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Abstract

Global and regional mechanics of the cardiac ventricles were investigated using an anatom-

ically accurate computational model formulated from concise mathematical descriptions of

the left and right ventricular wall geometries and the non-homogeneous laminar microstruc-

ture of cardiac muscle. The finite element method for finite deformation elasticity was de-

veloped for the analysis and included specialised coordinate systems, interpolation schemes

and parallel processing techniques for greater computational efficiency.

The ventricular mechanics model incorporated the fully orthotropic pole-zero constitutive

law, based on the three-dimensional architecture of myocardium, to account for the nonlinear

material response of resting cardiac muscle, relative to the three anatomically relevant axes.

A fibre distribution model was introduced to reconcile some of the pole-zero constitutive

parameters with direct mechanical properties of the tissue (such as the limiting strains

estimated from detailed physiological observations of the collagen helices that surround

myofibres), whilst other parameters were estimated from in-vitro biaxial tension tests on

thin sections of myocardium. A non-invasive approach to in-vivo myocardial material

parameter estimation was also developed, based on a magnetic resonance imaging technique

to effectively tag ventricular wall tissue.

The spatially non-homogeneous distribution of myocardial residual strain was accounted for

in the ventricular mechanics model using a specialised growth tensor. A simple model of fluid

shift was formulated to account for the changes in local tissue volume due to movement of

intramyocardial blood. Contractile properties of ventricular myofibres were approximated

using a quasi-static relationship between the fibre extension ratio, intracellular calcium

concentration and active fibre stress, and the framework has been developed to include a

more realistic model of active myocardial mechanics, which could be coupled to a realistic

description of the time-varying spread of electrical excitation throughout the ventricular

walls. Simple volumetric cavity models were incorporated to investigate the effects of arterial

impedance on systolic wall mechanics.
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Ventricular mechanics model predictions of the cavity pressure versus volume relationships,

longitudinal dimension changes, torsional wall deformations and regional distributions of

myocardial strain during the diastolic filling, isovolumic contraction and ejection phases

of the cardiac cycle showed good overall agreement with reported observations derived

from experimental studies of isolated and in-vivo canine hearts. Predictions of the spatial

distributions of mechanical stress at end-diastole and end-systole are illustrated.
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quantities, while bold uppercase letters refer to tensor quantities, except where noted.

� In general, this thesis uses lowercase indices when dealing with coordinates in the deformed
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Chapter 1

Introduction

The heart : : : moves of itself and does not stop unless for ever.

Leonardo da Vinci (1452–1519)

Heart failure is a leading cause of death in the western world and a significant proportion

of these deaths is due to rhythm disturbances. In order to gain insight into the mechanisms

behind arrhythmias and to determine their causes, a knowledge of the structure and electro-

mechanical behaviour of heart muscle is important. For centuries, researchers such as

da Vinci have studied the structure of the heart. Moreover, cardiologists have used simple

clinical measurements such as heart rate, blood pressure and, for the last century, the

electrocardiogram (ECG) to diagnose cardiac pathologies. Subsequently, researchers have

developed mathematical modelling techniques to help clinicians interpret this plethora of

clinical observations and physiological measurements of cardiac function and structure, in a

rational and systematic manner.

At a simplified level the heart can be described as a source of blood flow or pressure and its

mechanical behaviour can be understood in terms of the time-varying relationship between

ventricular blood pressure and cavity volume. For many years, this relationship has been used

by clinicians as a measure of cardiac function (Suga, Sagawa and Shoukas 1973; Janicki

and Weber 1977; Elzinga and Westerhof 1979; Suga, Hayashi and Shirahata 1981).

More recently, it has become apparent that an understanding of the regional variation

of myocardial tissue properties is important to understand the fundamental mechanisms

underlying ventricular mechanics. Moreover, in order to estimate the energy consumption

of various portions of the myocardium, the distribution of mechanical stress1 throughout

1The term stress is used here as a measure of force per unit area acting on an infinitesimally small plane

1



1. INTRODUCTION 2

the cardiac muscle is important (Sarnoff, Braunwald, Welch, Case, Stainsby and Macruz

1958; Jan 1985). More recent evidence has shown that changes in wall stress due to altered

haemodynamic load contribute to the remodelling of myocardial tissue with respect to its

cellular and connective tissue composition (Fung 1990). In addition, it may also influence

tissue changes due to ischaemia and hypertrophy (McCulloch 1995).

The primary objectives of this research were to (1) develop a three-dimensional model of the

beating heart based on an anatomically accurate mathematical description of the ventricular

myocardium, and (2) use the model to predict accurate ventricular deformation and stress

distributions during the various phases of the cardiac cycle.

In order to understand the evolution of the ventricular mechanics model developed in this

thesis, a brief history of models is presented. More detailed reviews of cardiac biomechanics

modelling may be found in Yin (1981) and McCulloch (1995). Yin (1985) also presents a

good review of ventricular mechanics models based on the finite element method (FEM)2.

Descriptions of ventricular geometry have ranged from oversimplified axisymmetric shells to

accurate ventricular surface representations. Moreover, the mechanical behaviour of cardiac

tissue has been modelled using a variety of material response functions, ranging from simple

phenomenological descriptions to biophysical representations based on the microscopic

architecture of ventricular myocardium. In any case, it is essential that the material properties

used in the models have been based on detailed physiological observations of cardiac tissue.

Ventricular geometry

Thin walled ventricular mechanics models

One of the earliest models of ventricular wall stress was formulated by Woods (1892), based

on a simple thin walled sphere with uniform internal pressure. In the absence of computers,

the model was based on analytical techniques. This model approximates myocardial tension

to be proportional to the product of pressure and radius. Seventy years later, Sandler and

Dodge (1963) employed similar ideas to model the left ventricle (LV) using an axisymmetric

ellipsoid. Ventricular wall stress was expressed in terms of wall thickness, the principal radii

and the cavity pressure. The most limiting aspects of these thin-walled models are that the

surface within the material.
2The FEM (Zienkiewicz and Taylor 1994) evolved in the late 1950’s for structural analysis in the aerospace

industry. Researchers have since adopted the FEM as the standard numerical technique for analysing complex
structures and solving field problems in solid mechanics.
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thickness of the wall is assumed to be much less than the radii of curvature, and that the

material properties of the tissue have been ignored. Nevertheless, estimates of principal wall

stresses could be obtained throughout the cardiac cycle by means of simple measurements of

the ventricular pressure and geometry.

Thick walled ventricular mechanics models

Early attempts to predict regional variation in wall stress were proposed by Wong and

Rautaharju (1968), who formulated one of the first thick walled models of the LV. Transmural

variations in myocardial stress were based on ellipsoidal shells of compressible, isotropic,

linearly elastic, homogeneous tissue. Furthermore, to simplify the analysis they used

small-strain elasticity theory3, neglected transverse shear strains and bending moments, and

assumed that the internal pressure was the only load on the ventricle. Using the model,

they fitted material properties (the Young’s modulus and Poisson’s ratio) to experimental

recordings to estimate the time-varying myocardial stress distributions.

Mirsky (1973) was one of the first to investigate the specific effect of large deformation

elasticity theory on predicted LV stresses. The major finding of this work was that including

the nonlinear terms in the strain-displacement relationship produced a very high stress

concentration at the endocardium of almost ten times that predicted by the linear model.

Moreover, the heart undergoes large deformations during its cycle, with fibre strains of up to

20% (Rodriguez, Hunter, Royce, Leppo, Douglas and Weisman 1992) and wall thickening

strains of up to 40% (Waldman, Fung and Covell 1985). Such deformations clearly violate the

small-strain assumption, which renders ventricular mechanics models based on this theory

invalid. To account for the large deformations experienced by the heart, the ventricular

mechanics model developed in this thesis is based on the theory of finite deformation

elasticity. Chapter 2 firstly develops this theory for the rectangular cartesian coordinate

system, and then generalises the analysis for arbitrary curvilinear coordinates, since various

systems of coordinates are convenient for different aspects of the modelling.

3Small-strain elasticity theory (variously known as infinitesimal or classical elasticity), neglects the
nonlinear displacement gradients in the strain-displacement relation. This simplification is justified only if
the displacement gradients (strains) are small, which is generally not the case for soft biological tissue.
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Ventricular mechanics models with realistic geometries

The models discussed thus far have approximated ventricular geometry using simple

axisymmetric spheres or ellipsoids, which is at best appropriate for a global analysis

of ventricular function. More accurate regional variations in myocardial stress can be

incorporated into the models using realistic geometries. In order to analyse stress with

this added complexity, an appropriate numerical method is required, since closed form

expressions for ventricular deformation (and hence stress) are generally not available. Given

the irregular shape of the ventricles and the highly nonlinear relationship between myocardial

stress and strain, the FEM is most suited for the analysis of stress and strain in the beating

heart. Chapter 3 details the FEM in the context of finite deformation elasticity. Moreover,

a key feature the FEM is that it is well suited to be implemented in a multiprocessing

environment, which, with current availability of high performance computers, can markedly

speed up the analysis of ventricular mechanics.

One of the earliest finite element (FE) models of ventricular mechanics was formulated by

Gould, Ghista, Brombolich and Mirsky (1972), who incorporated a realistic longitudinal

cross-section of the LV wall into an axisymmetric FE representation. The effects of the extra

geometric complexity were examined using rings of isotropic, homogeneous shell elements.

The additional geometric flexibility permitted wall curvature sign changes (from concave

to convex inwards) and hence a shift in the peak wall stress from the endocardial to the

epicardial surface, which previous geometrically simple models could not predict.

Material response and microstructure of ventricular myocardium

In addition to a realistic description of ventricular geometry, the constitutive equations

required to characterise the material properties of cardiac muscle are of central importance

to an accurate mechanical study of the heart.

Myocardial deformation due to external loads is governed by the state of mechanical stress

within the tissue, which is broadly split into two components. Active stresses are generated by

the cellular contractile apparatus and are generally responsible for segment shortening during

systole (the contractile phase of the cardiac cycle). In contrast, tissue deformation is resisted

by passive stresses, due to the dense framework of connective tissue (mainly collagen) that

binds cells together. In this thesis, the passive and active properties of cardiac tissue are

treated separately and the material properties during diastole (the passive inflation phase of

the cardiac cycle) are assumed to be nonlinearly elastic.
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Passive response of cardiac tissue

For mathematical simplicity, most of the early models of ventricular mechanics used isotropic

representations of myocardial tissue, for which there is no preferred material direction for

muscle response (Sandler and Dodge 1963; Wong and Rautaharju 1968; Gould et al. 1972).

However, studies of tissue structure have revealed a clear fibrous nature to ventricular muscle

(MacCallum 1900; Mall 1911; Robb and Robb 1942; Streeter and Bassett 1966; Streeter,

Spotnitz, Patel, Ross and Sonnenblick 1969), which has important implications for the

mechanical and electrical properties of the tissue. Results from models based on isotropic

tissue response must therefore be treated with caution.

The influences of material anisotropy and non-homogeneity4 on LV stress were first

investigated by Mirsky (1970) (based on the model proposed by Wong and Rautaharju

(1968)) using a thick-walled prolate spheroid of incompressible, linear elastic, orthotropic

material. To simplify the analysis, axisymmetric deformation was assumed, thus ignoring

shear forces and bending moments. They concluded that in comparison to anisotropy,

non-homogeneous material properties generally had a greater influence on the variation of

myocardial stress. Although the geometric simplicity and small-strain approach to this study

casts doubt on the result, it is clear that careful consideration must be given to assumptions

regarding material homogeneity.

The first FE study to incorporate material anisotropy and heterogeneity was proposed by

Janz and Grimm (1972). In addition to the more realistic geometry, the model included an

inner layer of compliant transversely isotropic myocardial elements, for which the tissue

possessed a single preferred direction. The main result of this work was that deformations

were significantly affected by the degree of heterogeneity and anisotropy of the myocardium.

The isotropic model underestimated the deformed lumen radius by approximately 8% and

stresses predicted by the isotropic model differed by factors of two or three from those

predicted by the heterogeneous model. While providing some qualitative insights into

predicted myocardial stress distributions, the quantitative accuracy of predicted stresses

was questionable due to the use of small-strain elasticity theory. Janz, Kubert, Moriarty

and Grimm (1974) extended their earlier FE model to include large deformation theory

and concluded that the small-strain theory overestimated the diastolic pressure-volume

and stiffness-pressure relationships. They concluded that stress distributions derived from

ventricular mechanics models based on small-strain elasticity theory must be treated with

caution.

4A homogeneous material possesses the same material properties at all points throughout the body.
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The first non-axisymmetric large deformation FE model of the LV was proposed by Hunter

(1975). This model represented ventricular myocardium as an incompressible, transversely

isotropic material and incorporated the transmural distribution of fibre orientations measured

by Streeter et al. (1969). Active contraction was simulated using an empirical one-

dimensional constitutive equation to estimate the forces generated by myocardial fibres,

which could be asynchronously activated. Ventricular geometry was measured by mounting

silicone filled canine hearts onto a rig and using a probe to record the radial coordinates of

the endocardial and epicardial surfaces at several pre-defined angular and axial locations.

