulation for the problem that enables us to solve many restricted ver-
sions of the MSCP. In Chapter 4 we present a linear time algorithm for the special
case when the input graph is restricted to the bounded treewidth graphs when
the associated tree decompositions are given as part of the inputs; see also [26].

The organization of this chapter is as follows. In the next section we give our
hardness result for approximating the minimum spanning caterpillar in a graph.
In Section 3.3 we present our quadratic integer programming formulation for
the problems and some restricted versions of them. We briefly introduce the
Gomory cutting method in Section 3.4. In Section 3.5 we present a heuristic
algorithm for the MSCP by using the Gomory cutting method iteratively. We
also show that for every ε > 0, our algorithm guarantees to achieve a 1/ε factor
approximation. Semidefinite programming gives another alternative for solving
the problems, which is the theme of Section 3.6. The results of this chapter have
been published in [27].



3.2 Hardness of Approximation 23

3.2 Hardness of Approximation

In this section we show that by assuming P 6= NP it is not possible to find
an approximation algorithm for the MSCP within a factor of a polynomial-time
computable function of the number of nodes of the graph. Our proof is based
on a reduction from the Hamiltonian Path Problem to an instance of the MSCP.
We show if there is such an approximation algorithm for the MSCP then there
is a polynomial time algorithm for deciding the Hamiltonian Path Problem. It is
interesting to note that the same result holds for the hardness of approximation
for the travelling salesman problem; see [52].

Theorem 2 Let f (n) be a polynomial time computable function. The MSCP has no
approximation algorithm within a factor of f (n), unless P = NP.

Proof. Let G = (V, E) be an instance of the Hamiltonian Path Problem with
n = |V| ≥ 3. We reduce it to an instance (G′, s, l) of MSCP. Here G′ is made from
a copy of G with n extra nodes which are connected to the nodes of the copy of
G by a one-to-one correspondence and one node vext which is connected to all
nodes of the copy of G and n extra nodes. Then we define two cost functions
s and l such that to every edge e that belongs to the copy of G, the function
s assigns the value of s(e) = 1 and the function l assigns the value of l(e) =

f (n)(n− 1).
To assign cost functions to the edges incident to vext we choose a fixed node

v f ix in our copy of G. Then both functions assign the value 0 to the edge
(v f ix, vext), and they assign the value of f (n)(n− 1) to the other edges incident
to vext. We add vext to ensure that graph G′ has at least one spanning caterpillar.
The edges that connect the n extra nodes to the copy of G get the value 0 by both
functions s and l.

Now we show that if one has an f (n)-approximation algorithm for the MSCP
then it can be used to decide if G has a Hamiltonian path in polynomial time. We
first run the approximation algorithm on G′, then it will return a solution T that
has c(T) ≤ f (n)OPT, where OPT is the overall cost of a minimum spanning
caterpillar in G′. Now if G has a Hamiltonian path then OPT = n − 1 and
c(T) ≤ f (n)(n − 1). Note that in this case vext is attached to the Hamiltonian
path in the copy of G by (v f ix, vext).
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If G has no Hamiltonian path then either it has at least one leaf edge from
the copy of G, or it uses two incident edges of vext, so we have

f (n)(n− 1) < OPT ≤ c(T).

�

Theorems 2 justifies our effort for the rest of this chapter to concentrate on
finding heuristic algorithms for solving the MSCP. Since, assuming P 6= NP,
there is no polynomial-time approximation algorithm for the problem.

3.3 Integer Programming Formulation

In this section we introduce an integer quadratic programming formulation for
the MSCP. As we shall show later, by adding proper constraints, we can use this
formulation for solving some restricted versions of the problem. Though our
basic formulation in not linear, it is known that any integer quadratic program-
ming problem can be transformed to a linear one by adding extra variables and
constraints in a mechanical way; see Chapter 2 and also [60]. Having an integer
linear programming formulation is the first step in applying some well known
heuristic algorithms for solving an optimization problem.

We first explain the formulation for the MSCP. Note that without loss of gen-
erality we can assume that all instances of the MSCP are complete graphs. Our
formulation for the MSCP somehow resembles our formulation for the largest
caterpillar problem; that is the subject of Chapter 5.

Let G = (V, E) be a graph and let (G, s, l) be an instance of the MSCP. We
convert G to a directed graph H = (N, A), N = V, by replacing each edge
e ∈ E with a pair of anti-parallel arcs, f , f− ∈ A (with opposite directions). In
this case, we can consider a caterpillar in H as a rooted tree that has a directed
path as its spine; see Figure 3.2. Here each spine node has one incoming arc
and one or more outgoing arcs and every leaf node has one incoming arc and
no outgoing arc.

For each node v ∈ N, we denote by in(v) and out(v) the incoming and the
outgoing arcs of v, respectively. Also for each f ∈ A we denote by f− the anti-
parallel arc associated with f . The costs of anti-parallel arcs are the same as the
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Figure 3.2 A graph and its rooted spanning caterpillar.

cost of their corresponding (undirected) edges, which also depend on their role
as spine or leaf arcs. For each arc f ∈ A we denote its spine cost s( f ) by s f and
its leaf cost l( f ) by l f .

We now present our integer programming formulation for the MSCP with
a fixed root r. To each arc f ∈ A we assign two variables, x f and y f . In each
solution a variable x f is 1 if f is chosen as a leaf edge and a variable y f is 1 if it is
chosen as a spine edge, otherwise they are 0. Also to each node v ∈ N we assign
variable zv that represents the level of v in the rooted caterpillar. In particular,
we have zr = 0. Our goal is to minimize the objective function(

∑
f∈A

l f x f + ∑
f∈A

s f y f

)
.

In what follows M is a large positive integer, say, a number greater than the
order of the graph. The integer programming constraints are as follows.

x f + y f + x f− + y f− ≤ 1, f ∈ A (3.1)

∑
f∈in(v)

y f + ∑
f∈in(v)

x f = 1, v ∈ N \ r (3.2)

∑
f∈out(v)

y f + ∑
f∈in(v)

x f = 1, v ∈ N (3.3)

∑
f∈out(v)

x f −M

 ∑
f∈in(v)

y f + ∑
f∈out(v)

y f

 ≤ 0, v ∈ N (3.4)
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(3.5)

∑
f=(u,v)∈in(v)

y f (zv − zu) + ∑
f=(u,v)∈in(v)

x f (zv − zu) = 1, v ∈ N \ r

zr = 0, (3.6)

f ∈ A, (3.7)

x f , y f ∈ {0, 1}
v ∈ N (3.8)

zv ∈ {0, . . . , n− 1}.

The next theorem shows that each integral feasible solution, that satisfies
these constraints, represents a spanning caterpillar.

Theorem 3 Constraints 3.1-3.8 make a valid formulation for the MSCP.

Proof. The first constraint shows that for any pair of anti-parallel arcs that have
the same end nodes, only one may be chosen in a feasible solution. The second
and the third constraints say that each node on the spine has at most one in-
coming spine arc and one outgoing spine arc while it has no incoming leaf arc.
Constraint 3.4 says that if a node is chosen as a leaf then it has no outgoing leaf
arc, but if it is chosen as a spine node then there is no restriction on the number
of its outgoing leaf arcs. Constraint 3.5 alongside Constraint 3.6 guarantee that
each feasible solution is a connected tree that is rooted at r. Constrains 3.7 and
3.8 enforce the integrality of a feasible solution.

On the other hand, let T be a spanning caterpillar of a graph G. Also let e be
an edge of T, if e is a spine edge then we assign y f = 1 and x f = 0, if e is a leaf
edge then we set y f = 0 and x f = 1. For any other edge f of the graph that does
not belong to T, we have x f = y f = 0. Now it is easily seen that these values
make a feasible solution for our formulation. �

When in our integer programming formulation we replace the Constraints
3.7 and 3.8 on the integrality of variables by weaker constraints that for all f ∈
A, x f ≥ 0 and y f ≥ 0 and also for all v ∈ N, zv ≥ 0, then we say that we
have a relaxation of the integer programming problem. While solving an integer
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linear programming problem is NP-hard, its relaxation (a linear programming
problem) can be solved in linear time.

Now we consider more constraints to formulate the restricted versions of
the problems. The first one is when we have a restriction on the number of
spine edges, as an upper bound U. We can impose this by adding the following
constraint

∑
f∈A

y f ≤ U. (3.9)

If the restriction is on the overall cost of the spine then we have

∑
f∈A

s f y f ≤ U. (3.10)

Also the following set of inequalities restricts the degree of each node to be a
value no more than a fixed δ > 0.

∑
f∈in(v)∪out(v)

(y f + x f ) ≤ δ, ∀v ∈ A. (3.11)

In the rest of this chapter and with respect to our result on the hardness of ap-
proximation of the MSCP, we will concentrate on finding a heuristic algorithm
for the problem.

3.4 Gomory Cutting Method

In this section we briefly introduce the Gomory cutting method for solving in-
teger and mixed integer linear programs. This method was introduced by Go-
mory in [34]. Recently there have been more studies on the practical improve-
ment of this technique; see [5, 18, 20]. It is proven that Gomory cuts converge to
optimal solution but it requires exponential time in worst case, see [19, 48]. Our
motivation to suggest Gomory cut for finding a near optimal solution for MSCP
is the result of Balas et al. [5]. They show that Gomory cutting method perfor-
mance improved significantly if it is combined with branch-and-cut method.

