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Abstract

Global and regional mechanics of the cardiac ventricles were investigated using an anatom-

ically accurate computational model formulated from concise mathematical descriptions of

the left and right ventricular wall geometries and the non-homogeneous laminar microstruc-

ture of cardiac muscle. The finite element method for finite deformation elasticity was de-

veloped for the analysis and included specialised coordinate systems, interpolation schemes

and parallel processing techniques for greater computational efficiency.

The ventricular mechanics model incorporated the fully orthotropic pole-zero constitutive

law, based on the three-dimensional architecture of myocardium, to account for the nonlinear

material response of resting cardiac muscle, relative to the three anatomically relevant axes.

A fibre distribution model was introduced to reconcile some of the pole-zero constitutive

parameters with direct mechanical properties of the tissue (such as the limiting strains

estimated from detailed physiological observations of the collagen helices that surround

myofibres), whilst other parameters were estimated from in-vitro biaxial tension tests on

thin sections of myocardium. A non-invasive approach to in-vivo myocardial material

parameter estimation was also developed, based on a magnetic resonance imaging technique

to effectively tag ventricular wall tissue.

The spatially non-homogeneous distribution of myocardial residual strain was accounted for

in the ventricular mechanics model using a specialised growth tensor. A simple model of fluid

shift was formulated to account for the changes in local tissue volume due to movement of

intramyocardial blood. Contractile properties of ventricular myofibres were approximated

using a quasi-static relationship between the fibre extension ratio, intracellular calcium

concentration and active fibre stress, and the framework has been developed to include a

more realistic model of active myocardial mechanics, which could be coupled to a realistic

description of the time-varying spread of electrical excitation throughout the ventricular

walls. Simple volumetric cavity models were incorporated to investigate the effects of arterial

impedance on systolic wall mechanics.
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Ventricular mechanics model predictions of the cavity pressure versus volume relationships,

longitudinal dimension changes, torsional wall deformations and regional distributions of

myocardial strain during the diastolic filling, isovolumic contraction and ejection phases

of the cardiac cycle showed good overall agreement with reported observations derived

from experimental studies of isolated and in-vivo canine hearts. Predictions of the spatial

distributions of mechanical stress at end-diastole and end-systole are illustrated.
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M

	
deformation gradient tensor
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orthogonal rotation tensor
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right stretch tensor

C, fCMNg right Cauchy-Green or Green deformation tensor
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T MN
	

second Piola-Kirchhoff stress tensor

J Jacobian for coordinate transformations

ρ, ρ0 material densities for deformed and undeformed configurations, respectively

t,
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internal stress or traction vector
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external body force vector
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vi
	

velocity vector
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f i
	

acceleration vector

n̂, fn̂ig unit normal vector to a given surface

δv, fδvig virtual displacement vector
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Notation

� This thesis uses the Einstein summation convention, where repeated indices implies summation
over the individual components. For example a vector dot product, in N dimensions, may be
written:

aibi = a �b =
N

∑
i=1

aibi

If an index is in parenthesis then summation is not implied. For example:

aib(i) =

�
a1b1 if i = 1
a2b2 if i = 2

� Mathematical variables represented by bold lowercase letters generally refer to vector
quantities, while bold uppercase letters refer to tensor quantities, except where noted.

� In general, this thesis uses lowercase indices when dealing with coordinates in the deformed
state and uppercase for coordinates in the undeformed reference state. Moreover, Roman letters
generally refer to spatial coordinates, while Greek characters refer to material coordinates.
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