Hunter (1975) suggested the use of the same rig to measure fibre orientations throughout the

ventricular walls and this work was subsequently completed by Nielsen, Le Grice, Smaill

and Hunter (1991).

Since the early quantitative studies of tissue organisation (Streeter and Bassett 1966; Streeter

et al. 1969), ventricular tissue has been regarded as a continuum of myocardial fibres, with

a smooth transmural variation of fibre orientations. Ventricular mechanics models have

evolved to reflect this by incorporating transversely isotropic constitutive laws to represent

the passive mechanical response of myocardial tissue (Hunter 1975; Panda and Natarajan

1977; Horowitz, Lanir, Yin, Perl, Sheinman and Strumpf 1988; Humphrey, Strumpf and

Yin 1990a; Bovendeerd, Arts, Huyghe, van Campen and Reneman 1992; Huyghe, Arts, van

Campen and Reneman 1992; Guccione, Costa and McCulloch 1995).

More recent anatomical studies have revealed that ventricular myocardium should not be

viewed as a uniformly continuous structure, but as a composite of discrete layers or sheets

of myocardial muscle fibres tightly bound by endomysial collagen (Le Grice, Smaill, Chai,

Edgar, Gavin and Hunter 1995). This thorough quantitative study has been combined with

the earlier work of Nielsen, Le Grice, Smaill and Hunter (1991) to formulate the anatomically

accurate FE model of ventricular geometry and fibrous structure, upon which the research

in this thesis is based. Details of the mathematical descriptions of ventricular geometry and

microstructure are presented in Chapter 4, together with a brief summary of the macroscopic

features of the heart.

The discovery of myocardial sheets has important implications for constitutive modelling of

ventricular muscle. For example, myocardial sheets provide a mechanism for wall thickening

since they can elastically sustain relatively large transverse shear strains (Le Grice, Takayama

and Covell 1995). Chapter 5 presents a brief history of constitutive relations used in

ventricular mechanics models and details a fully orthotropic constitutive law for passive

myocardium based on the three-dimensional microstructural architecture of ventricular

tissue.
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Active tension generated by cardiac muscle fibres

Early models of active tension development in cardiac muscle were based largely on the

skeletal models of Hill (1970) and Huxley (1957), and are reviewed in Fung (1971) and

Fung (1981). More recently cardiac muscle models have been proposed by Bergel and

Hunter (1979), Tözeren (1985), Pinto (1987) and Guccione and McCulloch (1993). The

basis for these models varies from an empirical to a biophysical approach. Bergel and

Hunter (1979) empirically fitted results from several different types of experiments to a

material response function with fading memory. In contrast, Guccione and McCulloch (1993)

developed a constitutive model for active fibre stress based on a general cross-bridge model

which is driven by a length-dependent free calcium transient. The parameters of this model

were fitted to experimental data from the literature including redeveloped tension following

rapid deactivating length perturbations. For current purposes, it is adequate to model the

active contraction of ventricular myocardium using a simple one-dimensional steady state�
Ca2+

�
–tension relationship (see Chapter 5). The framework has been developed so that this

simple relation may be easily replaced with more comprehensive models, such as the general

“deactivation” model of cardiac contraction proposed by Guccione and McCulloch (1993),

once the passive material behaviour has been validated.

Myocardial material properties

To predict normal myocardial tissue response during the cardiac cycle, it is essential that

the material properties (parameters of the constitutive law) have been estimated using

observations from experimental studies of healthy cardiac tissue. Since the evolution of

anisotropic myocardial constitutive relations, the most common experimental technique

used to quantify the material properties of heart tissue has been in-vitro biaxial tension

tests on thin sections of cardiac muscle (Lanir 1979; Demer and Yin 1983; Humphrey

and Yin 1987; Shacklock 1987; Yin, Strumpf, Chew and Zeger 1987; Nielsen, Hunter and

Smaill 1991). Typically, forces are applied at the cut edges of the sample and the resulting

deformation field is used in a FE representation of the experiment to fit the parameters of a

pre-defined constitutive equation. The main disadvantage with this method is that the tissue

samples have been cut from the ventricular wall and hence some of the collagen structures,

which largely determine the passive tissue elasticity, have been damaged. Nevertheless,

biaxial tests have provided valuable insights into the nonlinear form of the stress-strain

response of myocardium, and have been used to effectively determine elastic limits of the

tissue along the microstructural material directions (see Chapter 5).
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Early measurements of in-vivo three-dimensional myocardial material deformations were

performed by Fenton, Cherry and Klassen (1978) and Waldman et al. (1985), who implanted

closely spaced columns of lead beads in the canine LV free wall and measured the position

of these radiopaque markers throughout the cardiac cycle using biplane cinéradiography.

Both of these studies observed significant transmural gradients of strain, but results were

limited by the use of homogeneous strain analysis, which produced spatially discontinuous

strain distributions that were sensitive to measurement errors. McCulloch and Omens (1991)

reanalysed the data from the latter study using non-homogeneous strain analysis based on

the FEM, yielding continuous representations of the components of strain. While providing

accurate in-vivo myocardial strains, this type of study restricts analysis to localised ventricular

sites. If the tractions at the boundaries of the localised region were known, then material

properties could be estimated via a three-dimensional FE model in an analogous manner

to the two-dimensional biaxial test technique. However, in-vivo boundary tractions are not

available for the region of tissue considered. One alternative is to use an axisymmetric FE

model, for which the boundary tractions are simply the observed endocardial and epicardial

surface pressures. Using the strain measurements of McCulloch and Omens (1991), this

technique could at best estimate material properties of an equatorial region of LV free wall.

To overcome problems of tissue damage on myocardial deformation, non-invasive methods

such as LV angiography, echocardiography and computed tomography were used to study

heart deformation. These methods are useful for highlighting global movements of the

muscle, however they do not track the motion of identifiable material landmarks and so

tissue deformation remains unquantifiable. To estimate regional variations in segment

shortening Kong, Morris and McIntosh (1971) and Potel, Rubin, MacKay, Aisen, Al-Sadir

and Sayre (1983) tracked the bifurcations of the superficial coronary arteries using biplane

coronary cinéangiography to yield measures of average epicardial strain. Young, Hunter

and Smaill (1992) extended this technique to include a non-homogeneous strain analysis by

incorporating a deformable FE model of the epicardial surface (Young, Hunter and Smaill

1989), which was fitted to the motions of the bifurcation points throughout the cycle. The

resulting spatially and temporally continuous two-dimensional epicardial strain distributions

were used by Guccione, McCulloch and Waldman (1991) to fit myocardial material properties

of the equatorial epicardial region, based on an axisymmetric cylindrical model. While the

cinéangiographic measurements quantify truly in-vivo myocardial deformations, they are

limited only to a portion of the epicardial surface.

Currently the most promising technology for non-invasively measuring in-vivo deformations

of the whole heart is based on magnetic resonance imaging (MRI) tissue tagging techniques
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(Zerhouni, Parish, Rogers, Yang and Shapiro 1988; Buchalter, Weiss, Rogers, Zerhouni,

Weisfeldt, Beyar and Shapiro 1990; Clark, Reichek, Bergey, Hoffman, Brownson, Palmon

and Axel 1991; Rademakers, Rogers, Guier, Hutchins, Siu, Weisfeldt, Weiss and Shapiro

1994). Planes of magnetic saturation are created throughout the torso and heart and are

subsequently imaged at various times during the cardiac cycle. The intersection of one

saturation plane with either another plane or the myocardial surfaces shows up clearly

on the recorded images, so this effectively tags individual tissue particles. In this way,

the positions of a large number of myocardial material landmarks may be dynamically

tracked throughout the cycle. The MRI tagging technique known as spatial modulation of

magnetisation (SPAMM) uses a sequence of non-selective radio frequency pulses separated

by magnetic field gradients to generate orthogonal planes of magnetic saturation, which are

usually at right angles to the imaging plane (Axel and Dougherty; (1989a), (1989b)). Young

and Axel (1992) interpreted the SPAMM recordings using FE fitting to estimate the non-

homogeneous ventricular strain distributions at several instances during the cardiac cycle.

With the availability of in-vivo strain distributions for the whole heart, it is now possible

to quantify the regional variation in material properties. Moulton, Creswell, Actis, Myers,

Vannier, Szabó and Pasque (1995) used MRI tagging to estimate material properties of a two-

dimensional equatorial slice of ventricular muscle, based on the FEM analysis of Creswell,

Moulton, Wyers, Pirolo, Fishman, Perman, Myers, Actis, Vannier, Szabo and Pasque (1994).

They compared differences between left and right ventricular material properties using a

two parameter exponential material law, however their analysis was based on small-strain

elasticity theory, which is inappropriate for analysis of heart mechanics as discussed above.

An initial aim of the present research was to develop a method to estimate mechanical

properties of ventricular muscle from experimental and clinical observations using non-

invasive material tagging studies. While persuing this goal, it was realised that further work

was required on the characterisation of passive and active myocardial material response

before such parameter estimations could be performed with confidence. Futhermore, at

the time of this research the resolution of published non-invasive myocardial deformations

was not of sufficient quality to warrant estimation of three-dimensional regional myocardial

material properties. Appendix A presents a method to estimate regionally varying myocardial

material properties, based on the comprehensive model of ventricular mechanics developed in

this thesis. The analysis incorporates a microstructurally based constitutive law into a three-

dimensional finite element model governed by the theory of finite deformation elasticity. A

disadvantage of this technique is that the fibre orientations are not currently available for

the heart from which the in-vivo deformations were measured. Recent MRI techniques
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may overcome this problem using measured intramyocardial fluid diffusion anisotropy

to derive the spatial distribution of myocardial fibre orientations (Garrido, Wedeen and

Kwong 1994; Reese, Weisskoff and Wedeen 1995). However, for current purposes it was

sufficient to incorporate the measured fibre and sheet orientations of Nielsen, Le Grice,

Smaill and Hunter (1991) and Le Grice, Smaill, Chai, Edgar, Gavin and Hunter (1995) into

the material property estimation algorithm.

Predicting accurate strain and stress distributions in the beating heart

The primary aim of this research was to develop an anatomically accurate three-dimensional

mathematical model of the beating heart, which could be used to confidently predict realistic

spatial distributions of deformation and stress through the various phases of the heart cycle.

To confidently predict realistic myocardial mechanics, it was necessary to independently

validate the various aspects of the ventricular mechanics model. Chapter 6 presents details

from the theoretical checks. Firstly, the implementation of the FEM was validated by

comparing predicted numerical approximations against an established closed form solution

for the inflation, axial extension and torsion of an incompressible cylindrical tube. In the

second instance, the spatial discretisation of the ventricular FE mesh was varied to check

the convergence of predicted strain (and hence stress) distributions. Finally, the model

was subjected to various boundary constraint scenarios to analyse their effects on predicted

deformations. Chapter 6 also presents simple models of the ventricular cavities, which were

used to simulate their effects on ventricular deformation during the isovolumic contraction

and ejection phases of the heart cycle.

Chapter 7 assesses the ability of the ventricular mechanics model to predict realistic cardiac

deformations during the various phases of the cycle. Rather than limiting the comparisons

to just a few aspects of global or regional deformation, a comprehensive subset from

the abundance of literature on observed cardiac deformations has been selected for the

comparisons. Distributions of residual, end-diastolic and end-systolic myocardial fibre stress

components are also presented.

The anatomically accurate ventricular mechanics model developed in this thesis provides

an efficient framework for the prediction of realistic myocardial deformation and stress

distributions throughout the cardiac cycle. The ability to assess the regional function

of ventricular muscle could potentially aid clinicians with the detection and diagnosis of

pathologies such as myocardial infarction, hypertrophy and ischaemia. Moreover, ventricular
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stress distributions could be used to elucidate regional myocardial tissue remodelling and

oxygen consumption.



Chapter 2

Finite deformation elasticity

Continuum mechanics deals with the movement of materials when subjected to applied

forces. The motion of a continuous and deformable solid can be described by a continuous

displacement field resulting from a set of forces acting on the solid body. In general, the

displacements and forces may vary continuously with time, but for the present purpose a

two-state quasi-static analysis will be discussed. The initial unloaded state of the material is

referred to as the reference or undeformed state as the displacements are zero everywhere.

The material then reconfigures due to applied loads and reaches an equilibrium state referred

to as the deformed state. The concepts of strain, a measure of length change or displacement

gradient, and stress, the force per unit area on an infinitesimally small plane surface within

the material, are of fundamental importance for finite deformation elasticity theory.

The equations that govern the motion of deformable materials can be derived in the following

four steps:

1. Kinematic relations, which define the components of the strain tensor in terms of

displacement gradients, and, for incompressible materials, define the incompressibility

constraint.

2. Stress equilibrium, or equations of motion derived from the laws of conservation of

linear momentum and conservation of angular momentum.

3. Constitutive relations, which express the relationship between stress and strain and

must be established from experimental measurement, subject to certain theoretical

restrictions.

4. Boundary conditions, which specify the external loads or displacement constraints

acting on the deforming body.