To apply the Gomory cutting method we first solve the relaxation of the
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problem via the simplex method. Then we use the entries of the resulted ta-
ble to add a new constraint to the problem. By adding the new constraint we
exclude some elements from the feasible solutions while keeping all integer fea-
sible solutions. We may continue this process until an integral optimal solution
is found. In what follows we explain this method with more details. Our in-
troduction to the Gomory cutting method is based on Papadimitriou and Stei-
glitz [46].

Suppose we are given an instance of an integer linear programming problem.
Assume we have a solution for the relaxation using the simplex algorithm, that
produces an optimal basic feasible solution x associated with basis B. As an
equation in the final tableau we have

xB(i) + ∑
j/∈B

yijxj = yi0 (3.12)

for some i, 0 ≤ i ≤ m (if z is the cost then we have xB(0) = −z).
Since the variables xj in Equation 3.12 are nonnegative, then

∑
j/∈B
byijcxj ≤ ∑

j/∈B
yijxj, (3.13)

So Equation 3.12 becomes

xB(i) + ∑
j/∈B
byijcxj ≤ yi0 (3.14)

Since x is constrained to be an integer in an ILP, then the left-hand side of
Equation 3.14 is integer. We can replace the right-hand side of Equation 3.14 by
its integer part without disturbing the relation, so we have

xB(i) + ∑
j/∈B
byijcxj ≤ byi0c, (3.15)

subtracting Equation 3.15 from Equation 3.12 gives

∑
j/∈B

(yij − byijc)xj ≥ yi0 − byi0c. (3.16)
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Let
fij = yij − byijc, (3.17)

we refer to the number fij as the fractional part of yij, which satisfies

0 ≤ fij < 1,

finally, we get the following constraint

∑
j/∈B

fijxj ≥ fi0 (3.18)

which is called the Gomory cut corresponding to row i. Finally we add the new
constraint to the set of constraint and solve the relaxation of the new integer
linear programming. We can follow this procedure until reaching an integral
optimal solution.

3.5 An
(1

ε

)
-Approximation for the MSCP

It is known that each quadratic programming problem with bounded variables
can be transformed to a linear programming (LP) formulation in a mechanical
way. The only price is to introduce more variables and constraints. We refer
the reader to Chapter 2 and [60]. So in this section we assume that we have an
integer linear programming formulation (ILP) for the MSCP. By this assump-
tion, we can solve the relaxation by the simplex method, and then we will apply
Gomory cuts iteratively to find an approximation solution to the problem.

A Gomory cutting method adds a linear constraint to the set of constraints
of an integer linear programming problem such that it does not exclude any op-
timal integer solution. The process is repeated until an integer optimal solution
is found. It is proven that the Gomory cutting method always terminates with
an integer solution that is optimal. Note that here the number of steps required
may be exponential. We use the Gomory cutting method to present a heuristic
algorithm for the MSCP. The outline of the algorithm is as follows. Note that
in the algorithm we assume that we have access to the output of the simplex
algorithm, since in each iteration we need it to construct a Gomory cut.
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Algorithm:
(

1
ε

)
-Approximation via Gomory cut

Input: Graph (G, s, l) and ε > 0

Output: A Caterpillar T

1. Construct the integer programming formulation.

2. Find an optimal solution, OPT, for the relaxation by the simplex algorithm.

3. Find a directed path starting from a fixed root r such that the y values of
the arcs of the path are not less than ε, where 0 < ε < 1. To this end
choose an outgoing arc from r with y value at least ε. Then follow this
process until reaching a node that has no outgoing arc with that property.

4. If all other nodes are attached to this spine with x values that are greater
or equal to ε, then the resulting caterpillar has a cost less than (1

ε )OPT and
stop.
Else use the Gomory cutting plane method to add one more constraint.

5. Solve the resulting linear programming problem and go to Step 3.

The convergence of Gomory cuts guarantees that we eventually reach the
desired approximation within a finite number of iterations. What follows is our
formal justification.

Theorem 4 There is an algorithm that for any ε, 0 < ε < 1, computes a 1/ε factor
approximation for the MSCP.

Proof. Here we prove that by following the algorithm mentioned above, we
eventually reach to the desired approximation. Let SA be the cost of the final
caterpillar that spans the graph and has arcs with costs at least ε.

First, note that if for a node v ∈ N there is an arc f ∈ in(v), such that x f ≥
ε > 0, then we have

1− x f ≤ x f

(
1− ε

ε

)
.
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Also if there is an arc f such that y f ≥ ε > 0 we have

1− y f ≤ y f

(
1− ε

ε

)
.

By using these inequalities for the edges of a caterpillar we have

∑
f∈L

l f (1− x f ) + ∑
f∈S

s f (1− y f ) ≤

(
1− ε

ε

)(
∑
f∈L

l f x f + ∑
f∈S

s f y f

)
,

where L is the set of leaf edges and S is the set of the spine edges of the caterpil-
lar.

Now by using this information we show that the resulting caterpillar has a
cost that is less than 1

ε OPT. First of all we have

SA = ∑
f∈L

l f + ∑
f∈S

s f .

By rewriting the right-hand side summations we have

∑
f∈L

l f + ∑
f∈S

s f = ∑
f∈L

(x f + (1− x f ))l f +

∑
f∈S

(y f + (1− y f ))s f

=

(
∑
f∈L

l f x f + ∑
f∈S

s f y f

)
+(

∑
f∈L

l f (1− x f ) + ∑
f∈S

s f (1− y f )

)

≤
(

1 +
1− ε

ε

)(
∑
f∈L

l f x f + ∑
f∈S

s f y f

)

≤ 1
ε

OPT.

�
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There are many software tools for solving LP problems and this is an ad-
vantage for our method. On the other side, using Gomory cuts has its own
drawback, since there is no guarantee on the rate of convergence to the optimal
(integral) solution. Also, converting the quadratic integer programming formu-
lation to an LP one, introduces many new variables and constraints that increase
the size of the input.

In the next section we show that the MSCP can be considered as a semidef-
inite programming problem. So we do not need to introduce many new vari-
ables and constraints. This point of view gives another alternative for obtaining
a heuristic algorithm.

3.6 Semidefinite Programming Transformation

A semidefinite programming problem is the problem of optimization of a linear
function of a symmetric and positive semidefinite matrix subject to linear equal-
ity constraints; for a precise definition see [1]. One can solve a semidefinite pro-
gramming problem within a constant approximation factor.

Semidefinite programming has been applied to solve some other problems
in combinatorial optimization. For example [33] obtained a 0.878 factor ran-
domized approximation algorithm for the Maximum Cut Problem by using this
method.

As we show in the former section the MSCP can be formulated as a quadratic
integer program. Now we convert the problem to a vector program. In a vector
program the objective function and all constraints are represented as linear com-
binations of inner products of vectors. It is known that each vector program is
equivalent to a semidefinite program; see [33] and [59].

Theorem 5 The quadratic formulation of the MSCP has a semidefinite equivalent for-
mulation.

Proof. We assign vectors vx
e = (xe, 0, . . . , 0), vy

e = (ye, 0, . . . , 0), and vz
u =

(zv, 0, . . . , 0) to variables xe, ye, and ze, respectively. We also have an extra vector
variable vt = (1, . . . , 1, t). Now we write the objective function and all con-
straints in the former section by linear combinations of inner products of these
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vector variables.
Finally we want to minimize(

∑
f∈A

l f (vx
f · vt) + ∑

f∈A
s f (v

y
f · vt)

)
,

subject to the constraints in the following constraints.

vx
f · vt + vy

f · vt + vx
f− · vt + vy

f− · vt ≤ 1, f ∈ A (3.19)

∑
f∈in(v)

vy
f · vt ≤ 1, v ∈ N (3.20)

∑
f∈out(v)

vy
f · vt ≤ 1, v ∈ N (3.21)

∑
f∈in(v)

vx
f · vt + ∑

f∈in(v)
vy

f · vt ≤ 1, v ∈ N (3.22)

∑
f∈in(v)

vx
f · vt + ∑

f∈out(v)
vy

f · vt ≤ 1, v ∈ N (3.23)

∑
f∈out(v)

vx
f · vt −M

 ∑
f∈in(v)

vy
f · vt + ∑

f∈out(v)
vy

f · vt

 ≤ 0, v ∈ N (3.24)

∑
f=(u,v)∈in(v)

vy
f · (v

z
v − uz

v) + ∑
f=(u,v)∈in(v)

vx
f · (v

z
u − uz

v) = 1, v∈N\r(3.25)

vz
r · vt = 0. (3.26)

The validity of the assertion follows from the fact that any vector program-
ming problem is equivalent to a semidefinite programming problem. �

3.7 Summary and Open Problems

We introduced the Minimum Spanning Caterpillar Problem. We showed that
the problem has no approximation algorithm with a polynomial time computable
function as an approximation factor, unless P = NP. By this result we end
the search for any proper approximation algorithm. Then we introduced our
quadratic integer programming formulation for the problem and we gave some
arguments on its strength and weakness for finding heuristic algorithms, by us-
ing Gomory cuts or semidefinite programming.
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There are some natural open problems left, such as:

1. We know that the Traveling Salesman Problem (TSP) also has the same
property with respect to having no approximation algorithm within a poly-
nomial time computable factor, while its metric version has a constant fac-
tor approximation. Now the question that arises is: “Can one find a con-
stant factor approximation algorithm for a metric version of the MSCP?”