12
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The first two steps define relationships which hold for all materials and will be detailed in

Sections 2.1 and 2.2, respectively. The third step is concerned with relations determined

experimentally for a particular material and is explained in Section 2.3. The application of

boundary constraints is introduced in Section 2.4 and will be dealt with further in Chapter 3,

which describes the solution of the governing equations. In the first instance equations and

quantities of interest are referred to rectangular cartesian coordinates. It is often convenient,

however, to utilise other systems of coordinates. Section 2.5 extends the theory to refer to

general curvilinear coordinate systems.

2.1 Kinematic relations

The key to analysing strain in a material undergoing large displacements and deformation is

to establish two coordinate systems and the relationship between them. The first is a material

coordinate system to effectively tag individual particles in the body. The second is a fixed

spatial coordinate system. Deformation is quantified by expressing the spatial coordinates of

a material particle in the deformed state, as a function of the coordinates of the same particle

in the undeformed state. Length changes of material segments can then be determined from

the known deformation fields and thus strain tensors may be calculated.

2.1.1 Material versus spatial coordinates

Deformation is defined by the movement of material particles, which can be thought

of as small non-overlapping quantities of material that occupy unique points within the

undeformed body. For this reason a method of labelling the particles is required. One

convenient method is to define each material particle, X, by a set of rectangular cartesian

coordinates, (X1;X2;X3), in the undeformed body. As the body deforms the coordinate axes

deform with it and so orthogonal coordinate axes in the undeformed state will not in general

be orthogonal in the deformed configuration. These coordinates are referred to as material (or

Lagrangian) coordinates because as the body deforms, a unique material particle is always

identified by the same coordinate values.

Each point in space may be defined by a set of spatial (or Eulerian) coordinates relative to

a fixed reference cartesian coordinate system. A particular spatial point, x, with coordinates,

(x1;x2;x3), may identify different material particles as they pass through the point, x, during

the deformation. Conversely, a fixed material particle, X, may move to several spatial



2.1 KINEMATIC RELATIONS 14

positions during the deformation. It should be noted that the material coordinates, X, may be

chosen to coincide with the rectangular cartesian spatial coordinates, x, in the undeformed

state.

2.1.2 Deformation and strain

To quantify the deformation of a material it is necessary to consider the change in length

of material segments, or sets of adjacent material particles within the body. In Figure 2.1,

an infinitesimal material line segment, dX, in the undeformed body, B0, has components

dX1, dX2 and dX3 with respect to global rectangular cartesian coordinates (Y1;Y2;Y3). In the

deformed body, B, the same material particles that constituted dX have reconfigured (due to

applied loads) into dx, which has components dx1, dx2 and dx3 with respect to (Y1;Y2;Y3).

The deformation is quantified by the deformation gradient tensor, which carries the line

segment, dX, into dx = FdX, or in component form, dxi = Fi
MdXM. The deformation

gradients are defined in Equation (2.1).

B

F

dX dx

dX2

dX3

Y3 Y3

Y2

Y1

B0

Y1

dX1

dx2

dx1

dx3

Y2

FIGURE 2.1: The deformation gradient tensor, F carries line segment dX into dx.

Fi
M =

∂xi

∂XM
(2.1)
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Any deformation can be split into two parts: a rigid body rotation and a stretch. This polar

decomposition can be represented mathematically by considering the deformation gradient

tensor to be a product, F = RU, of an orthogonal rotation tensor, R, and a symmetric

positive definite stretch tensor, U. Thus the undeformed line segment components dX M

are stretched into dyL = UL
MdXM before being rotated into dxi = Ri

LdyL. Equivalently

the line segment could be rotated first and then stretched, but for the present purpose it

is more convenient to interpret the stretch in terms of material coordinates and then relate

the stretched material lines to the spatial coordinates through the rotation tensor, R. For

further details on polar decomposition refer to Atkin and Fox (1980, Sec. 1.4) or Spencer

(1980, Sec. 2.5). It is important to note here that the stretch tensor, U, contains a complete

description of the material strain, independent of any rigid body motion.

Strain in a deforming body is determined by measuring segment length changes. Equa-

tion (2.2) uses Pythagoras to determine the arc length of the deformed segment dx.

ds2 = dxidxi = dxT dx = (FdX)T FdX = dXT FT FdX = dXT CdX (2.2)

where

C = FT F =

�
∂xk

∂XM

∂xk

∂XN

�
(2.3)

Equation (2.3) defines Green’s deformation tensor or the right Cauchy-Green deformation

tensor1 (Atkin and Fox 1980, p. 12), which indicates how each component of the undeformed

line segment dX contributes to the squared length of the deformed line segment dx. The

deformation tensor C is related to the stretch tensor U in Equation (2.4) using the polar

decomposition theorem.

C = FT F = (RU)T RU = UT RT RU = UT U = U2 (2.4)

since R is orthogonal (RT = R�1) and U is symmetric. Note that like U, C is symmetric

and positive definite and that both U and C are expressed in terms of material coordinates.

One method for computing the stretch tensor U from the deformation gradient tensor F is

to first calculate C = FT F, then calculate the eigenvalues (λ1)
2, (λ2)

2 and (λ3)
2, and

orthogonal eigenvectors s1, s2 and s3 of C using a similarity transformation (Fox 1967,

1The left Cauchy-Green deformation tensor B = FFT is also defined, but is not useful here since it is not
independent of rigid body rotation.
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p. 239). U may then be constructed using Equation (2.5).

C = ΩΛ2ΩT = Ω

2
64

(λ1)
2 0 0

0 (λ2)
2 0

0 0 (λ3)
2

3
75ΩT U = ΩΛΩT = Ω

2
64

λ1 0 0

0 λ2 0

0 0 λ3

3
75ΩT(2.5)

where the columns of Ω are the orthonormal eigenvectors of C and are the principal axes of

stretch, and λi are the principal stretches (there is no shear when the deformation is referred

the to principal axes). Note that since C is a real symmetric matrix, the eigenvectors are

orthogonal and therefore Ω is an orthogonal matrix,
�
ΩT Ω = I

�
. In essence, the similarity

transformation diagonalises C and the positive square root of the resulting diagonal matrix is

used to compute the stretch tensor U.

The two orthogonal tensors R and Ω, derived from F, have quite different physical

interpretations. R describes the rigid body rotation component of the deformation with no

information about the material stretching. On the other hand, the columns of Ω are the

orientations of the principal stretch axes relative to the material coordinates.

In three-dimensions the deformation tensor is a 3�3 matrix. There are three invariants (scalar

combinations of the components of C), which remain unchanged under coordinate rotations

at a given state of deformation. These principal invariants are given in Equation (2.6) (see

Atkin and Fox (1980, Sec. 1.4)).

I1 = tr C I2 =
1
2

h
(tr C)2� tr C2

i
I3 = det C (2.6)

where the trace of C, denoted by tr C, is the sum of the diagonal terms, CMM , and the

determinant of C, det C, is a measure of volume change.

The similarity transformation of Equation (2.5) may be used to express the invariants of C in

terms of the principal stretch ratios as in Equation (2.7).

I1 = (λ1)
2 +(λ2)

2 +(λ3)
2

I2 = (λ1)
2 (λ2)

2 +(λ2)
2 (λ3)

2 +(λ3)
2 (λ1)

2 (2.7)

I3 = (λ1)
2 (λ2)

2 (λ3)
2

Equation (2.8) is the additional kinematic constraint that must be imposed on the deformation
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field for incompressible materials. This is discussed further in Section 2.3.

det C = I3 = (λ1λ2λ3)
2 = 1 (2.8)

Equation (2.9) shows how the Lagrangian Green’s strain tensor, with respect to rectangular

cartesian coordinates, is related to the right Cauchy-Green deformation tensor (Spencer 1980,

p. 72).

E =
1
2
(C� I) (2.9)

2.2 Stress equilibrium

Having established the kinematic framework for finite deformation analysis, the next step is

to consider the governing force and momentum balances which follow from Newton’s laws

of motion. In order to apply these equations to materials which undergo large deformations,

it is necessary to define stress tensors and the way they enter into the governing equations.

2.2.1 Stress tensors

Stress is defined as the force per unit area acting on an infinitesimally small plane surface.

If the line of action of the force is normal to the plane then a normal or axial stress results,

whereas a shear stress arises when the line of action of the force is tangential to the plane.

The quantities of force and area can be referred either to the reference (undeformed) or

deformed configurations, which leads to three important ways of representing stress in a

deforming body, namely using the Cauchy, first or second Piola-Kirchhoff stress tensors.

Refer to Malvern (1969, p. 220) for a more complete explanation.

1. The Cauchy stress tensor, denoted σi j, represents the force measured per unit

deformed area acting on an element of surface in the deformed configuration. The

first index indicates the direction of the normal to the surface on which σi j acts and

the second index indicates the direction of the stress component. It should be noted

that the Cauchy stress tensor is symmetric for non-polar materials (see Section 2.2.2)

and that in rectangular cartesian coordinates, σi j are also the physical components of

stress.
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2. The first Piola-Kirchhoff stress tensor, denoted sM j, represents the force acting on an

element of surface in the deformed configuration but measured per unit undeformed

area. The first index is written in uppercase as it refers to the normal of the surface

in the undeformed state, and is thus a material coordinate index. The second index

denotes the direction of the force acting on the deformed material, and is a spatial

coordinate index. For this reason the first Piola-Kirchhoff stress tensor is generally not

symmetric. It is sometimes referred to as the Lagrangian stress tensor and is often used

in experimental testing where force is measured in the deformed tissue, but the area

over which it acts is measured in the undeformed tissue.

3. The second Piola-Kirchhoff stress tensor, denoted T MN , represents the force

measured per unit undeformed area, P, acting on an element of surface in the

undeformed configuration. This force may be determined from the actual force,

p, in the same way that the undeformed material vector, dX, is determined from

the deformed material vector, dx. Specifically P = F�1p just as dX = F�1dx

(Malvern 1969, p. 222). The primary use of the second Piola-Kirchhoff stress tensor is

for representing material behaviour at a point, independent of rigid body motion. This

is discussed further in Section 2.3, which describes relationships between stress and

strain tensors at a point. The main idea here is that the second Piola-Kirchhoff stress

tensor is defined solely in terms of material coordinates, just as for Green’s strain

tensor. Note that the second Piola-Kirchhoff stresses must be transformed into first

Piola-Kirchhoff stresses for use in the equilibrium equations, which require a spatial

frame of reference.

Equations (2.10) and (2.11) define the relationships between the second Piola-Kirchhoff, first

Piola-Kirchhoff and Cauchy stress tensors.

S = JF�1Σ T = S
�
FT��1

= JF�1Σ
�
FT��1

sM j = J
∂XM

∂xi
σi j T MN = sM j ∂XN

∂x j
= J

∂XM

∂xi
σi j ∂XN

∂x j

(2.10)

or inversely

S = TFT Σ =
1
J

FS =
1
J

FTFT

sM j = T MN ∂x j

∂XN
σi j =

1
J

∂xi

∂XM
sM j =

1
J

∂xi

∂XM
T MN ∂x j

∂XN

(2.11)
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where J is the Jacobian of the transformation from reference to deformed coordinates, defined

in Equation (2.12). Note from Equation (2.10) that the second Piola-Kirchhoff stress tensor

is symmetric whenever the Cauchy stress tensor is symmetric.

J = det F =
p

I3 = λ1λ2λ3 (2.12)

2.2.2 Conservation laws and the principle of virtual work

Conservation of mass

The conservation of mass principle relates the mass densities in the undeformed and deformed

bodies (denoted by ρ0 and ρ, respectively) given in Equation (2.13) (Oden 1972, p. 15).

Z

V0

ρ0 dV0 =
Z

V

ρ dV =
Z

V0

ρJ dV0 (2.13)

Thus for arbitrary volumes, mass density for the undeformed and deformed bodies are related

using Equation (2.14).

ρ0 = Jρ =
p

I3 ρ (2.14)

Conservation of linear momentum

Following Malvern (1969, Sec. 5.3), for a given set of particles, the time rate of change

of the total linear momentum equates to the vector sum of all the external forces acting on

the particles of the set. This is expressed mathematically in Equation (2.15), where t is the

traction vector (external surface forces per unit area), b represents the body forces (per unit

mass), and the rate of change of momentum is written in terms of the material derivative

(d=dt) and the velocity vector v.

Z

S

t dS+
Z

V

ρb dV =
d
dt

Z

V

ρv dV (2.15)

Cauchy’s formula, defined in Equation (2.16), projects the components of a stress vector t

(the force per unit area acting on some deformed surface dS, with unit normal n̂ = n̂ ji j) onto

the set of orthogonal base vectors for the rectangular cartesian reference coordinate system,
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i j.

t dS = σi jn̂ii j dS (2.16)

where σi j are components of the Cauchy stress tensor and are physical stresses, since i j are

unit vectors.

Cauchy’s formula is substituted into Equation (2.15) to form Equation (2.17), which is

appropriate for a material with constant density. Note that Equation (2.17) is written in

component form where the body force and velocity vectors have components b = b ji j and

v = v ji j, respectively.

Z

S

σi jn̂i dS+
Z

V

ρ
�

b j� dv j

dt

�
dV = 0 (2.17)

Applying the divergence theorem to Equation (2.17) yields Equation (2.18).