2. When compared to our method of using Gomory cuts, does a branch and
cut algorithm behave better in practice?



Chapter 4

Spanning Caterpillars in Bounded
Treewidth Graphs

Once more we remind the reader that by a caterpillar we mean a tree that re-
duces to a path by deleting all its leaves. We refer to the remaining path as the
spine of the caterpillar. The edges of a caterpillar H can be partitioned to two
sets, the spine edges, B(H), and the leaf edges, L(H). Let G = (V, E) be a
graph. Also let b : E → N and l : E → N be two (cost) functions. For each
caterpillar H as a subgraph of G we define the cost of H by

c(H) := ∑
e∈B(H)

b(e) + ∑
e′∈L(H)

l(e′).

As mentioned in Chapter 3 in the Minimum Spanning Caterpillar Problem
(MSCP) [53] we want to find a caterpillar with the minimum cost that contains
all nodes. We know from a theorem in Chapter 2 that MSCP is NP-complete for
general graphs; see also [57]. In this chapter we consider the problem when the
input is restricted to bounded treewidth graphs. That is, we assume that a tree
decomposition with a fixed width of the graph is given as part of the input.

One application of this problem is to find a cost effective subnetwork within
a large network. For example, one may want to find a linearly connected back-
bone to place routers with computers attached. Here each cost function repre-
sents a different technology that is used to connect nodes on the backbone (that
consists of routers or hubs) and the leaves (i.e. computers) to the backbone.

35
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As another application of the MSCP, Tan and Zhang [57] used it to solve some
problems concerning the Consecutive Ones problem.

It is known that graph structures that are expressible by Monadic Second Or-
der Logic (MSOL) [21, 22] are recognizable in linear time on bounded treewidth
graphs. The same is true for those optimization problems that can be defined
by Extended Monadic Second Order Logic (EMSOL); see the survey of Hlineny
et al. [41]. The main disadvantage of these methods is that they are very hard
to implement, even for small values of k, where k is the treewidth of a graph.
In the next section we introduce a formula that expresses spanning caterpillar
problem in the language of monadic second order logic.

The majority of this chapter is devoted to presenting an easy-to-implement
and linear-time algorithm for minimum spanning caterpillar problem in a graph
with bounded treewidth. Although the hidden constant factor in the asymptotic
notation of the algorithm grows very fast, but for some graphs that appear in
applications it is still practical, like outerplanar, series-parallel (K4 minor-free),
and Halin graphs. Refer to Chapter 2 for definitions of those classes of graphs.

Also we explain briefly how one can tackle two other related NP-hard prob-
lems: the Minimum Spanning Ring Star Problem (MSRSP) [6, 44] where the goal
is to find a minimum spanning subgraph (star ring) that consists of a cycle and
nodes of degree one that are connected to it, and the Dual Cost Minimum Span-
ning Tree Problem (DCMSP), where the cost of an edge incident to a leaf is dif-
ferent from the other edges. As far as we know it is the first time that these
problems are studied from this point of view.

In Section 4.2 we shall present the required definitions formally. In particu-
lar, we introduce the k-parse data structure as an alternative to the smooth tree
decomposition. In Section 4.3 we give a dynamic programming algorithm that
solves the MSCP in linear time for graphs that their tree decompositions are
also given as inputs. The proof of the correctness of the algorithm is presented
in Section 4.4. Then we illustrate our algorithm by an example in Section 4.5. We
then discuss how our algorithm can be applied to solve two related problems.
The chapter ends with a conclusion and some open problems.
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4.1 Monadic Second Order Logic Formula

In this section we introduce the Monadic Second Order Logic (MSO) expression
of the spanning caterpillar problem. By the following theorem Courcelle [22]
shows that all problems that are definable in MSO Logic can be solved in poly-
nomial time on the class of graphs with bounded tree-width.

Theorem 6 ( [22]) Let P be a graph problem that has an MSO sentence φ. Also let
G = (V, E) be a graph of treewidth at most k where k is a fixed value. Then there is an
Algorithm that solves P on input G in time f (‖φ‖, w) · n ∈ O(n), where ‖φ‖ denotes
the length of the MSO formula φ.

Arnborg, Lagergren and Sees [3] extended the Courcelle’s result by intro-
ducing Extended Monadic Second Order (EMSO) logic. They show that opti-
mization problems which are definable as an EMSO formula have a polynomial
solution on graphs of bounded treewidth.

There are properties that cannot be formulated by the first order logic, but
they can be expressed in MSO logic. For example, connectivity of a graph can
be formulated in MSO logic while it is not possible to express it as a first order
sentence. So in that sense, we can say that MSO logic is more powerful than the
first order logic.

Let us first define the first order formulas. For a more comprehensive intro-
duction to logic refer to Enderton [30]. Formulas in the first order logic are made
from

1. a set of variables,

2. a set of constant symbols,

3. functional symbols (with arities),

4. relational symbols (with arities),

5. two logical quantifiers ∀ and ∃, and

6. the set of connective symbols {¬,∨,∧,→,↔}.
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The set of terms consists of expressions that are made from constants and vari-
able symbols by applying (zero or more times) of functions. Note that this defi-
nition also consider all constants and variable symbols as terms.

Now we define atomic formulas by using terms and relations. An atomic
formula is an expression R(t1, . . . , tn), where R is an n-ary relation and t1, . . . , tn

are terms. Finally we build the set of formulas by using the connective symbols
{¬,∨,∧,→,↔} and the quantifier symbols.

The language of the first order logic consists of formulas in which quantifiers
are applied to variables. In the second order logic we define two more sets of
variables, function variables and relation variables.

In an MSO formula the quantifiers are applied to variables or the set of vari-
ables. Here we are interested in the MSO logic that is defined on graphs, where
the set variables are defined over nodes and edges of a graph. An MSO formula
in the language of graphs is made from atomic formulas E(x, y) and the expres-
sion x = y by using the connective and the quantifier symbols. The atomic
formula E(x, y) denotes adjacency of x and y. The formula x = y expresses
equality relation between x and y. Also the formula X(x) denotes that variable
x (a node in a graph) belongs to X (a subset of the set of nodes). In what fol-
lows we use lowercase letters such as x, y, z to indicate individual variables and
capital letters like X, Y, Z to denote set variables.

Note that a caterpillar is a tree in which there is a path P such that each node
v, either belongs to P or is attached to P. Also we define a tree as a connected
graph that has no cycle, see [36]. Now we are ready to express the existence of a
caterpillar in MSO logic. To reduce the length of formulas we use the following
conventions for using quantifiers and nodes set variables and edge set variables
(the same conventions are applied when replacing ∀ by ∃):

1. instead of ∀x(X(x)) we write ∀x ∈ X,

2. we denote ∀xX(x) ∧ ∀yX(y) by ∀x, y ∈ X,

3. we show ∀Y(Y ⊆ X) by ∀Y ⊆ X.

4. we write E(x, y) ∈ F to show E(x, y) ∧ {x, y} ∈ F

In the following formulas we assume that X is a nodes set variable and F is
an edges set variable. Also we assume that the subgraph relation is valid for of
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(X, F), say sub(X, F) = ∀E(x, y) ∈ F(x ∈ X ∧ y ∈ X) is always true.
The MSO formula that expresses that (X, F) is a connected subgraph

α(X, F) = ∀Y ⊆ X
(
(∃x ∈ Y) ∧ (∀x, y ∈ X(x ∈ Y ∧ E(x, y) ∈ F)→

y ∈ Y)→ ∀x ∈ Y)
)

,

the subgraph (X, F) is acyclic,

β(X, F) = ¬∃Y ⊆ X
(
∃x ∈ Y ∧ ∀x

(
x ∈ Y → ∃y1 ∈ X∃y2 ∈ X(y1 6= y2∧

E(x, y1) ∈ F ∧ E(x, y2) ∈ F ∧ y1 ∈ Y ∧ y2 ∈ Y)
))

,

node x has degree one in subgraph (X, F)

γ(X, F, x) = ∃y ∈ X
(

E(x, y) ∈ F ∧
(
∀z ∈ X(E(x, z) ∈ F → y = z

))
,

node x has degree two in (X, F)

θ(X, F, x) = ∃y, z ∈ X
(
(y 6= z) ∧ E(x, y) ∈ F ∧ E(x, z) ∈ F∧(

∀t ∈ X
(
E(x, t) ∈ F → (t = y ∨ t = z)

)))
,

subgraph (X, F) represent a path in a graph

η(X, F) = α(X, F) ∧ β(X, F) ∧
(
∀x ∈ X

(
γ(X, F, x) ∨ θ(X, F, x)

))
.

Now we have enough materials to express that subgraph (X, F) is a caterpil-
lar.

cat(X, F) = α(X, F) ∧ β(X, F) ∧
(
∃Y ⊆ X ∧ ∃H ⊆ F ∧ η(Y, H)∧(

∀x ∈ X(∃y ∈ Y ∧ E(x, y) ∈ F)
))

.

Finally to say that a graph has a spanning caterpillar we use the following for-
mula

spanCat = ∃X∃F∀x
(
x ∈ X ∧ cat(X, F)

)
.
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Note that the same formulation is applicable for the minimum spanning
caterpillar problem if the edge weights are chosen from a set with finite number
of elements. Such a condition is very restrictive and that is why in the rest of this
chapter we focus on a more direct approach for solving the MSCP in bounded
tree width graphs.

4.2 k-Parse Representation

In this section we introduce k-parse data structure as a linear and detailed rep-
resentation of a smooth tree decomposition. It enables us to follow explicitly
the process of adding edges that is not clearly expressed in a smooth tree de-
composition. That makes the presentation easier and the implementation more
straightforward. The definition of k-parse in this section is taken from Din-
neen [25].

A (k + 1)-boundaried graph [28] is a pair (G, ∂) of a graph G = (V, E) and an
injective function ∂ from {0, . . . , k} to V. We refer to the image of ∂ as the set of
boundaried nodes and denote it by Im(∂) or by ∂; for the sake of brevity.

Given a path decomposition of width k of a graph, one can represent the
graph by using strings of (unary) operators from the following operator set Σk =

Vk ∪ Ek where
Vk = { 0j, . . . , kj}

is the set of node operators. Each node operator ij, i = 0, . . . , k, adds a boundary
node i to the graph. We define the set of edge operators by

Ek = { i j | 0 ≤ i < j ≤ k},

where each i j represents the process of connecting the boundary nodes i and j
by an edge.

We need one additional (binary) operator to generate a graph from a smooth
tree decomposition of width k. We refer to this binary operator as circle plus and
we denote it by ⊕. The operands of ⊕ are two boundary graphs that have the
same number of boundary nodes. The ⊕ operator glues its operands via their
boundary nodes that have the same labels.
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Figure 4.1 G = (H ⊕ I)⊕ J

The semantics of these operators on (k + 1)-boundaried graphs G and H are
as follows:

G ij Add an isolated node to the graph G, and label it as the
new boundary node i.

G i j Add an edge between boundaried nodes i and j of G
(ignore if operation causes a multi-edge).

G⊕ H Take the disjoint union of G and H except that equal-
labelled boundary nodes of G and H are identified.

It is syntactically incorrect to use the operator i j without being preceded
by both ijand jj, and the operator ⊕ must be applied to graphs with the
same sized boundaries. A graph described by a string (tree, if ⊕ is used) of
these operators is called a k-parse, and has an implicit labelled boundary ∂ of at
most k + 1 nodes. By convention, a k-parse begins with the axiom operator string
[ 0j, 1j, . . . , kj] which represents the edgeless graph of order k + 1. Throughout
this chapter, we refer to a k-parse and the graph it represents interchangeably.

Figure 4.1 shows three 2-paths, H, I and J that their 2-parse representations
are

H = 0j, 1j, 2j, 0 1 , 0 2 , 1 2 , 0j, 1j, 0 1 , 0j, 2j, 0 1 , 0 2 , 1 2 ,
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I = 0j, 1j, 2j, 0 1 , 0 2 , 1 2 , 0j, 0 1 , 0 2 , 2j, 1 2 , 1j, 0 1 , 0 2 , 1 2 ,
J = 0j, 1j, 2j, 0 1 , 0 2 , 1 2 , 2j, 0 2 , 1 2 , 0j, 1j, 0 2 , 1 2 , 0 1 .
Graph G = (H ⊕ I)⊕ J is built form H, I, and J. Boundary nodes are shown

by gray colour to distinguish them with other non-boundary nodes.
Let G = (g0, g1, . . . , gn) be a k-parse and Z = (z0, z1, . . . , zm) be any sequence

of operators over Σk. The concatenation (·) of G and Z is defined as

G · Z = (g0, g1, . . . , gn, z0, z1, . . . , zm).

(For the treewidth case, G and Z are viewed as two connected subtree factors of
a parse tree G · Z instead of two parts of a sequence of operators.)

Bodlaender in [11] presented a linear time algorithm that from any tree de-
composition of a graph makes a smooth tree decomposition and for each smooth
tree decomposition one can easily construct a k-parse representation.

4.3 Algorithm for Bounded Treewidth Graphs

In this section we show that the problem of finding a minimum spanning cater-
pillar in a bounded treewidth graph with n nodes has an algorithm that runs in
linear time, assuming the tree decomposition is given alongside the input graph
G. Throughout this section we suppose that the treewidth of G is k and G is
represented as a k-parse G = (g0, . . . , gm).

The main idea is to use a forest of at most k + 1 different caterpillars as a
partial solution, each has at least one node in the boundary set ∂ = {0, . . . , k}.
To this end we code the information of each partial solution in a state vector
S = (A, B), where A is a (k + 1)-tuple (a0, . . . , ak). Each ai represents a label
for the boundary node i from the set {E, S, C, I, L}. The labels E, S, C, I, and L
are characteristics of the boundary nodes in a partial solution. They stand for
expandable, spine, center (of a star), isolated node, and leaf, respectively. The set B
is a partition set of ∂. If any two boundary nodes belong to the same element of
B, then they belong to the same connected component of a partial solution that
is represented by B. See Figure 4.2.

In accordance with our dynamic programming approach, we use a table T
that has rows indexed by state vectors and columns indexed by k-parse operators
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Figure 4.2 A forest of caterpillars

from gk to gm. Each entry in a row (A, B) and a column gi in T is a pair (X, x),
where X ∈ {true, false} shows if the entry represents a valid forest of caterpillars
and x is the minimum total cost among the partial solutions represented by the
state vector (A, B) at column gi.

We initialize all entries of T to the value (false, ∞). Due to our convention
for the first k + 1 operators we have gi = ij, 0 ≤ i ≤ k. So at the first step
we assign the value (true, 0) to T ((A, B), gk), where A = (I, . . . , I) and B =

{{0}, {1}, . . . , {k}}. Suppose we have computed the entries of T up to the (p−
1)th column (which is indexed by gp−1 operation). Then we scan the column p−
1 and look for entries which their first coordinates are true. By considering each
true entry in column p− 1, we update the entries in column p by the following
rules.

Node operator ij: Suppose that gp is a node operator that introduces a new
node as the boundary node i. Then for each T ((A, B), gp−1) = (true, x) let Bi ⊆
∂ be the element of B that contains boundary value i. If Bi − {i} is empty or if it
contains boundary nodes that are labelled just as leaves, then the partial solution
becomes disconnected by adding the new boundary node. In such cases we just
ignore the entry and move to the next one. Otherwise, we update the value
(X′, x′) of the entry T ((A′, B′), gp), where B′ = (B − {Bi}) ∪ {{Bi − i}, {i}}
and A′ is the same as A except it has I in its i-th coordinate, by the value of
(true, min{x, x′}).
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Figure 4.3 The valid combinations of labels in edge operation

Edge operator i j : If gp is an edge operator that connects two boundary nodes
i and j, then we need to consider two stages. In the first stage we just update
the value of each entry T ((A, B), gp) by the same value as T ((A, B), gp−1). This
reflects the cases where the edge (i, j) is not used in a partial solution.

Before explaining the next stage we have to mention that only seven different
combinations of the labels, when connected together by an edge, make valid
partial solutions to our problem. These valid combinations are listed in Table 4.1
and are depicted in Figure 4.3.

Now let T ((A, B), gp−1) = (true, x) and A = (a0, . . . , ak). We find an entry
T ((A′, B′), gp) = (X′, x′) where A′ and B′ are as follows. The vector A′ has a
coordinate (a′0, . . . , a′k) where a′t = at if t 6= i, j with the exceptions that (i) if any
of i or j has an E label in A that belongs to a star, then we also change the C
label of the center of the star in A to an E label in A′, and (ii) if any of i or j has
a C label that is changed to an E, then the E label in the corresponding star in A
is replaced by an L label in A′. The values of a′i, a′j are determined by finding a
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Table 4.1 Rules for edge operations

Rule ai aj a′i a′j y

1 E E S S min{x + b({i, j}), x′}
2(a) E C S E min{x + b({i, j}), x′}
2(b) E C S S min{x + b({i, j}), x′}
3(a) E I E L min{x + l({i, j}), x′}
3(b) E I S E min{x + b({i, j}), x′}
4(a) C C E E min{x + b({i, j}), x′}
4(b) C C E S min{x + b({i, j}), x′}
4(c) C C S S min{x + b({i, j}), x′}
5(a) C I S E min{x + b({i, j}), x′}
5(b) C I C L min{x + l({i, j}), x′}
6 S I S L min{x + l({i, j}), x′}
7 I I C E min{x + b({i, j}), x′}

Table 4.2 Rules for boundary join operations

Rule ai a′i a′′i
1 S {E, I, C} S
2 E {I, C} E
3 E E S
4 C {C, I} C

proper match in a row of Table 4.1 with respect to the values of ai and aj.
Also B′ = (B \ {Bi, Bj}) ∪ {Bi ∪ Bj}, where Bi and Bj are the elements of

B that contain i and j, respectively. We update the value of T ((A′, B′), x′) by
(true, y), where y is the corresponding value given in Table 4.1.

Boundary Join Operator H ⊕ H′: Let gp be a boundary join operator that uni-
fies the boundary nodes of two k-parses H = (h0, . . . , hr) and H′ = (h′0, . . . , h′s),
where H and H′ are substrings of G. For the sake of simplicity we suppose that
they have two different tables, TH and TH′ . We save the result of the H⊕ H′ op-
eration in a new table T⊕, whose first-column entries are initialized by (false, ∞).