Z

V

�
∂σi j

∂xi
+ρb j�ρ f j

�
dV = 0 (2.18)

where f j = dv j

dt are components of the acceleration vector.

If Equation (2.18) is to be valid for arbitrary volumes the integrand must vanish (it is assumed

here that the integrand is continuous). This results in Equation (2.19), which is the component

form of Cauchy’s first law of motion for rectangular cartesian coordinates.

∂σi j

∂xi
+ρb j = ρ f j (2.19)

It is often convenient to express Cauchy’s first law of motion in terms of the second Piola-

Kirchhoff stress components as in Equation (2.20). This can be determined by substituting

Equations (2.11) and (2.14) into Equation (2.19) and assuming that there are no spatial

gradients of density. Note that the term in parenthesis is simply the first Piola-Kirchhoff

stress, sM j.

∂
∂XM

�
T MN ∂x j

∂XN

�
+ρ0b j = ρ0 f j (2.20)

For static equilibrium of the material, important in solid mechanics, the right-hand-side
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acceleration term in Equation (2.19) vanishes, and in the absence of body forces this relation

reduces to the statement of stress equilibrium in Equation (2.21) for rectangular cartesian

coordinates.

∂σi j

∂xi
= 0 or

∂
∂XM

�
T MN ∂x j

∂XN

�
= 0 (2.21)

Conservation of angular momentum

The conservation of angular momentum equates the time rate of change of the total angular

momentum for a set of particles to the vector sum of the moments of the external forces acting

on the system. For stress equilibrium of non-polar materials, this principle is equivalent

to the symmetry condition on the Cauchy stress tensor, namely σi j = σ ji (see Malvern

(1969, Sec. 5.3) or Spencer (1980, Sec. 7.5) for a full derivation). Note that if the Cauchy

stress tensor is symmetric (as is the case for the non-polar materials being considered

here), the second Piola-Kirchhoff stress tensor is also symmetric as a direct consequence

of Equation (2.10). This implies that there are only six independent components of stress —

three normal components and three shear components.

Principle of virtual work

Now consider a body of volume V and surface S loaded by a surface traction s which is in

equilibrium with the internal stress vector t. If the body is subjected to an arbitrarily small

displacement δv, which satisfies compatibility and any displacement boundary conditions

specified on S (where δv must be zero), then the principle of virtual work can be expressed

in the form of Equation (2.22) (see Malvern (1969, Sec. 5.5) or Marsden and Hughes (1983,

p. 168)).

Z

S2

s �δv dS =
Z

S

t �δv dS (2.22)

where S2 is the portion of the boundary that is not subjected to displacement boundary

conditions.

The virtual displacements may be resolved into components δv = δv ji j. Cauchy’s formula

(Equation (2.16)) is then substituted into the virtual work equation (Equation (2.22)) to yield
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Equation (2.23).

Z

S2

s �δv dS =
Z

S

σi jn̂iδv j dS (2.23)

The right-hand-side surface integral in Equation (2.23) is transformed into a volume integral

using Gauss’ theorem (Fung 1965, p. 117) to give Equation (2.24).

Z

S2

s �δv dS =
Z

V

�
∂σi j

∂xi
δv j +σi j ∂δv j

∂xi

�
dV (2.24)

Cauchy’s first law of motion (Equation (2.19)) is substituted into the volume integral

in Equation (2.24) to give Equation (2.25). Moreover, Equation (2.11) is used to

express Equation (2.25) in terms of the second Piola-Kirchhoff stress tensor, as written in

Equation (2.26).

Z

V

σi j ∂δv j

∂xi
dV =

Z

V

ρ
�
b j� f j�δv j dV +

Z

S2

s �δv dS (2.25)

Z

V

T MN 1
J

∂x j

∂XM

∂δv j

∂XN
dV =

Z

V

ρ
�
b j� f j�δv j dV +

Z

S2

s �δv dS (2.26)

To solve the virtual work equations it is necessary to evaluate the surface integral on the

right-hand-side of Equation (2.26). This is outlined in Section 2.4. The next step, however,

is to express the stress components in terms of the deformation to characterise the material

behaviour. This is addressed in Section 2.3 through the use of constitutive relations.

2.3 Constitutive relations

Unlike the previously described kinematic relations and stress equilibrium equations that hold

for most materials, constitutive relations characterise individual materials and their response

to external loads. In the context of finite deformation elasticity, constitutive equations

are used to represent the behaviour of a material through empirical relationships between

experimentally observed stress and strain tensors. This section will only treat constitutive

equations concerned with the mechanical behaviour of materials.
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There are several important considerations which should be addressed when formulating

constitutive laws. Perhaps the most important is that they are robust enough to predict

behaviour in various experimental situations using different samples of the same type of

material. It is unreasonable, however, to expect to simulate all aspects of a material’s

behaviour with one set of constitutive equations. For this reason the most important and

relevant behavioural features should be identified for the particular application and it is these

features that the constitutive relations should approximate. The resulting equations will be

more concise, numerically efficient and thus more suitable for use in large scale computer

models.

It is essential that constitutive laws are based on experiments using real materials, but certain

theoretical restrictions must be observed. Firstly, constitutive equations must be independent

of the choice of coordinate system, since they characterise the constitution of individual

materials and not the frame of reference from which they are observed. However, they can be

expressed in terms of components relative to different coordinate systems. Thus rigid-body

motions should play no role in the constitutive law (this is known as the axiom of objectivity,

see Eringen (1980, p. 163)). Mathematically, this is satisfied by postulating the existence

of a strain energy function, W , to be a scalar potential that depends on the components

of either the right Cauchy-Green deformation tensor or Green’s strain tensor (defined in

Equations (2.3) and (2.9), respectively). Components of the second Piola-Kirchhoff stress

tensor are given by the derivatives of W (C) or W (E) with respect to the components of C

or E, respectively. Equation (2.27) defines the components of the second Piola-Kirchhoff

stress tensor when W is expressed in terms of Green’s strain components, EMN , referred to

XM-material coordinates (Green and Adkins 1970, p. 6).

T MN =
1
2

�
∂W

∂EMN
+

∂W
∂ENM

�
(2.27)

Material symmetry imposes further theoretical restrictions on the form of the constitutive

law. Certain types of material possess no preferred direction, exhibiting rotational symmetry

about all directions and reflectional symmetry with respect to all planes. These materials

are isotropic. For isotropic materials, the strain energy is constant for all orientations of the

coordinate axes, or mathematically W (C) = W (QCQT ), where Q is any constant orthogonal

tensor. Thus the strain energy is an invariant function of C. It can be shown that any invariant

function of C can be expressed as a function of the three principal invariants of C, which are

defined in Equation (2.6) (see Spencer (1980, Sec. 10.2)). This reduces the functional form

of the strain energy function to W = W (I1; I2; I3).
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For incompressible materials a further restriction on the form of the constitutive law can be

imposed. In this case the additional kinematic constraint I3 = 1 (Equation (2.8)) is applied.

Spencer (1980, p. 141) notes that it is not sufficient to set I3 = 1 in the constitutive equation,

since certain derivatives of W tend to infinity in the limiting case of an incompressible

material. This problem is overcome by introducing an arbitrary Lagrange multiplier λ into

the constitutive equation. The unspecified strain energy term W is limited to be a function of

I1, I2 only. Thus for isotropic, incompressible materials, Equation (2.28) shows the functional

form of the strain energy function.

W =W (I1; I2)+λ(I3�1) (2.28)

The mechanical effect of the incompressibility condition is to give rise to a reaction stress

referred to as the hydrostatic pressure (denoted by p), which does not contribute to the

deformation of the body. In other words, the addition of a hydrostatic pressure to an

incompressible elastic body indeed alters the stress, but does not in any way affect the strain

energy of the material.

Equation (2.28) may be substituted into Equation (2.27) and rearranged to give the

components of stress with respect to XM-material coordinates, expressed in Equation (2.29)

(Spencer 1980, Sec. 10.2). Note that ∂I3
∂EMN

= 2δMN , where δMN is the Kronecker delta,

which is equal to one if the indices M and N are the same and zero otherwise. In addition,

the arbitrary Lagrange multiplier is chosen to be λ = � 1
2 p in the constitutive equation

(Equation (2.30)) to ensure that the additional component in the diagonal terms of the stress

tensor is a true hydrostatic stress.

T MN =
1
2

�
∂W

∂EMN
+

∂W
∂ENM

�
� pδMN (2.29)

where, for isotropic, incompressible materials

∂W
∂EMN

=
∂W
∂I1

∂I1

∂EMN
+

∂W
∂I2

∂I2

∂EMN
(2.30)

A suitable form of W (I1; I2) must then be chosen, based on experimental observations of

the material. Certain types of rubber exhibit almost isotropic behaviour and are referred

to as Mooney-Rivlin materials. Equation (2.31) characterises this type of material using

material constants (mechanical properties) c1 and c2 which must be estimated experimentally.

A subset of the Mooney-Rivlin materials are the Neo-Hookean materials, which are



2.4 BOUNDARY CONSTRAINTS AND SURFACE TRACTIONS 25

characterised by setting c2 = 0 in Equation (2.31).

W (I1; I2) = c1 (I1�3)+ c2 (I2�3) (2.31)

Note that the use of (I1�3) and (I2�3) ensures that the strain energy is zero when the strain,

E, is zero. This is demonstrated by using Equation (2.9) to show that C = I for zero strain,

in which case Equation (2.6) reduce to I1 = I2 = 3 and I3 = 1.

Alternatively a transversely isotropic material possesses a single preferred direction at every

point. These materials exhibit rotational symmetry about the preferred axis and reflectional

symmetry with respect to all planes containing this axis. Green and Adkins (1970, p. 28)

have extended the above approach by allowing W to depend on the strain invariants K1 and

K2 associated with the plane of isotropy.

A major objection to the above approaches to the formulation of constitutive equations is that

the parameters bear no direct relation to the underlying structure of the material. An approach

which incorporated parameters that directly reflect mechanical or structural properties of the

material would potentially yield a more reliable constitutive relation. In addition, variations in

material properties could be more easily understood in terms of the effect on the behaviour of

the material. Section 5.1.1 details the development of a microstructurally based constitutive

law for passive heart tissue.

2.4 Boundary constraints and surface tractions

All terms in Equation (2.26) have now been defined apart from the right-hand-side integral

involving the surface traction vector s. If external surface pressures are applied, this integral

must be evaluated for those portions of the boundary that sustain the loads. In the absence of

boundary pressures this term vanishes.

Consider a deforming surface, with unit normal n̂ = n̂ ji j. If the surface is loaded by

a pressure, p(appl) (a physical stress), then the surface traction vector has components

s = p(appl)n̂ ji j and the right-hand-side surface integral of Equation (2.26) is evaluated using

Equation (2.32).

Z

S2

s �δv dS =
Z

S2

p(appl)n̂ jδv j dS (2.32)
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This surface integral is then substituted into Equation (2.26) to yield the governing equations

for finite deformation elasticity with respect to rectangular cartesian coordinates given in

Equation (2.33).

Z

V

T MN 1
J

∂x j

∂XM

∂δv j

∂XN
dV =

Z

V

ρ
�
b j� f j�δv j dV +

Z

S2

p(appl)n̂ jδv j dS (2.33)

It then remains to solve Equation (2.33) in terms of the unknown virtual displacements

δv j, subject to any displacement boundary conditions. For geometrically simple bodies

with straight-forward material behaviour, Equation (2.33) can be used in its present form.

However, for more complex shapes and material laws it is often convenient to take advantage

of different coordinate systems. Section 2.5 details how the quantities and governing

equations that have been defined thus far may be generalised for curvilinear coordinate

systems.

2.5 Curvilinear coordinate systems

A material point may be represented by coordinates with respect to a general curvilinear

coordinate system. These coordinates are related to the reference rectangular cartesian

coordinates using a set of base vectors which are unique to the particular curvilinear

coordinate system. Tensor quantities such as strain and stress can be transformed to refer

to the new system of coordinates using metric tensors, which are defined by inner products

of base vectors and represent measures of the physical lengths of coordinate increments. Base

vectors and metric tensors can thus be used to express the governing equilibrium equations

with respect to a general set of curvilinear coordinates.

2.5.1 Base vectors and metric tensors

In Figure 2.2 a set of reference rectangular cartesian coordinates
�
x1
;x2

;x3
�

define the

position of a material point p, with position vector r = xig(x)i , in the deformed body B.

g(x)i = ii are the unit base vectors for the rectangular cartesian coordinate system (Y1;Y2;Y3).

In the undeformed configuration B0,
�
X1

;X2
;X3
�

are the reference rectangular cartesian

coordinates of the same material point P with position vector R = X ig(x)i . The displacement
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BB0

P

g(x)
3
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g(x)
2 g(x)
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g(x)
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P : (X1
;X2

;X3
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R
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g(x)
3

Y2

Y3
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p : (x1
;x2

;x3
)

Y1

FIGURE 2.2: Coordinate systems used in a kinematic analysis of large deformation
elasticity.

vector u of the material point is defined in equation Equation (2.34).

r = R+u (2.34)

For convenience, a set of reference coordinates
�
θ1
;θ2

;θ3
�

may be defined to describe the

material point p in the deformed body with respect to a general curvilinear coordinate system.