Let TH((A, B), hr) = (true, x) and TH′((A′, B′), h′s) = (true, x′) be two true



4.3 Algorithm for Bounded Treewidth Graphs 46

0

1

2

3

0

1

0 0

2

3

0

1

2

3

0 0

2

3

0

1

3

Figure 4.4 A 2-path and its spanning caterpillar

entries in the last columns of TH and TH′ . If there are two different boundary
values i and j that they belong to the same partition (connected components) in
both B and B′, then this operator creates a cycle which we ignore. In such cases
we move to the next possible pair of true entries. Otherwise, we find an entry
T⊕((A′′, B′′),⊕) = (X′′, x′′), where for each coordinate i in A′′ = (a′′0 , . . . , a′′k )
there is a match for ai, a′i, and a′′i in a row of Table 4.2 and

B′′ = {Bi ∪ B′i | i ∈ ∂, Bi ∈ B and B′i ∈ B′}.

Then we update the value of the entry by (true, min{x + x′, x′′}).
We follow that procedure until we update all entries in the last column. Then

among all true entries in the last column of T that has a partition set the same as
{∂}, any one with the smallest cost is a minimum spanning caterpillar of G.

Before proving the correctness of the algorithm we give a small example of
the algorithm on a 4-path graph G that is depicted in Figure 4.4. Graph G has
the following 2-parse representation.

G = 0j, 1j, 2j, 3j, 0 1 , 0 2 , 1 2 , 1 3 , 2 3 , 1j, 1 2 , 0j, 0 1 , 0j, 0 1 , 0j, 0 1 , 0 2 ,

0 3 , 2j, 3j, 0 2 , 0 3 , 1 2 , 1 3 , 2 3 .
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We consider a spanning caterpillar of G as shown at the bottom of Figure 4.4.
We show the steps that algorithm follows for some of sub-sequences of G. Note
that our example corresponds to one row of the dynamic programming table.

0j, 1j, 2j, 3j→ ((I, I, I, I), {{0}, {1}, {2}, {3}})
0 1 , 0 2 , 1 2 , 1 3 → ((L, S, I, E), {{0, 1, 3}, {2}})

2 3 , 1j, 1 2 , 0j→ ((I, E, S, S), {{0}, {1, 2, 3}})
0 1 , 0j, 0 1 , 0j→ ((I, E, S, S), {{0}, {1, 2, 3}})

0 1 , 0 2 , 0 3 , 2j→ ((I, E, I, S), {{0}, {1, 3}, {2}})
3j, 0 2 , 0 3 , 1 2 , 1 3 , 2 3 → ((L, S, E, L), {{0, 1, 2, 3}}).

A more elaborated example is also given is Section 4.5. Now we are ready to
show the correctness of our algorithm.

4.4 Correctness of the Algorithm

In this section we justify the correctness of our minimum spanning caterpillar
algorithm. We first show that if there is a true entry in the last column of a state
table, then the graph has a spanning caterpillar. As we mentioned in Section 2.4
we denote the treewidth and the pathwidth of a graph G by tw(G) and pw(G),
respectively.

Lemma 7 Let G = (g0, . . . , gm) be a graph whose tw(G) = k and also let T be the
table produced by the algorithm. If T ((A, B), gm) has a true entry in the last column of
T such that B = ∂, then the graph G has a spanning caterpillar.

Proof. We show that each true entry in the column p, p ≤ m, of T relates to a
partial solution that has the following properties:

1. the partial solution is a forest of caterpillars,

2. the partial solution covers all nodes in (g0, . . . , gp).
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The conditions are satisfied for the only true entry in the first column of T . Since
in the first step we set the element T ((A, B), gk) to true, where A = (I, . . . , I) and
B = {{0}, {1}, . . . , {k}}.

Now suppose that the conditions hold for each true entry in a column p−
1, k ≤ p − 1 < m. We show that they also hold for each true entry that is
produced by the next operation, gp. The lemma is true when T ((A′, B′), gp) is
the resulting true entry from T ((A, B), gp−1) by a node operation. When gp is
an edge operation Property 2 trivially holds, since no new node is added. Also
each rule for an edge operation maintains the first property. The same argument
is applicable when gp is a boundary join operation.

Since Properties 1 and 2 hold for gm and also since B = {∂}, the partial
solution corresponds to T ((A, B), gm) is a spanning caterpillar for G. �

Now we prove that if a graph has a spanning caterpillar, our algorithm can
recognize it. We first prove this claim for the bounded pathwidth graphs in
Lemma 8, then we give a proof for the bounded treewidth in Lemma 9.

Lemma 8 Let G = (g0, . . . , gm) be a graph whose pw(G) = k. If G that has a
spanning caterpillar then the last column of the table T that results from the algorithm
has a true entry T ((A, B), gm) with B = {∂}.

Proof. Without loss of generality we suppose that C is a spanning caterpillar of
G such that each leaf of it is attached to a spine node with the smallest index in
the k-parse representation. We prove this stronger claim by showing that such
spanning caterpillar appears as a partial solution represented by an entry true
in the last column.

We prove the statement by an inductive argument on the number of nodes of
the spine of C. If C has only one node on its spine then it is a star and the node
that appears on the center of C takes a unique boundary value in the k-parse,
otherwise it fails to attach to all nodes of G. So the center of the star always
appears on each boundary and we attach it to a node u when u appears on a
boundary by a node operation.

Now assume the lemma is valid for any k-parse that has a spanning caterpil-
lar with less than p nodes on its spine, p ≥ 2. Let C be a spanning caterpillar of
G that has p nodes on its spine. Suppose v is the spine node that is created by
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g f , the node operation that assumes the largest index among all node operators
corresponding to spine nodes of C. We delete v and all its leaves in C and if v is
not a head we connect its two neighbours on the spine by adding an edge.

The resulting graph H has a caterpillar D with p− 1 nodes on its spine. We
can consider the k-parse representation of H as (g0, . . . , g f−1), when v is a head,
or (g0, . . . , g f−1).ge, where ge is the edge operation corresponds to attaching the
neighbours of v on the spine. Because of our inductive assumption, the last
column of the table of the algorithm, when applied to H, has a true entry that its
partial solution is D. Note that the table of H is the same as the table produced
by the algorithm when applied to G in the column f − 1. If v is not a head in C
we just discard the edge operation ge to allow the neighbours of v on the spine
to appear as heads in the partial solution. Now as v stays as a boundary node
during g f , . . . , gm, the leaves of C can be attached to v by their appropriate edge
operation. �

Lemma 9 Let G = H ⊕ H′, where H and H′ are graphs with treewidths at most k. If
G has a spanning caterpillar then the column of the table T , that results from applying
the algorithm to G, has a true entry T ((A, B), H ⊕ H′) with B = ∂.

Proof. If C is a spanning caterpillar in G = H ⊕ H′, then H ∩ C and H′ ∩
C are forests of caterpillars that span H and H′, respectively. To connect the
(spanning) forests of caterpillars in H, we first direct the edges on the spine of C
from one head to the other. Then we walk along the path on the spine. Once we
leave H (by entering to a non boundary node of H′) and return to it (by entering
to a non-boundary node of H), we add an edge between the two consecutive
visited boundary nodes. By the same method we connect components of H′ ∩C.
Note that since we join the connected components via their heads, the resulting
graphs are spanning caterpillars of H and H′. We consider the new edges as
extensions of the k-parses of H and H′.

Now we apply the algorithm to the extended k-parses of H and H′. By
Lemma 8 we know that the last column of each table has a true entry. Since
the extensions are done by adding edges, there are also true entries on the last
columns of the tables associated to k-parse representations of H and H′. In par-
ticular, there are true entries such that their partial solutions are associated to
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H ∩ C and H′ ∩ C, so joining them by an ⊕ operator produces a true entry that
has C as its partial solution. �

Theorem 10 The algorithm solves the spanning caterpillar problem with the running
time O(5k+1Bk+1n) for a graph of bounded pathwidth k and with the running time
O(5k+1B2

k+1n) for a graph of bounded treewidth k; where n is the number of nodes
and Bk+1 is the (k + 1)th Bell number (the number of partitions of a set with k + 1
members).

Proof. Note that each k-parse G has a representation as (a) G = G′ · H, or
(b) G = G′ ⊕ G′′, where G′ and G′′ each has treewidth at most k and H is a
sequence of node and edge operators. The correctness of the algorithm follows
from an inductive argument on the number of operators as in (a) and (b). The
validity of the base case is the result of Lemmas 8 and 9. For the induction
step one just need to use the same technique as Lemma 9 to reduce a problem
to the cases with less number of operations. The optimality of the final solution
follows from an inductive argument using the fact that we always choose partial
solutions with smaller costs.

To solve the problem for a graph with pathwidth at most k, the algorithm
uses a table that has O(5k+1Bk+1n) entries. In the case when the graph has
bounded treewidth, tw(G) = k, the algorithm processes each boundary join
operation by comparing all pairs of entries in the last two columns of the joined
graphs. So it takes O(5k+1B2

k+1n) steps. �

4.5 Illustrating the Algorithm

In this section we present an example where the algorithm when applied to a
graph reveals a spanning caterpillar tree. Here we assume that we have unit
costs over edges and our goal is to find a spanning caterpillar. To make follow-
ing the example easier we show a boundary node with its label together.