The covariant base vectors for the curvilinear reference coordinate system, g(θ)k , are defined

to be the derivatives of the position vector r with respect to each of the θk coordinates, as

written in Equation (2.35). Thus the covariant base vectors for the θk-coordinate system

are parallel to θk-coordinate lines. Section 3.2 defines these base vectors for three different

curvilinear coordinate systems.

g(θ)k =
∂xi

∂θk
g(x)i (2.35)

The components of the covariant metric tensor, denoted by g(θ)i j , with respect to the θk-

coordinate system are defined to be the inner products of the covariant base vectors. The
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covariant metric tensor with respect to the θk-coordinate system is defined in Equation (2.36).

g(θ)i j = g(θ)i �g(θ)j =
∂xk

∂θi

∂xk

∂θ j
(2.36)

By definition, another set of vectors fgi
(θ)g are orthogonal to fg(θ)i g using the relations given

in Equation (2.37).

gi
(θ) �g

(θ)
j = δi

j (2.37)

where δi
j is the Kronecker delta.

These vectors are referred to as contravariant base vectors and are perpendicular to θk-

coordinate surfaces. For example g3
(θ) is normal to a (θ1;θ2)-surface since it is orthogonal to

both g(θ)1 and g(θ)2 from Equation (2.37).

The components of the contravariant metric tensor with respect to the θk-coordinate system

are defined in Equation (2.38).

gi j
(θ) = gi

(θ) �g
j
(θ) =

∂θi

∂xk

∂θ j

∂xk
(2.38)

The contravariant metric tensor may be used to relate the contravariant and covariant base

vectors using Equation (2.39). For reference, the contravariant and covariant metric tensors

with respect to the θk-coordinate system are related using Equation (2.40) (Green and

Adkins 1970, p. 2).

gi
(θ) = gir

(θ)g
(θ)
r (2.39)

gir
(θ)g

(θ)
r j = δi

j (2.40)

Material axes for anisotropic materials

Anisotropic materials possess different material properties in different material directions.

It is often convenient to identify the material coordinate axes with structurally important

directions. For example myocardial tissue has a fibrous-sheet structure (see Section 4.2) and

it is convenient to model it as an orthotropic material with one axis aligned with the muscle

fibre direction, another with the sheet axis and the third orthogonal to these two axes. Non-
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homogeneous materials possess different material properties at different locations in a body.

For non-homogeneous, anisotropic materials the orientation of the material axes may vary

with location and so it is no longer convenient to identify the material axes in the undeformed

body with the reference coordinates (X1;X2;X3). Instead, a new material coordinate system

(ν1;ν2;ν3) is introduced which is aligned with certain structural features of the material. For

myocardium, a natural set of material axes are formed by identifying ν1 with the muscle fibre

direction, ν2 with the sheet direction and ν3 with the sheet-normal direction (these important

anatomical axes are described fully in Section 4.2).

The base vectors for the να-coordinate system may be chosen to be orthogonal in the

undeformed state. This is convenient in myocardium, for example, where the να-coordinates

are chosen to line up with the fibre, sheet and sheet-normal directions, which are orthogonal in

the undeformed state. However, the ensuing deformation dictates that they are not orthogonal,

in general, in the deformed configuration. For this reason it is necessary to define base

vectors and metric tensors for the να-coordinate system in both the undeformed and deformed

states. A(ν)
α , Aα

(ν) and a(ν)α , aα
(ν) denote the base vectors in the undeformed and deformed

configurations, respectively. The metric tensors are denoted by A(ν)
αβ , Aαβ

(ν) and a(ν)αβ , aαβ
(ν) in the

undeformed and deformed configurations, respectively. Recall that subscripted indices refer

to covariant quantities and superscripted indices refer to contravariant quantities, and note that

Greek symbols are used to denote individual να material coordinates. They are computed in

an analogous fashion to those for the θk-coordinate system defined in Equations (2.35)–

(2.40). The base vectors and metric tensors for the να-coordinate system are listed in

Equation (2.41). Note that the undeformed covariant base vectors, A(ν)
α , can be defined to

be unit vectors by choosing the να-coordinates to be a measure of physical arc-length in the

undeformed state.

A(ν)
α =

∂Xk

∂να
g(x)k a(ν)α =

∂xk

∂να
g(x)k

Aα
(ν) �A

(ν)
β = δα

β aα
(ν) �a

(ν)
β = δα

β

A(ν)
αβ = A(ν)

α �A(ν)
β =

∂Xk

∂να

∂Xk

∂νβ
a(ν)αβ = a(ν)α �a(ν)β =

∂xk

∂να

∂xk

∂νβ

Aαβ
(ν) = Aα

(ν) �A
β
(ν)=

∂να
∂Xk

∂νβ

∂Xk
aαβ
(ν) = aα

(ν) �a
β
(ν)=

∂να
∂xk

∂νβ

∂xk

Aα
(ν) = Aαβ

(ν)A
(ν)
β aα

(ν) = aαβ
(ν)a

(ν)
β

Aαρ
(ν)A

(ν)
ρβ = δα

β aαρ
(ν)a

(ν)
ρβ = δα

β

(2.41)



2.5 CURVILINEAR COORDINATE SYSTEMS 30

2.5.2 Measures of strain and stress in curvilinear coordinates

Equations (2.9) and (2.29) express Green’s strain tensor and the second Piola-Kirchhoff

stress tensor, respectively, with respect to rectangular cartesian coordinates. The material

coordinates required in these relations were chosen to align with the rectangular cartesian

coordinates in the undeformed reference state. Alternatively, stress and strain tensors may

be referred to να-material coordinates as in Equations (2.42) and (2.43), respectively, using

the metric tensors for the να-material coordinate system (Equation (2.41)). Note that if the

να-material coordinates are chosen to coincide with the rectangular cartesian coordinates,

a(ν)αβ reduces to Cαβ and both A(ν)
αβ and Aαβ

(ν) reduce to δαβ.

Eαβ =
1
2

�
a(ν)αβ �A(ν)

αβ

�
(2.42)

T αβ =
1
2

�
∂W

∂Eαβ
+

∂W
∂Eβα

�
� pAαβ

(ν) (2.43)

Cauchy’s formula for rectangular cartesian coordinates (Equation (2.16)) is generalised in

Equation (2.44) to express the components of the stress vector t acting on a deformed surface

dS, with normal n = nigi
(θ), in terms of the components of the Cauchy stress tensor.

t dS = t jg(θ)j dS = σi jnig
(θ)
j dS (2.44)

For this research the constitutive law is based on the material structure (see Chapter 5) and

so it is convenient to compute components of the second Piola-Kirchhoff stress tensor with

respect to the undeformed να-material coordinates, as in Equation (2.43). It is therefore

more appropriate to express the stress vector in terms of the second Piola-Kirchhoff stress

components.

Nanson’s theorem (Equation (2.45)) maps the deformed spatial (world) coordinate area, dS,

into the area of the same material surface in the undeformed state, dS0, with unit normal

N = Nαaα
(ν) (Malvern 1969, p. 169).

1
J

Fi
αni dS = Nα dS0 or FT n dS = JN dS0 (2.45)

Substituting Nanson’s theorem and Equation (2.11) into Equation (2.44) results in an
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alternative form of Cauchy’s formula, written in Equation (2.46).

t dS = T αβF j
β Nαg(θ)j dS0 (2.46)

Equation (2.46) defines the form of Cauchy’s formula used in Section 2.5.3 to generalise the

governing equations developed in Section 2.2.2 to curvilinear coordinates.

Physical components of stress and strain in curvilinear coordinates

The components of the Cauchy stress tensor (σi j in Equation (2.44)) are in general not

physical stresses since the base vectors g(θ)j are not necessarily unit vectors. To obtain

physical stress components, these covariant base vectors must be normalised and the

components of the normal n must be referred to the unit contravariant base vectors as in

Equation (2.47).

n = nigi
(θ) = ∑

i

q
gii
(θ)ni

0
@ gi

(θ)q
gii
(θ)

1
A (no implicit summation) (2.47)

where
q

gii
(θ)ni are the covariant components of the unit normal vector, relative to the unit

contravariant base vectors, written in parenthesis.

Equation (2.47) is then substituted into Equation (2.44) to form Equation (2.48).

t = ∑
i j

σi j 1q
gii
(θ)

�q
gii
(θ)ni

�q
g(θ)j j

0
@ g(θ)jq

g(θ)j j

1
A (no implicit summation)

(2.48)

where
g(θ)jq

g(θ)j j

are unit covariant base vectors.

By comparing Equation (2.48) with Equation (2.16), the physical components of the Cauchy

stresses, denoted here as σ(i j), may be calculated using Equation (2.49). Note that the

matrix of physical stresses is symmetric since the Cauchy stress tensor is symmetric (see

Section 2.2.2), but σ(i j) are not the components of a tensor.

σ(i j) = σi j

q
g(θ)j jq
gii
(θ)

(no implicit summation) (2.49)
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Components of physical Green’s strain are related to the tensor components of Equa-

tion (2.42) in a slightly different manner. The relation defined in Equation (2.50) and in-

corporates the undeformed covariant metric tensor for the να-coordinate system, A(ν)
αβ . Note

that like the physical stresses, the physical strain components form a symmetric matrix, but

are not (in general) tensor components.

E(αβ) = Eαβ

r
A(ν)

ββ A(ν)
αα (no implicit summation) (2.50)

Recall that earlier the base vectors of the να-coordinate system were chosen to be

orthonormal. In this case, the undeformed metric tensor A(ν)
αβ consists of the components of

the identity matrix, and the Green’s strain tensor is comprised of physical strain components.

If, however, strains were to be transformed to refer to reference θk-coordinates (for which the

base vectors are generally not unit vectors), then the tensor components would not be physical

components of strain. In this situation, physical strain components could be computed using

a relation similar to Equation (2.50) with the covariant metric tensor g(θ)i j substituted in place

of A(ν)
αβ in Equation (2.50).

2.5.3 Equilibrium equations in curvilinear coordinates

Cauchy’s formula for curvilinear coordinates (Equation (2.46)) may be substituted into

Equation (2.15) to yield a statement of conservation of linear momentum appropriate for

curvilinear coordinates. This is written in Equation (2.51) and has been expressed in terms

of the components of the second Piola-Kirchhoff stress tensor with respect to να-material

coordinates.

Z

S0

T αβF j
β Nαg(θ)j dS0 +

Z

V0

ρ0b dV0 =
d
dt

Z

V0

ρ0v dV0 (2.51)

where Equation (2.13) has been used to transform the volume integrals to be taken over the

undeformed volume instead of the deformed volume.

The next step is to transform the surface integral in Equation (2.51) into a volume integral

using the divergence theorem (Sokolnikoff 1964, p. 264). Equation (2.52) defines the

transformation..

Z

S0

T αβF j
β Nαg(θ)j dS0 =

Z

V0

∇ �
�

T αβF j
β g(θ)j

�
dV0 =

Z

V0

�
T αβF j

β

����
α

g(θ)j dV0 (2.52)
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where “jα” denotes covariant differentiation with respect to the να-material coordinate

(defined in Equation (2.57)).

The resulting linear momentum balance is written in Equation (2.53).

Z

V0

h�
T αβF j

β

����
α

g(θ)j +ρ0b�ρ0f
i

dV0 = 0 (2.53)

where f = dv
dt . Note that ρ0, v and f are assumed to be continuous throughout V0.

For arbitrary volumes, the integrand in Equation (2.53) vanishes resulting in Equation (2.54),

which is a general form of Cauchy’s first law of motion appropriate for curvilinear

coordinates.

�
T αβF j

β

����
α

g(θ)j +ρ0b = ρ0f or
�

T αβF j
β

����
α
+ρ0b j = ρ0 f j (2.54)

where the body force and acceleration vectors have components b = b jg(θ)j and f = f jg(θ)j ,

respectively. Note that this reduces to Equation (2.20) if the να-material coordinate are

chosen to coincide with the rectangular cartesian reference coordinates in the undeformed

state and the θk-coordinates are chosen to be the rectangular cartesian coordinates.

Now, recalling the principle of virtual work in Equation (2.22), the virtual displacements may

be expressed in terms of covariant components δv = δv jg
j
(θ) with respect to the base vectors

of the θk-reference coordinate system. Similarly, the surface traction vector may be written

in terms of its contravariant components using s = s jg(θ)j . Substituting these components

together with the expression for the traction vector given in Equation (2.46), transforms the

virtual work equations into Equation (2.55).

Z

S2

s jδv j dS =
Z

S0

T αβF j
β Nαδv j dS0 (2.55)

Gauss’ theorem (Fung 1965, p. 117) is used to expand the right-hand-side surface integral in

Equation (2.55) into the volume integral in Equation (2.56).

Z

S2

s jδv j dS =
Z

V0

h�
T αβF j

β

����
α

δv j +T αβF j
β δv j

��
α

i
dV0 (2.56)

where δv j
��
α is the covariant derivative of the virtual displacement with respect to the να-
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material coordinate and is defined in Equation (2.57).

δv j
��
α =

∂δv j

∂να
�Γi

jαδvi (2.57)

where

Γi
jα =

∂
∂να

�
g(θ)j

�
�gi

(θ) =
∂

∂να

�
∂xk

∂θ j

�
∂θi

∂xk
(2.58)

are called Christoffel symbols of the second kind which are non-tensor quantities that arise

through partial differentiation of base vectors. As expressed here, they are not symmetric

with respect to the two lower indices since j is a spatial coordinate and α is a material

coordinate. Sections 3.2.1 and 3.2.2 define the Christoffel symbols for two curvilinear

reference coordinate systems.

Cauchy’s first law of motion Equation (2.54) can be used to eliminate the second derivative

terms in Equation (2.56) and reduce it to Equation (2.59). Notice that in this expression of the

virtual work principle, the stress components are referred to material να-material coordinates,

while the displacement components are referred to the θk-reference coordinates.

Z

V0

T αβF j
β δv j

��
α dV0 =

Z

V0

ρ0
�
b j� f j�δv j dV0 +

Z

S2

s jδv j dS (2.59)

The final step is to evaluate the right-hand-side surface integral, as discussed in Section 2.5.4.

2.5.4 Surface tractions in curvilinear coordinates

The right-hand-side surface integral of Equation (2.59) is evaluated by expressing the

contravariant components of the traction vector, s j, in terms of the pressure loads acting

on the external surfaces of the deforming body. In the absence of boundary pressures this

integral vanishes.

At this stage, it is convenient to introduce one further system of material coordinates that

describe the geometry of the deforming body. They are referred to as the finite element

material coordinates, (ξ1;ξ2;ξ3), and are described fully in Section 3.2.3. The base vectors

and metric tensors for the ξM-material coordinate system are defined in Equation (3.27).

Consider a pressure load, p(appl) (a physical stress), acting on the deforming (ξ1;ξ2)-
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coordinate surface. The unit normal to this surface is given by n̂ =
g3
(ξ)q
g33
(ξ)

(since the

contravariant vectors for the ξM-coordinate system are not necessarily unit vectors). The

surface traction vector is expressed in Equation (2.60).

s = p(appl)n̂ = p(appl)

g3
(ξ)q
g33
(ξ)

= p(appl)

g3M
(ξ)q
g33
(ξ)

g(ξ)M = p(appl)

g3M
(ξ)q
g33
(ξ)

∂θ j

∂ξM
g(θ)j = s jg(θ)j (2.60)

where the contravariant components of the surface traction vector are given by

s j = p(appl)

g3M
(ξ)q
g33
(ξ)

∂θ j

∂ξM
(2.61)

The right-hand-side surface integral of Equation (2.59) may now be computed using

Equation (2.62).

Z

S2

s jδv j dS =
Z

S2

p(appl)

g3M
(ξ)q
g33
(ξ)

∂θ j

∂ξM
δv j dS (2.62)

where the integral is performed over the portion of deformed surface that is subject to pressure

boundary constraints.

Finally, Equation (2.62) is incorporated into Equation (2.59) to yield the equilibrium

equations that govern large deformation elasticity, written in Equation (2.63).

Z

V0

T αβF j
β δv j

��
α dV0 =

Z

V0

ρ0
�
b j� f j�δv j dV0 +

Z

S2

p(appl)

g3M
(ξ)q
g33
(ξ)

∂θ j

∂ξM
δv j dS

(2.63)

Equation (2.63) is the starting point for the analysis of a body undergoing large elastic

deformations. To be useful for practical applications, the virtual displacements are expressed

in terms of an interpolation of nodal parameters which may be determined using a nonlinear

Galerkin finite element method (see Chapter 3). Moreover, to be applicable to the heart, the

relationship between the stress and strain (Equation (2.43)) must be based on experimental

observations of myocardium under physiological conditions (see Chapter 5).



Chapter 3

The finite element method for finite

elasticity

To analyse stress in an body undergoing large elastic deformations the equations that govern

finite deformation elasticity, developed in Chapter 2, must be solved. For materials with

regular geometries and simple material properties this may be done analytically (an example

of this is presented in Section 6.1). However, for most practical applications materials

behave nonlinearly and assume complex shapes. Irregular domains may be discretised

into a number of smaller regular elements, over which quantities of interest (for example

the geometric coordinates of a point) are continuously approximated. The two main types

of interpolation functions used in this thesis are linear Lagrange and cubic Hermite basis

functions. Section 3.1 details these interpolation schemes and their use in one, two and three

spatial dimensions.

It is often convenient, if not necessary, to use several different coordinate systems for the

FEM for finite deformation elasticity. For example, stress components are most conveniently

expressed with respect to a system of material coordinates aligned with structural features

of the body (see Section 2.5.2), whereas the geometry best expressed using a system of

curvilinear reference coordinates. Section 3.2 defines the cylindrical polar, prolate spheroidal

and FE material coordinate systems in terms of the global rectangular cartesian coordinate

system.

For each element, the equations governing finite deformation elasticity are expressed in terms

of known material properties and the unknown displacements of the element vertices (referred

to as nodes). To formulate these equations many integrals must be evaluated and often this

cannot be done analytically. Gaussian quadrature (described in Section 3.3) is a suitable

36
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numerical integration scheme for use with FE analysis.

Element contributions are assembled into a global system of equations to ensure that the

solution is compatible across element boundaries. The system of nonlinear equations (defined

in Section 3.4) are solved, subject to boundary constraints, to yield a set of deformed

nodal coordinates from which deformation patterns are approximated using interpolation.

Section 3.5 describes nonlinear techniques used to solve the equations. To reduce solutions

times, the computation of the element contributions to the global equations is distributed

across a number of processors, which may be a cluster of workstations or a high performance

computer.

3.1 Interpolation using basis functions

Basis functions, also known as shape or interpolation functions, may be used to approximate

quantities of interest (for example geometric or solution variables) that vary over a particular

domain. They consist of sets of polynomials of different degrees, depending on the desired

accuracy of the approximation (generally the higher the degree, the better the approximation).

This thesis uses two main types of interpolation functions — namely the linear Lagrange

and cubic Hermite basis functions. The higher order cubic Hermite basis functions are

used to approximate quantities of interest that possess large spatial gradients, whereas linear

Lagrange basis functions are used to approximate variables that do not vary appreciably.

This section provides an overview of the properties of each basis type and the way they

can be combined to approximate field variables in two- and three-dimensions. For further

information see Zienkiewicz and Taylor (1994, Chap. 7).

3.1.1 Linear Lagrange basis functions

Consider an arbitrary scalar function, u, with u = u1 and u = u2 at opposite ends of a

one-dimensional domain. A linear approximation of u, along the domain can then be defined

using Equation (3.1), by introducing a normalised measure of distance, ξ, with ξ = 0 at one

end (where u = u1 say) and ξ = 1 at the other end of the domain (where u = u2).

u(ξ) = (1�ξ)u1+ξu2 (0� ξ� 1) (3.1)

The boundary points of the domain are variously referred to as element vertices, element
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nodes or nodal points and the values of u at element nodes, namely u1 and u2, are referred

to as nodal parameters. In Equation (3.1), a weighting function is associated with each of

the nodal parameters. These weighting functions are straight lines that vary between 0 and 1

as shown in Figure 3.1. They are referred to as the linear Lagrange basis functions and are

defined in Equation (3.2).

0.80.4 0.6

Ψ2

1
ξ

Ψ1
0.2

0

0.4

0.6

0.8

1

0 0.2

FIGURE 3.1: Linear Lagrange basis functions.

Ψ1(ξ) = (1�ξ) Ψ2(ξ) = ξ (3.2)

More complex variations of u (with larger spatial gradients, say) may be approximated using

piecewise linear polynomials over smaller domains, called elements. The union of the set of

smaller sub-domains must cover the entire domain of interest without overlapping. Adjacent

elements share nodal parameters for their description of u as shown in Figure 3.2, which

ensures that the approximation of u is continuous throughout the entire domain.

Equation (3.1) holds over each of the three elements in Figure 3.2. In the first element

u1 = U1 and u2 = U2, whereas in the second element u1 = U2 and u2 = U3. This

ensures that the quantity u is implicitly continuous between elements since in the first element

u(1) = U2 and in the second element u(0) = U2 using Equation (3.1). Similarly, in the third

element, u1 = U3 and u2 = U4, ensuring continuity between the second and third elements

with u = U3 at the junction node.
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Entire domain

Sub-domains

u1 u2

element 1

0
Element nodes

x

node 1 node 2 node 3 node 4Global nodes

1

u1 u2

0 1ξ
element 3element 2

ξ

u1 u2

0 1ξ

U4U1 U2 U3

FIGURE 3.2: The scalar field, u, may be approximated over an entire domain by using
piecewise polynomials over a set of smaller domains.

It is now clear that u may be approximated by a continuous piecewise parametric description

in terms of the normalised element coordinate, ξ. In order to express u in terms of the

physical coordinate, x, the relationship between x and ξ must be defined for each element. It

is convenient to define the spatial coordinate, x, as an interpolation of the nodal values of x.

Thus the dependence of u on x is defined by the parametric expressions in Equation (3.3).

u(ξ) = ∑Ψn(ξ)un x(ξ) = ∑Ψn(ξ)xn (3.3)

Note that in Equation (3.3), summation is implied over all element nodes (there are only 2

for this one-dimensional case) and that x(ξ) provides the mapping between the mathematical

space, 0 � ξ � 1 and the physical space x1 � x � x2.

3.1.2 Cubic Hermite basis functions

Like the linear Lagrange basis functions, cubic Hermite interpolation functions provide

continuity of the variable of interest across element boundaries. In addition, they provide

continuity in the first derivative with respect to arc length, which is what makes them different

from cubic Lagrange basis functions. For this reason Hermite bases are ideal for representing

a smoothly varying curve or surface over some domain of interest.

To approximate the field quantity, u, using a one-dimensional cubic Hermite basis, two

element nodes are required, over which four nodal quantities must be defined. Two of these

are the values of u at the element nodes, namely u1 and u2, just as for the linear Lagrange

basis functions. The additional two quantities are the first derivatives of u with respect to the

normalised element coordinate, ξ. These two parameters are denoted by
�

du
dξ

�
1

and
�

du
dξ

�
2
,

where the subscripts refer to the element node at which the derivative is defined.
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A one-dimensional cubic Hermite basis incorporates the four cubic polynomials listed in

Equation (3.4) and illustrated in Figure 3.3. Note that the subscripted indices on the basis

functions refer to the element node number and the superscripted indices signify whether the

basis function is associated with the value of u (superscript 0) or its derivative (superscript 1)

at the node.

ξ

Ψ0
1

0.6 10.8

slope=1 slope=1

Ψ1
2

Ψ0
2

Ψ1
1

0

0.6

0.4

0.2

-0.2

0.8

0.40.20

1

FIGURE 3.3: Cubic Hermite basis functions.

Ψ0
1(ξ) = 1�3ξ2 +2ξ3 Ψ0

2(ξ) = ξ2 (3�2ξ)

Ψ1
1(ξ) = ξ(ξ�1)2 Ψ1

2(ξ) = ξ2 (ξ�1)
(3.4)

Equation (3.5) defines how u may be approximated in one-dimension using the four cubic

Hermite basis functions with their associated nodal parameters.

u(ξ) = Ψ0
1(ξ)u1 +Ψ1

1(ξ)
�

du
dξ

�
1
+Ψ0

2(ξ)u2+Ψ1
2(ξ)

�
du
dξ

�
2

(3.5)

To make cubic Hermite basis functions useful in practise, one further modification is

necessary. Instead of using the nodal derivative
�

du
dξ

�
n

that depends on the local element

ξ-coordinate in the two adjacent elements, it is more useful to define a global node derivative�du
ds

�
N , where s is the arc-length and N is the global node number. Equation (3.6) is then used
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to calculate the ξ-coordinate derivative.

�
du
dξ

�
n
=

�
du
ds

�
N
�
�

ds
dξ

�
n

(3.6)

where
�

ds
dξ

�
n

is an element scale factor which scales the arc-length derivative of global node

N to the ξ-coordinate derivative of element node n. Note that it is always convenient to

associate the element node n in element e with the global node N using a connectivity matrix

∆(n;e) = N. The result is that
�

du
ds

�
is implicitly constrained to be continuous across element

boundaries rather than
�

du
dξ

�
.

3.1.3 Interpolation in two- and three-dimensions

Two- and three-dimensional basis functions can simply be constructed from tensor products

of the one-dimensional bases described above.

To approximate u over a two-dimensional domain, the bilinear Lagrange interpolation

scheme may be used. This scheme consists of the four polynomials shown in Figure 3.4, and

is constructed by taking the tensor product of individual one-dimensional linear Lagrange

interpolations in the ξ1 and ξ2 directions as outlined in Equation (3.7).

Ψ1 (ξ1;ξ2) = ΨL
1 (ξ1)ΨL

1 (ξ2) = (1�ξ1)(1�ξ2)

Ψ2 (ξ1;ξ2) = ΨL
2 (ξ1)ΨL

1 (ξ2) = ξ1 (1�ξ2)

Ψ3 (ξ1;ξ2) = ΨL
1 (ξ1)ΨL

2 (ξ2) = (1�ξ1)ξ2

Ψ4 (ξ1;ξ2) = ΨL
2 (ξ1)ΨL

2 (ξ2) = ξ1ξ2

(3.7)

where ΨL
1 (ξ) and ΨL

2 (ξ) are the one-dimensional linear Lagrange basis functions described

in Section 3.1.1.