In Figure 4.5 we depict a graph G that is the result of the following 2-parse

G = (H ⊕ H′) · ( 0j, 0 1 , 0 2 , 1j, 0 1 ).
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Figure 4.5 A 2-tree.

The subgraphs H = (h0, . . . , h12) and H′ = (h′0, . . . , h′11) are partial 2-caterpillars
and they are represented as 2-parses

H = ( 0j, 1j, 2j, 0 2 , 1 2 , 0j, 0 1 , 0 2 , 1j, 1 2 , 2j, 0 2 , 1 2 )

and
H′ = ( 0j, 1j, 2j, 0 1 , 0 2 , 0j, 0 1 , 0 2 , 2j, 0 2 , 1j, 1 2 ).

When the algorithm is applied to H the true entries of the first two columns and
the last two columns of the table are given next.

column h2: ((I, I, I), {{0}, {1}, {2}}),

column h3: ((E, I, C), {{0, 2}, {1}}),
((C, I, E), {{0, 2}, {1}}), also true entries of the column
h2.

...

column h10: ((E, I, I), {{1}, {0}, {2}}),
((I, E, I), {{0}, {1}, {2}}),
((E, E, I), {{0, 1}, {2}}),
((E, L, I), {{0, 1}{2}}}).

column h11: ((E, I, E), {{0, 2}, {1}}),
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((S, I, E), {{0, 2}, {1}}),
((E, E, C), {{0, 2}, {1}}),
((C, E, E), {{0, 2}, {1}}),
((E, E, E), {{0, 1, 2}}),
((S, E, E), {{0, 1, 2}}),
((E, L, E), {{0, 1, 2}}),
((S, L, H), {{0, 1, 2}}), also true entries of the column h10.

Finally the last two column for H′ are given next.

column h′9: ((C, I, I), {{0}, {2}, {1}}),
((E, I, I), {{0}, {2}, {1}}),
((E, I, I), {{0}, {2}, {1}}),
((E, I, I), {{0}, {1}, {2}}),
((L, I, S), {{0}, {1}, {2}}),
((S, I, I), {{0}, {1}, {2}}).

column h′11: ((H, I, H), {{0, 2}, {1}}),
((S, I, H), {{0, 2}, {1}}),
((S, I, L), {{0, 2}, {1}}), also true entries of the column h′9.

Now we use the rule concerning the boundary join operation to the entry

((E, I, I), {{1}, {0}, {2}}),

from column h9 and to the entry

((E, I, E), {{0, 2}, {1}}),

from column h′11. The resulting entry is

((S, I, E), {{0, 2}, {1}}).

We next apply the 2-parse operators from the extension to this entry (from the
first column of the table of H ⊕ H′) and we have:

1. 0j: ((I, I, E), {{0}, {1}, {2}}),
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2. 0 1 : ((E, C, E), {{0, 1}, {2}}), ((C, E, E),
{{0, 1}, {2}}),

3. 0 2 : ((S, C, S), {{0, 1, 2}}), ((E, E, S),
{{0, 1, 2}}),

4. 1j: ((S, I, S), {{0, 2}, {1}}), ((E, I, S),
{{0, 2}, {1}}),

5. 0 1 : ((S, L, S), {{0, 1, 2}}), ((E, E, S)},
{{0, 1, 2}}), ((S, E, S), {{0, 1, 2}}).

As it is seen from the result of the last operation, the graph G has a spanning
caterpillar.

4.6 Two Related Problems

In this section we briefly explain how one can apply the idea of our algorithm to
solve other related problems such as the Minimum Spanning Ring Star Problem
and the Dual Cost Minimum Spanning tree.

To solve the MSRSP when the input is a graph together with its tree decom-
position, we follow almost the same procedure as our algorithm for the MSCP.
The main difference is that during an edge operation or a boundary join oper-
ation, we allow a cycle to appear. But afterwards, the other nodes can join the
cycle just as leaves. So as soon as a cycle appears in a partial solution we check
to see if the other connected components are isolated nodes. If so, we keep the
cycle and we follow the process. Otherwise, we ignore the cycle and move to
the next step. Of course here we need to have appropriate bookkeepings to
distinguish between state vectors that represent forests of caterpillars and state
vectors that represent cycles.

To solve the Dual Cost Minimum Spanning Tree, we ignore the role of spine
nodes and we consider forests of trees as partial solutions rather than forests of
caterpillars.



4.7 Summary and Open Problems 54

4.7 Summary and Open Problems

In this chapter we presented an algorithm that efficiently finds a minimum span-
ning caterpillar in some classes of graphs that have small treewidth, like outer-
planar, series-parallel and Halin graphs. Our algorithm can be easily modified
to solve other related network problems like the Minimum Ring Star Problem.
Here one just need to allow cycles to appear in the process of the algorithm and
keep the required information to see if it eventually spans the graph. We also
can use the same idea to solve the Dual Cost Minimum Spanning Tree.

Also if the input consists of a graph and its treewidth (instead of a tree de-
composition) then by using any algorithm that computes a tree decomposition,
our algorithm gives another proof that MSCP is fixed-parameter tractable [28],
rather than using an EMSOL expression.

It would be interesting if one can improve the constant factor in the running
time of our algorithm. It is also of interest if one can improve the time complex-
ity by reducing the size of a state table by a tradeoff with accuracy.



Chapter 5

Maximum Caterpillar Problem

As easily seen, not every graph has a spanning caterpillar. So in this chapter
we concentrate on the problem of finding a caterpillar with the largest order in
a graph. Here we assume that all edges have the same cost and our goal is to
find a caterpillar with the largest number of nodes. Since finding a maximum
caterpillar is NP-hard, here our focus is on finding a heuristic algorithm for this
problem.

The organization of this chapter is as follows. In the next section we re-
view the results on finding the largest path in a graph. Our goal is to see
how we can use those algorithms for finding large caterpillars. In Section 5.2
we present our integer programming formulation for the Maximum Caterpillar
Problem (MCP). We explain how one can solve MCP in directed acyclic graphs
in polynomial-time in Section 5.3. In Section 5.4, we use the results of Section 5.2
and 5.3 to introduce our heuristic algorithm for the MCP.

5.1 Longest Paths vs. Maximum Caterpillars

The longest path problem has been the subject of many studies in recent years;
see [42] and [10]. Since the set of paths in a graph is a subset of the set of cater-
pillars, one may wish to use the results about the longest path problem for the
maximum caterpillar problem.

For example one may choose a relatively long path as a candidate for the
spine of a large caterpillar. The following theorem from Karger, Motwani and

55
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Figure 5.1 A graph with a small longest path and a large maximum
caterpillar.

Ramakumar [42] gives the value of (bm/nc+ δ) as a lower bound for the maxi-
mum caterpillar in a graph.

Theorem 11 ( [42]) Any graph with m edges and n nodes contains a path of length
d = bm/nc.

As another result on finding a long path in a graph, we mention the elegant
method of colour-coding. Colour-coding was proposed by Alon, Yuster and
Zwick [2] to find a small path or cycle of order k within a graph. The main idea
is to colour randomly every node in a graph with one of k colours and to look
for a path in which every node has a different colour.

Alon et al. simplified the colour-coding method for finding a path by giving
a random orientation to the edges of a graph G = (V, E). They showed that
every simple path of length k has a 2/(k + 1)! chance of becoming a directed
path in the process. To find an actual path, we have to repeat the process O((k +
2)!|V|) expected times.

This method is practical when the length of the path is no more than O(log n).
Consequently, the caterpillar constructed by joining the nodes that are adjacent
to the path may be small. As seen in Figure 5.1, the longest path in a graph can
be much smaller than the maximum caterpillar.

Also one may wish to use the output of any approximation algorithm for the
longest path problem as the spine for a caterpillar tree. The 1-neighbourhood of
such a path is a caterpillar that is at least as large as the original path.
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The negative result on the hardness of approximation for the longest path
problem rules out this hope that we can use algorithms for the longest path
problem to deal with the maximum caterpillar problem. For example, the fol-
lowing theorem states that finding a path of relatively long length is hard in a
Hamiltonian graph.

Theorem 12 ( [42]) For any ε < 1, the problem of finding a path of length n− nε in a
Hamiltonian graph is NP-complete.

Also with respect to the following result, we do not expect to find a constant
factor approximation algorithm for the longest path problem in general graph.

Theorem 13 ( [42]) There does not exist a constant factor approximation algorithm for
the longest path problem, unless P = NP.

The hardness of approximation results are not restricted to undirected graphs.
We have the same result when dealing with a directed graph. The following the-
orem of Björkland, Husfeldt, and Khanna [10] says it is hard to find a constant
factor approximation algorithm for Hamiltonian digraphs.

Theorem 14 ( [10]) There can be no deterministic, polynomial time approximation al-
gorithm for Longest Path or Longest Cycle in a Hamiltonian directed graph with per-
formance ratio n1−ε for any fixed ε, unless P = NP.

These observations are the main reasons why finding a solution to the maxi-
mum caterpillar problem require a different approach.