Four nodal parameters, u1; : : : ;u4, are associated with the two-dimensional basis functions

and are the values of u defined at the element vertices. The approximation of u is given in

Equation (3.8).

u(ξ) = Ψ1 (ξ1;ξ2)u1 +Ψ2 (ξ1;ξ2)u2 +Ψ3 (ξ1;ξ2)u3 +Ψ4 (ξ1;ξ2)u4 (3.8)

As for the one-dimensional case, the geometry of the element is defined in terms of
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FIGURE 3.4: Two-dimensional bilinear basis functions.

interpolations of nodal positions (xn
;yn) ; n = 1 : : : 4. Equation (3.9) is then used to provide

the mapping between the mathematical space (ξ1;ξ2) and the physical space (x;y).

x(ξ1;ξ2) = ∑Ψn (ξ1;ξ2)xn y(ξ1;ξ2) = ∑Ψn (ξ1;ξ2)yn (3.9)

Using a similar procedure, the eight polynomials that constitute a three-dimensional trilinear

Lagrange basis have been constructed in Equation (3.10) and used to approximate u over a

three-dimensional element in Equation (3.11).

Ψ1 (ξ1;ξ2;ξ3) = (1�ξ1)(1�ξ2)(1�ξ3) Ψ2 (ξ1;ξ2;ξ3) = ξ1 (1�ξ2)(1�ξ3)

Ψ3 (ξ1;ξ2;ξ3) = (1�ξ1)ξ2 (1�ξ3) Ψ4 (ξ1;ξ2;ξ3) = ξ1ξ2 (1�ξ3)

Ψ5 (ξ1;ξ2;ξ3) = (1�ξ1)(1�ξ2)ξ3 Ψ6 (ξ1;ξ2;ξ3) = ξ1 (1�ξ2)ξ3

Ψ7 (ξ1;ξ2;ξ3) = (1�ξ1)ξ2ξ3 Ψ8 (ξ1;ξ2;ξ3) = ξ1ξ2ξ3

(3.10)



3.1 INTERPOLATION USING BASIS FUNCTIONS 43

and

u(ξ1;ξ2;ξ3) = ∑Ψn (ξ1;ξ2;ξ3)un n = 1 : : :8

xi (ξ1;ξ2;ξ3) = ∑Ψn (ξ1;ξ2;ξ3)xn
i xi 2 fx;y;zg

(3.11)

The construction of two- and three-dimensional basis functions involving cubic Hermite

interpolation can be achieved using the above procedure, with one modification for the

derivative terms. To approximate u using a two-dimensional bicubic Hermite basis, the four

quantities listed in Equation (3.12) must be defined at each element node, totalling 16 nodal

parameters per element.

u;
∂u
∂ξ1

;

∂u
∂ξ2

;

∂2u
∂ξ1∂ξ2

(3.12)

The need for the second-order cross-derivative term can be explained as follows. Since u is

cubic in both ξ1 and ξ2 independently, then the derivative ∂u
∂ξ1

is quadratic in ξ1 and cubic in

ξ2. The cubic variation of u with ξ2 is specified by the four nodal parameters u1,
�

∂u
∂ξ2

�
1
,

u3, and
�

∂u
∂ξ2

�
3
, defined at element vertices one and three respectively. However, since ∂u

∂ξ1

is cubic in ξ2, as stated above, and is entirely independent of these four parameters, four

additional parameters are required to specify this cubic. Two of these are specified by
�

∂u
∂ξ1

�
1

and
�

∂u
∂ξ1

�
3
, and the remaining two are the second-order cross-derivative terms,

�
∂2u

∂ξ1∂ξ2

�
1

and�
∂2u

∂ξ1∂ξ2

�
3
. Similar reasoning explains the need for ∂2u

∂ξ1∂ξ2
to be defined at element vertices

two and four.

The bicubic Hermite interpolation of the field quantity u is written out in full form

in Equation (3.13) using the one-dimensional cubic Hermite basis functions defined in

Equation (3.4), and the 16 nodal parameters described above.
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u(ξ1;ξ2) = Ψ0
1(ξ1)Ψ0

1(ξ2)u1 + Ψ0
2(ξ1)Ψ0

1(ξ2)u2

+ Ψ0
1(ξ1)Ψ0

2(ξ2)u3 + Ψ0
2(ξ1)Ψ0

2(ξ2)u4

+ Ψ1
1(ξ1)Ψ0

1(ξ2)
�

∂u
∂ξ1

�
1

+ Ψ1
2(ξ1)Ψ0

1(ξ2)
�

∂u
∂ξ1

�
2

+ Ψ1
1(ξ1)Ψ0

2(ξ2)
�

∂u
∂ξ1

�
3

+ Ψ1
2(ξ1)Ψ0

2(ξ2)
�

∂u
∂ξ1

�
4

+ Ψ0
1(ξ1)Ψ1

1(ξ2)
�
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(3.13)

To ensure derivative continuity throughout the spatial domain as well as the ξ-coordinate

space, the global node derivatives need to be specified with respect to physical arc-length.

There are now two arc-lengths to consider. Arc-lengths along the ξ1- and ξ2-coordinates are

measured by s1 and s2, respectively. Thus the one-dimensional scale factors in Equation (3.6)

are extended in Equation (3.14) for two-dimensional interpolation.

�
∂u
∂ξ1

�
n
=

�
∂u
∂s1

�
N
�
�

ds1

dξ1

�
n�

∂u
∂ξ2

�
n
=

�
∂u
∂s2

�
N
�
�

ds2

dξ2

�
n

(3.14)

with the additional cross-derivative scale factor

�
∂2u

∂ξ1∂ξ2

�
n
=

�
∂2u

∂s1∂s2

�
N
�
�

ds1

dξ1

�
n
�
�

ds2

dξ2

�
n

(3.15)

where
�

ds1
dξ1

�
n

and
�

ds2
dξ2

�
n

are element scale factors which scale the arc-length derivatives of

global node N to the ξ-coordinate derivatives of element node n, as for the one-dimensional

case. Again N is related to n using the connectivity mapping, ∆(n;e).

A further condition must governs the choice of scale factors to ensure that u is C1 continuous

across element boundaries. A sufficient condition is that the scale factor at a node in one

element is the same as the scale factor at the same node in an adjacent element (Bradley,
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Pullan and Hunter 1997). In other words the scale factors should be nodally based so that

the same scale factor is used for all elements in which a node lies. Any choice of scale

factor will provide C1 continuity across element boundaries, but it is convenient to choose

the average of the two arc-lengths adjacent to the given global node. This is because it is often

computationally desirable to uniformly space the ξ coordinate with respect to arc-length (for

example to evenly space out the computational points of a Gaussian quadrature scheme across

elements).

Three-dimensional tricubic Hermite basis functions may be constructed in a similar manner

by introducing a triple cross derivative with respect to all three element coordinates as in

Equation (3.16).

�
∂3u

∂ξ1∂ξ2∂ξ3

�
n
=

�
∂3u

∂s1∂s2∂s3

�
N
�
�

ds1

dξ1

�
n
�
�

ds2

dξ2

�
n
�
�

ds3

dξ3

�
n

(3.16)

Throughout this thesis, combinations of linear Lagrange and cubic Hermite interpolation

schemes are used to interpolate quantities of interest in three-dimensions. For example the FE

model of the ventricles, described in Section 4.3, represents the muscle fibre orientation using

linear Lagrange interpolation in both ξ1 and ξ2 and cubic Hermite interpolation in ξ3. For

brevity this three-dimensional interpolation scheme is referred to as a bilinear Lagrange/cubic

Hermite basis. It may be constructed by taking the tensor product of the bilinear Lagrange

scheme in two-dimensions (Equation (3.7)) with the cubic Hermite scheme in one-dimension

(Equation (3.4)). The result is a set of sixteen basis functions that each multiply an element

parameter. The sixteen element parameters consist of u and du
dξ3

defined at each of the eight

vertices (nodes) of the three-dimensional element.

3.2 Coordinate systems

This thesis contains references to three main spatial coordinate systems. The rectangular

cartesian coordinate system will be used as a reference for defining the cylindrical polar and

prolate spheroidal coordinate systems in Sections 3.2.1 and 3.2.2, respectively. Furthermore,

two sets of material coordinates are required for the FE model of the heart described in

Section 4.3. The first is the set of ξM-element coordinates that have been introduced in

Section 3.1, to represent the geometry of a body in the current and undeformed configurations

(see Section 3.2.3). The second set are the να-material coordinates used to represent the

fibrous-sheet structure of myocardium. These material coordinates have been described fully
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in Section 2.5.1 and will not be discussed here.

3.2.1 Cylindrical polar coordinates

With reference to Figure 3.5, consider a material point P in the body, B0. The position

vector of P has components (X1;X2;X3) with respect to a fixed reference rectangular cartesian

coordinate system (Y1;Y2;Y3). The cylindrical polar coordinates of the point, (R;Θ;Z), are

related to the cartesian components using Equation (3.17).

Θ

X3

Z

B0

gr

X1

Y3

R

P

Y1

gz
gθ

Y2
X2

FIGURE 3.5: Cylindrical polar coordinates (R;Θ;Z) with base vectors gr, gθ and gz.

X1 = RcosΘ X2 = RsinΘ X3 = Z

R =
�
X2

1 +X2
2

� 1
2 Θ = tan�1(X2=X1) Z = X3

(3.17)

The base vectors of the cylindrical polar coordinate system are vectors in the radial,

circumferential and axial directions (see Figure 3.5) and may be calculated using

Equation (2.35). In this section, they are denoted by gr, gθ and gz respectively and are

expressed in terms of the base vectors of the rectangular cartesian coordinate system in

Equation (3.18).

gr = cosΘ i1 + sinΘ i2 gθ =�RsinΘ i1 +RcosΘ i2 gz = i3 (3.18)
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Equation (3.19) defines the metric tensors for cylindrical polar coordinates, which were

calculated using Equation (2.36).

Gi j =

2
64

1 0 0

0 R2 0

0 0 1

3
75 Gi j =

2
64

1 0 0

0 1
R2 0

0 0 1

3
75 (3.19)

Equation (2.58) was used to calculate the Christoffel symbols for the cylindrical polar

coordinate system, which are written in Equation (3.20).

Γ1
2α =�R

∂Θ
∂να

Γ2
1α =

1
R

∂Θ
∂να

Γ2
2α =

1
R

∂R
∂να

otherwise Γi
jα = 0 (3.20)

3.2.2 Prolate spheroidal coordinates

The material point, P, in the undeformed body B0, has components (Λ;M;Θ) when referred

to a prolate spheroidal coordinate system (see Figure 3.6). Note that M and Θ are angular

coordinates, while Λ is a measure of distance from the origin of the coordinate system.

This origin is positioned a distance d from the origin of the reference rectangular cartesian

coordinate system and lies on the Y1 coordinate axis. It is called the focus or focal point and

is a property of the coordinate system only. Equation (3.21) defines the rectangular cartesian

components of P in terms of its prolate spheroidal components.

X1 = d coshΛcosM

X2 = d sinhΛsinMcosΘ (3.21)

X3 = d sinhΛsinMsinΘ

The base vectors of the prolate spheroidal coordinate system point in the radial, longitudinal

and circumferential directions (see Figure 3.6) and may be calculated using Equation (2.35).

They are denoted by gλ, gµ and gθ, respectively and are defined in Equation (3.22).
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X1

X2

Y1

B0

gθ

M

X3

gλ

P
Λ

Y3

d

Y2

gµ

Θ

FIGURE 3.6: Prolate spheroidal coordinates (Λ;M;Θ) with base vectors gλ, gµ and gθ.

2
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gλ
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gθ
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sinhΛcosM coshΛsinM 0

�coshΛsinM sinhΛcosM 0
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75
2
64

1 0 0

0 cosΘ sinΘ
0 �sinΘ cosΘ

3
75
2
64

i1
i2
i3

3
75

(3.22)

The metric tensors for the prolate spheroidal coordinate system, were calculated using

Equation (2.36) and are given in Equation (3.23).

Gi j =
�

Gi j	�1
= d2

2
64

sinh2 Λ+ sin2 M 0 0

0 sinh2 Λ+ sin2 M 0

0 0 sinh2 Λsin2 M

3
75

(3.23)

Equation (2.58) was used to calculate the Christoffel symbols for the prolate spheroidal
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coordinate system, which are written in Equation (3.24).