5.2 Integer Programming Formulation

In this section we present the MCP as an integer programming problem. Let
G = (V, E) be a graph. We make a directed graph H = (N, A), where N = V
and A is a set that consists of pairs of parallel arcs, f = (u, v), f− = (v, u), for
each edge e = {u, v} ∈ E.

With respect to those changes, we can consider a caterpillar in H as a rooted
tree that has a directed path as its spine; see Figure 3.2, where nodes on the spine
have one incoming arc and one or more outgoing arcs and the nodes on leaves
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have just one incoming arc. For each node v ∈ N, by in(v) and out(v) we denote
the incoming and the outgoing arcs of v, respectively. Also for each f ∈ A we
show by f− the parallel arc with f that has an opposite direction.

Here we first present our integer programming formulation for the MCP
with a fixed root r. To each directed edge f ∈ A we assign two variables, x f and
y f . In each solution a variable x f is 1 if f is chosen as a leaf edge and a variable
y f is 1 if it is chosen as a spine edge, otherwise they are 0. Also to each node
v ∈ N we assign the variable zv. In particular, we have zr = 0. The objective
function is

max

(
∑
f∈A

(y f + x f )

)
.

In what follows M is a large positive integer; say, a number greater than the
order of the graph. The constraints are

x f + y f + x f− + y f− ≤ 1, f ∈ A (5.1)

∑
f∈in(v)

y f + ∑
f∈in(v)

x f ≤ 1, v ∈ N \ r (5.2)

∑
f∈out(v)

y f + ∑
f∈in(v)

x f ≤ 1, v ∈ N (5.3)

∑
f∈out(v)

x f −M

 ∑
f∈in(v)

y f + ∑
f∈out(v)

y f

 ≤ 0, v ∈ N (5.4)

v ∈ N \ r (5.5) ∑
f∈out(v)

(y f + x f )

×
 ∑

f=(u,v)∈in(v)
(x f + y f )(zv − zu)

− 1

 = 0,

zr = 0, (5.6)

∀ f ∈ A (5.7)

x f , y f ∈ {0, 1},
∀v ∈ N (5.8)

zv ∈ {0, . . . , n− 1}.
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In the next theorem we show that each integral feasible solution, that satisfies
these constraints, represents a spanning caterpillar.

Lemma 15 Every nontrivial feasible solution for the integer programming formulation
represents a caterpillar in the graph.

Proof. Let H be a directed graph consisting of arcs f ∈ A such that y f = 1 or
x f = 1. Since the solution is nontrivial then E(H) 6= ∅. We show that for each
node w of H, there is a directed path from r to w. Let f = (v, w) be the incoming
arc to w in H. Note that by Constraint 5.2 such an arc is unique. We first assume
that y f = 1.

By Constraint 5.5 we know that

∑
f=(u,v)∈in(v)

(x f + y f )(zv − zu) = 1,

so there is an arc g = (u, v) ∈ in(v), such that yg = 1 and zv − zu = 1. By
following this argument we get a sequence of edges

f0 = (v1, v0), f1 = (v2, v1), . . . , fk−1 = (vk, vk−1)

Since there are just a finite number of nodes we end up in two cases, either vk =

r, because r is the only node in the graph that is not restricted by Constraint 5.5,
or vk = v0 and we have a cycle. We show that the latter case is not possible. Let
v0(= v), vk−1, . . . , v1, v0 be a cycle. Then we have

zv0 − zv1 = 1,

zv1 − zv2 = 1,
...

zvk − zv0 = 1.

Now if we sum up these equalities we get 0 = k + 1, which is a contradiction.
So there is a directed path from r to every node w of H, if y f = 1 and f = (v, w).

Now we consider the case where x f = 1 and f = (v, w). By Constraint 5.5
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we have

∑
f=(u,v)∈in(v)

(x f + y f )(zv − zu) = 1,

and also with respect of Constraint 5.4 we have

1 < ∑
f∈out(v)

x f ≤ M

 ∑
f∈in(v)

y f + ∑
f∈out(v)

y f

 (5.9)

so there is an arc f ∈ in(v) ∪ out(v) such that y f = 1. By using this arc and the
fact that there is a directed path from r to f , we can find a directed path from r
to w, too.

Now by Constraints 5.2 and 5.3 we know that every node v in H has at most
one incoming arc f = (u, v) such that y f = 1. The same is true for outgoing arcs
of v. So the set S = { f | y f = 1} is a path. As seen from 5.9, every node v that
has an incoming arc f such that x f = 1, is attached to a node in S. Also with
respect to Constraints 5.2 and 5.3 the node v has just one incoming arc g and one
outgoing arc f with y f = yg = 1. So by Constraint 5.4 we have

∑
f∈out(v)

x f = 0.

Consequently, in H the node v has no outgoing arc so H is a directed caterpillar
rooted at r. �

Lemma 16 Let H be a directed caterpillar in a graph G that is rooted at r. Then H
corresponds to a feasible solution of the integer programming formulation.

Proof. We make a feasible solution from H by following process. To each arc f
that belongs to the spine of H, we assign the value y f = 1. Also the value x f = 1
is assigned to every leaf f in H. We set all other variables to 0. It is not hard to
check that all the variables satisfy Constraints 5.1–5.8. �

The next theorem follows from Lemmas 15 and 16.

Theorem 17 Constraints 5.1-5.8 make a valid formulation for the MCP.

Now having a valid nonlinear integer programming problem, we can convert it
to a linear one; see [60]. So in the following section we assume that a solution
for the relaxation of the problem is given.
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Figure 5.2 The process of transforming a node-weighted DAG to an arc-
weighted one.

5.3 Maximum Caterpillar in DAGs

As part of our algorithm to find a caterpillar of large order we need to mention
the process of finding a longest path in a Directed Acyclic Graph (DAG). The
longest path problem has polynomial-time algorithm on an arc-weighted DAG.
For finding a path of longest order in a DAG, one can first change the weights to
negative ones and then follows the all pairs shortest path algorithm on the new
(directed) graph.

If the DAG is node-weighted, then we need to change it to an arc-weighted
one. To this end, we order the nodes by a topological ordering. As the next step
we replace each node by a weighted arc. Our rules to connect the neighbours of
the node to the new arc are as follows.

If a neighbour has a smaller topological numbering then we connect the end
node of the arc representing the smaller node to the start node of the arc rep-
resenting the larger node. Finally we assign the weight of a node to its repre-
senting arc. We also assign zero as the weight of the arcs of the main digraph.
Figure 5.2 shows the process.

Finally we can use the algorithm to find a (single source) caterpillar of the
largest orders in a DAG. Here we assign weights to the nodes of the digraph
with respect to the number of outgoing arcs. Then we apply the algorithm for
the node-weighted DAG.
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5.4 A Heuristic Algorithm for the MCP

In this section we present a heuristic algorithm for the MCP. Here we assume
that a solution to the relaxation of the integer programming formulation is given.
We make an acyclic graph G′ = (V′, E′), where V′ = V and

E′ = { f | f = (u, v) ∈ E and zv > zu},

Lemma 18 Let G′ be a graph constructed by the aforementioned rule. Then G′ has no
directed cycle.

To find a large caterpillar in G′, we first assign to each node a weight that
is equal to the number of its neighbours in G. Then we find a path P with a
largest weight in the node-weighted G′. Since G′ is a DAG we can find such a
path in G′ in polynomial time. By using the path P in G′ we can find the spine
of a caterpillar in G. The close 1-neighbourhood of that path is the output of our
algorithm.

5.5 Summary and Open Problems

In this chapter we introduced the Maximum Caterpillar Problem. We suggested
a heuristic algorithm for the problem by using an integer programming formu-
lation. Though we believe that the MCP is as hard as the longest path problem,
we are still interested in finding a formal proof for the hardness of approxima-
tion of the MCP.



Chapter 6

Miscellaneous Algorithms

One way to face the hardness of a graph problem is to restrict it to a smaller
classes of graphs. In Chapter 4 we studied caterpillar problems on graphs of
bounded treewidth. In this chapter we are going to study it on two other classes
of graphs, block and interval graphs. We also briefly explain our idea of how
one can generalize the notions of depth first search and breadth first search in
graphs for searching for k-trees.

Here we first give a linear time algorithm that finds the heaviest caterpillar in
a node-weighted tree. Then we use this result to find a largest caterpillar in a
block graph. Then we prove that every interval graph has a spanning caterpillar.
In the last section we introduce depth first and breadth first search of k-trees.

6.1 The Largest Caterpillar in a Tree

In this section we suppose that we have a node-weighted tree. Our goal is to
find a subtree as a caterpillar such that the sum of the weights of its nodes is
as large as possible. It is easy to see that there is an O(n3) algorithm for this
problem, we first find the weights of all caterpillars that have a pair of leaves
as ends and then we choose the one with the largest weight. But here we are
interested in finding a linear time algorithm. Since we are going to use it in
another algorithms, we prefer that the running times of our algorithms are not
dominated by such a subroutine.

We can use Dijkstra’s algorithm for finding the longest path in a tree to find

63



6.2 Block Graphs 64

a largest caterpillar in a tree. In Dijkstra’s algorithm we suppose each edge of
the tree is a string of the physical length the same as its weight. Then we pick up
a node and let the other nodes hang down. Then we choose one of the deepest
node a and pick it up. Then the distance between node a and one of the deepest
node, say b, is the length of the longest path in the tree. See Bulterman et al. [15]
for a formal specification and a proof.

To apply this idea for finding the largest caterpillar in tree, we first give
weights to the nodes with respect to the number of their adjacent nodes. Then
we follow the same process for our node-weighted tree. That the algorithm finds
the largest caterpillar in a tree follows the same argument as the proof of Dijk-
stra algorithm [15]. We also refer the reader to a paper of Uehara and Uno [58]
for finding a longest path in a tree and some other classes of graphs.

6.2 Block Graphs

A graph G is a block graph if G is connected and every maximal 2-connected
subgraph of G is complete, see [14]. We can consider a block graph as a graph
that is made by replacing each edge in a tree by a clique of arbitrary size, where
each pair of cliques are joined by at most one node, see Figure 6.1. Here we want
to find a largest caterpillar in a block graph.

Given a block graph G, we use the result of the former section about trees to
find the largest caterpillar in G. We first make a node-weighted tree TG where
each vertex in TG corresponds to a clique in G and each pair of nodes in TG are
connected by an edge if their corresponding cliques have a node in common.
Then we assign weights to nodes in such a way that the weight of a node v ∈
V(TG) is equal to the order of the corresponding clique of v, Figure 6.2 shows
the node-weighted tree of the block graph depicted in Figure 6.1.

As the next step we find a caterpillar with the largest weight in TG. To find
the caterpillar within G we first order the nodes on the spine of CT head to
head. Let v1, v2, . . . , vk be the ordered spinal nodes of TG. Assume Qi ⊆ G is
the associated clique of vi, where 1 ≤ i ≤ k. Let Qi−1, Qi and Qi+1 be three
consecutive cliques that are associated to vi−1, vi and vi+1, respectively.

Then we find the sequence of nodes s2, s3, . . . , sk in G where si, 2 ≤ i ≤ k, is
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Figure 6.1 A block graph.
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Figure 6.2 A node-weighted tree representation.
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Figure 6.3 A graph and its interval representation.

the joining node between Qi−1 and Qi. We extend this list by adding s1 ∈ Q1

where s1 6= s2 and also by adding sk+1 ∈ Qk where sk+1 6= sk. Since each Qi is a
clique, there is a path Pi in Qi between si and si+1 that spans Qi.

In order to make the spine of the desired caterpillar in G, we join Pi to Pi+1,
1 ≤ i ≤ k. It is trivially seen that the nodes of the cliques that have common
nodes with Qis, appear as leaves in this caterpillar.

6.3 Interval Graphs

In this section we show that each interval graph has a spanning caterpillar. In-
formally an interval graph is a graph that its nodes correspond to intervals on
the real line.

To define interval graphs formally we first need to give the definition of an
intersection graph. Let {S1, S2, . . . , Sn} be a set of non empty subsets of a set S.
We assign a node vi to a set Si, and we connect nodes vi to vj if Si ∩ Sj 6= ∅,
where 1 ≤ i, j ≤ n and i 6= j. We call such a graph the intersection graph of
S1, . . . , Sn.

Now let T = {I1, I2, . . . , In} be a finite collection of intervals in the real line
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where GI is its intersection graph. A graph G is an interval graph if G is the inter-
section graph GI of a finite set of interval on the real line; see [14]. In Figure 6.3
an interval graph and its interval representation is shown.

It is known that every interval graph can be recognized in linear time, also
there is an algorithm that for a given interval graph G produces its interval
model GI in linear time; see [49].

In what follows we assume that we have an interval model of an interval
graph. We show that each interval graph has a spanning caterpillar.

Theorem 19 Let G be an interval graph. Then there is a caterpillar as a subgraph of G
that spans G.

Proof. Let T be a caterpillar in G with the largest order. Also assume there is a
node v ∈ G(V) that does not belong to V(T). We assume that v has a neighbour
u ∈ V(T), otherwise we find a path from v to T and we consider the last node on
this path that does not belong to T as v. Let (a, b) and (c, d) be the corresponding
intervals of v and u in GI , respectively.

Since v is connected to u, the intervals (a, b) and (c, d) overlap. So we assume
that a < c < b < d. Since v /∈ V(T) there is no spinal node of T that its interval
representation overlaps with (a, b).

Then we find the spine node s for which in its interval representation (i, j),
the value of i is the smallest among all other spine nodes. It is easy to see that
(c, d) overlaps (i, j). Then we connect u as the new spine node to s and then
we can add v to the extended spine and we find a caterpillar with the order one
more than T. Which contradicts the assumption that T has the largest order.

�

We close this section by reminding the reader that since a complete graph
belongs to the class of interval graphs, then the minimum spanning caterpillar
problem still remains NP-hard for interval graphs.

6.4 Depth-First and Breadth-First Search for k-Trees

There is an efficient algorithm for recognizing a k-tree. One can choose consec-
utively k-leaves to remove nodes from a graph in any order. If the process fails
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to find a k-leaf at a step then the graph is not a k-tree. This algorithm imposes
an ordering on the nodes that is the same as a perfect elimination scheme. But
as simply seen, this process is not applicable for finding a spanning k-tree that
is hidden as a subgraph in a graph.

The depth-first search and the breadth-first search algorithms are used as
subroutines in many graph algorithms. Since k-trees are considered as general-
ization of trees, one may ask how we can generalize these algorithms for find-
ing a hidden k-tree in a graph? We try to answer this question by introducing a
heuristic algorithm that, if it is properly implemented, resembles BFS and DFS
algorithms. We refer to this algorithm as the k-tree search algorithm (KTS).

Note that in a graph that has a spanning k-tree, each node is attached to at
least one k-clique. We use this trivial fact for designing a heuristic algorithm to
extract k-trees of a graph G. To save information during the execution of our
algorithm we use a list L to save the order of nodes in a reverse order of their
appearance in a perfect elimination scheme. We also use a set S (with a priority
structure) to save k-cliques that appear during the search process.

We first choose an arbitrary node v of the graph. Then we find a k-clique K
in G[N(v)] and save K in S. We also add the nodes in K as the first k nodes to L
and assign the empty set as the parent of all nodes.

We repeat the following steps until S becomes empty. We remove a k-clique
K from S and add each node u ∈ K to L if it is not added yet. For each w ∈⋂

x∈K N(x) if w is not in L, we update its parent by considering K as the new
parent, otherwise we do not change the parent of w. We then save all k-cliques
comprising w and each set of k− 1 nodes of K in S.

Note that if one implements S (as a dynamic set) by a queue the resulting k-
trees extend in a breadth first search fashion, and if S is implemented by a stack
the resulting k-trees extend in a depth first search fashion. Sometimes, due to
improper choices of nodes or k-cliques, an output of the algorithm is a forest of
k-trees and it does not cover all nodes of a graph. For example in Figure 6.4 if we
first choose the node v and then the edge (u, w) as a 2-clique, the first resulting
2-tree is G[{v, u, w}]. This cause the output of the algorithm consists of at least
four connected components.

As a solution to such problems we introduce the concept of the neighbour-
hood density to guide the search in a proper way. In a graph G the neighbourhood-
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Figure 6.4 A graph with a spanning 2-tree.

density of two subgraphs H and H′ of G is defined as

d(H, H′) = |N(H) ∩ N(H′)|.

This concept can be used in the algorithm by this way: In the first step choose
the k-clique K such that d(v, K) gets the maximum value among all k-cliques that
are neighbours of v. Also in the iterative steps of the algorithm, when a k-clique
is chosen from the set S, allow the next k-clique to be chosen if it is built from a
node w ∈ ⋂

x∈K N(x) and a set of k− 1 nodes of K such that

d(w, K) = max

{
d(u, K) | u ∈

⋂
x∈K

N(x)

}
.

Now if one uses the guided version of the algorithm for the graph in Figure 6.4,
the first 2-clique is (x, y) rather than (u, v). Choosing the next 2-cliques by the
same way, produces a larger k-tree in comparison with the unguided version of
the KTS algorithm.

We use the KTS algorithm as a subroutine to find a large k-caterpillar. We
refer to this as the k-caterpillar search algorithm (KCS). To this end we use a
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function ω that is defined, on a path P, as

ω(P) =

∣∣∣∣∣∣ ⋃
v∈V(P)

N[v]

∣∣∣∣∣∣ .

The function ω computes the number of nodes in a k-path comprising the num-
ber of k-leaves that are attached to it. The KCS algorithm first uses the k-tree
search algorithm to find a forest of k-trees in a graph. Then for each pair of
k-leaves, it finds a k-caterpillar that has the largest number of nodes. This is
done by computing the weight function ω for each k-caterpillar between a pair
of k-leaves.

Figure 6.5 A somewhat difficult graph to find a spanning 1-caterpillar.

It is worth mentioning that the result of this algorithm depends on the result
of the k-tree search algorithm. For example see Figure 6.5. The graph is shown as
though the final result of applying the depth-first search algorithm; with back-
edges that are not part of the tree. As one can easily check by choosing the path
with the largest weight, a small portion of the total number of nodes is covered.

6.5 Summary and Open Problems

In this chapter we introduces a few results on finding caterpillars in three classes
of graphs: trees, block graphs and interval graphs. We also extended the no-
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tions of depth first search and breadth first search to k-trees. It is interesting to
know for which other classes of graphs the maximum caterpillar problem has a
polynomial-time algorithm.
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