Γ1
1α =

∂Λ
∂να

sinh2Λ+ ∂M
∂να

sin2M

2(sinh2 Λ+sin2 M)
Γ2

1α =
∂M
∂να

sinh2Λ� ∂Λ
∂να

sin2M

2(sinh2 Λ+sin2 M)
Γ3

1α = cothΛ ∂Θ
∂να

Γ1
2α =�Γ2

1α Γ2
2α = Γ1

1α Γ3
2α = cotM ∂Θ

∂να

Γ1
3α = �sinh2Λ sin2 M

2(sinh2 Λ+sin2 M)
� ∂Θ

∂να
Γ2

3α = �sinh2Λ sin2M
2(sinh2 Λ+sin2 M)

� ∂Θ
∂να

Γ3
3α = ∂Λ

∂να
cothΛ+ ∂M

∂να
cothM

(3.24)

3.2.3 Finite element material coordinates

When modelling the geometry of a deforming body using the FEM, it is convenient to

define a system of normalised element coordinates within each element, (ξ1;ξ2;ξ3). These

coordinates are material coordinates because they are embedded in the body and deform

with the material as it deforms. Thus, in general the ξM-material coordinates are not

orthogonal. With reference to Figure 3.7, consider a material point P with rectangular

cartesian coordinates (X1;X2;X3) in the undeformed body B0. Equation (3.25) may be used

to map the ξM-material coordinates of P into the undeformed spatial coordinates using the

values (and derivatives, for high order interpolation) of the geometric coordinates for the n

element parameters in the undeformed state, X n
i .

Xi = Ψn (ξ1;ξ2;ξ3)Xn
i (3.25)

where Ψn (ξ1;ξ2;ξ3) are the chosen three-dimensional basis functions (see Section 3.1).

A subsequent deformation causes the material point to undergo a displacement u. In the

deformed body B, the material point is labelled p and has rectangular cartesian coordinates

(x1;x2;x3). Again the ξM-material coordinates may be used to describe the deformed

geometry of the element using the mapping given in Equation (3.26).

xi = Ψn (ξ1;ξ2;ξ3)xn
i (3.26)

where xn
i are the element nodal values (and derivatives) of the i-th geometric coordinate in

the deformed state.

The covariant base vectors and metric tensors for the ξM-coordinate system are defined in

Equation (3.27) for the undeformed and deformed states. Contravariant base vectors and

metric tensors for the ξM-coordinate system may be determined in an analogous fashion to

those for the να-coordinate system in Equation (2.41), and again the metric tensors may be
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B0 B

R

ξ3ξ3

P : (X1;X2;X3) u

Y3

Y2 Y2

Y1

ξ2

p : (x1;x2;x3)

Y3

P

R

Y1

ξ2

r

ξ1

ξ1

FIGURE 3.7: The finite element material coordinate system (ξ1;ξ2;ξ3).

used to raise or lower indices.

G(ξ)
M =

∂Xk

∂ξM
g(x)k g(ξ)M =

∂xk

∂ξM
g(x)k

G(ξ)
MN = G(ξ)

M �G(ξ)
N =

∂Xk

∂ξM

∂Xk

∂ξN
g(ξ)MN = g(ξ)M �g(ξ)N =

∂xk

∂ξM

∂xk

∂ξN

(3.27)

3.3 Gaussian quadrature

The calculation of surface and volume integrals is essential when using the FEM. Often these

integrals can not be determined analytically, especially when dealing with nonlinear problems

such as finite elastic deformations. For this reason an efficient and accurate numerical method

to determine the element integrals is required. The Gauss-Legendre quadrature integration

scheme (hereafter referred to as Gaussian quadrature) satisfies these criteria by approximating

an integral by a weighted sum of integrand evaluations using specified sets of independent

variables.
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3.3.1 Integration in one-dimension

The one-dimensional integral given in Equation (3.28) is approximated by a weighted sum of

integrand evaluations, where wi are the weighting factors and ξ(i) are the points at which the

integrand, f (ξ), is evaluated. These sampling points are commonly termed Gauss points. The

error in the approximation is denoted by EI, where I is the order of the quadrature scheme.

1Z

0

f (ξ)dξ =
I

∑
i=1

wi f (ξ(i))+EI (3.28)

To exactly integrate a cubic polynomial, two Gauss points are required. This is proven as

follows. A general cubic polynomial incorporates four coefficients and may be written in the

form shown in Equation (3.29).

f (ξ) = a+bξ+ cξ2 +dξ3 (3.29)

Substituting Equation (3.29) into the integral on the left-hand-side of Equation (3.28) yields

Equation (3.30).

1Z

0

f (ξ)dξ = a

1Z

0

1dξ+b

1Z

0

ξdξ+ c

1Z

0

ξ2dξ+d

1Z

0

ξ3dξ (3.30)

This integral may be approximated using two Gauss points as shown in Equation (3.31).

1Z

0

f (ξ)dξ = w1 f (ξ(1))+w2 f (ξ(2)) (3.31)

To determine the ξ(i) positions and associated wi weights, each integral on the right-hand-

side of Equation (3.30) is evaluated analytically. The same integrals are then expanded using

Equation (3.31), where the function f is chosen to be the corresponding integrand. The result

is a set of four equations in four unknowns, as detailed in Equations (3.32)–(3.35).
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1Z

0

1dξ = 1 = w1 +w2 since f (ξ) = 1 (3.32)

1Z

0

ξdξ =
1
2

= w1ξ(1)+w2ξ(2) since f (ξ) = ξ (3.33)

1Z

0

ξ2dξ =
1
3

= w1

�
ξ(1)
�2

+w2

�
ξ(2)
�2

since f (ξ) = ξ2 (3.34)

1Z

0

ξ3dξ =
1
4

= w1

�
ξ(1)
�3

+w2

�
ξ(2)
�3

since f (ξ) = ξ3 (3.35)

The four Equations (3.32)–(3.35) are expressed in terms of the four unknowns, ξ(1), ξ(2), w1

and w2, and may be solved to determine the positions and weights (listed in Equation (3.36))

unique to the quadrature scheme involving two Gauss points. Implicit in this derivation is

the fact that Equation (3.31) is exactly satisfied since the four integrals on the right-hand-

side of Equation (3.30) are used in Equations (3.32)–(3.35) to calculate the Gauss positions

and weights. Thus a polynomial of degree three can be exactly integrated using a Gaussian

quadrature scheme with two Gauss points.

ξ(1) =
1
2
� 1

2
p

3
w1 =

1
2

ξ(2) =
1
2
+

1

2
p

3
w2 =

1
2

(3.36)

This idea is extended when treating higher order polynomials. A Gaussian quadrature scheme

with N sampling points (Gauss points) associated with N weights will exactly integrate a

polynomial of degree 2N�1. Note that if there are more than N Gauss points a polynomial

of degree 2N � 1 will also be exactly integrated, although needless calculations will be

performed reducing the efficiency of this scheme. Conversely, if the scheme incorporates

less than N Gauss points (say M < N) then the error term in Equation (3.28) will be of the

order of ξ to the 2Mth power. For example three Gauss points will exactly integrate a fifth

order polynomial, but if only two Gauss points are chosen for the integration scheme, then

EI will be of the order of ξ4.
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3.3.2 Integration in two- and three-dimensions

To approximate surface and volume integrals using Gaussian quadrature, one-dimensional

schemes are set up in each direction. Consider the function f (ξ1;ξ2) which depends on the

two variables ξ1 and ξ2 defined to lie in the surface of interest. The surface integral of f

over its domain can be approximated by the two-dimensional Gaussian quadrature scheme

expressed in Equation (3.37).

1Z

0

1Z

0

f (ξ1;ξ2)dξ2dξ1 =

1Z

0

 
I

∑
i=1

wi f (ξ1;ξ
(i)
2 )+EI

!
dξ1 =

I

∑
i=1

J

∑
j=1

wiwj f (ξ( j)
1 ;ξ(i)2 )+EIJ

(3.37)

where a quadrature scheme with I Gauss points and weights is firstly employed in the ξ2

direction (ξ(i)2 and wi, respectively) followed by a scheme with J Gauss points and weights for

the ξ1 direction (ξ( j)
1 and wj, respectively). Note that the error term depends on the choice of

quadrature schemes in the ξ1 and ξ2 directions separately which, in general, may be different.

Similarly in three-dimensions, Equation (3.38) shows how to approximate a volume integral

of f (ξ1;ξ2;ξ3) using Gaussian quadrature schemes with I, J and K Gauss points and weights

in the ξ3, ξ2 and ξ1 directions, respectively.

1Z

0

1Z

0

1Z

0

f (ξ1;ξ2;ξ3)dξ3dξ2dξ1 =
I

∑
i=1

J

∑
j=1

K

∑
k=1

wiwjwk f (ξ(k)1 ;ξ( j)
2 ;ξ(i)3 )+EIJK

(3.38)

It should be noted that the limits on the integrals performed throughout this section have

purposely been chosen as 0 and 1 for the following reason. For FE calculations, integrals

are generally performed over the physical coordinate space of each element. The basis

functions described in Section 3.1 map the spatial coordinates into the mathematical ξ-

coordinate space and so the element integrals can also be transformed using the appropriate

Jacobian. Thus the integrals required are now performed over the ξi-coordinate space for

which 0� ξi � 1. Moreover, the integrands are polynomial-like, hence Gaussian quadrature

is an ideal integration scheme for FE analysis.
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3.4 Galerkin finite element equations for finite elasticity

The equations that govern large elastic deformations of deformable materials have been

developed in Chapter 2. The framework has now been set to apply the Galerkin FEM to

the stress equilibrium equations developed in Section 2.5.3. Additional constraints arise if

the material is incompressible in nature, and if surface pressures are prescribed on external

faces.

3.4.1 Galerkin equilibrium equations

The virtual displacement fields δv j in Equation (2.63) are approximated by a FE displacement

field in Equation (3.39) using interpolation functions Ψn developed in Section 3.1.

δv j = Ψn (ξ1;ξ2;ξ3)δvn
j (3.39)

where δvn
j are arbitrary virtual nodal displacements.

Equation (3.39) is substituted into the equilibrium equations that govern finite deformation

elasticity (Equation (2.63)) and each component δvn
j is considered in turn in Equation (3.40).

Z

V0

T αβF j
β Ψnjα dV0 =

Z

V0

ρ0
�
b j� f j�Ψn dV0 +

Z

S2

p(appl)

g3M
(ξ)q
g33
(ξ)

∂θ j

∂ξM
Ψn dS

(3.40)

To evaluate the integrals in Equation (3.40), they must first be transformed from the reference

coordinate space to the ξM-coordinate space using the appropriate Jacobian. The transformed

integrals are written in Equation (3.41).

ZZZ

V0

T αβF j
β Ψnjα

p
G(ξ) dξ3dξ2dξ1 =

ZZZ

V0

ρ0
�
b j� f j�Ψn

p
G(ξ) dξ3dξ2dξ1

+
ZZ

S2

p(appl) g3M
(ξ)

∂θ j

∂ξM
Ψn

q
g(ξ) dξ2dξ1 (3.41)

where
p

G(ξ) =
p

detfG(ξ)
i j g and

p
g(ξ) =

p
detfg(ξ)i j g are the three-dimensional coordinate

transformation Jacobians with respect to the undeformed and deformed configurations,

respectively. Note that the surface integral is transformed by substituting J2Ddξ2dξ1 for

dS, where the two-dimensional Jacobian with respect to deformed coordinates is given by
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J2D =
p

g(ξ)g33
(ξ) (Oden 1972, p. 245).

The three-dimensional integrals in Equation (3.41) are evaluated over the undeformed volume

and the two-dimensional integral is computed over the portion of the deformed surface

(denoted S2) for which external pressure loads are applied. These integrals are replaced

by a sum of integrals over the collection of element domains which constitute the FE

model. Element integrals are evaluated numerically using Gaussian quadrature (Section 3.3)

and adjusted by the scale factors associated with the chosen interpolation scheme (see the

discussion on scale factors in Section 3.1.3). Components of the second Piola-Kirchhoff

stress tensor, T αβ, are evaluated at each Gauss point using the constitutive equations

(Equation (2.43)) and the strain energy is calculated using the appropriate form of the strain

energy function (see Sections 2.3 and 5.1.1 for further details).

Element integrals are then assembled back into Equation (3.41) to yield a global system of

equations, in which there are three equations for each node of the FE mesh (one for each

spatial coordinate direction). The unknown variables are the three coordinate displacements

(or equivalently locations) for each node of the FE mesh, thus forming a square system. Note

that this formulation is isoparametric, as it uses the same basis functions for the deformed

coordinates (solution variables) as for the undeformed geometry (independent variables)

(Zienkiewicz and Taylor 1994, p. 160). Further equations and unknowns arise if the material

is incompressible (see Section 3.4.2) and pressure constraints are applied to external surfaces

(see Section 3.4.3).

3.4.2 Galerkin incompressibility constraint

Equation (3.41) is sufficient to solve for the unknown nodal geometric displacements δvn
j .

For incompressible materials, an additional scalar hydrostatic pressure field is introduced

into the constitutive equations (see Section 2.3). The extra constraint necessary to determine

the parameters of the hydrostatic pressure field arise from the requirement that I3 = 1 for

incompressible materials. To reflect volume changes, the additional kinematic constraint
p

I3�1 = 0 is incorporated into the global system.

To be consistent when calculating stress components and to avoid numerical ill-conditioning,

Oden (1972, p. 239) suggests that the interpolation scheme chosen to describe the deformed

geometric coordinates should be of higher order than that chosen to approximate the

hydrostatic pressure field. This arises because the strain energy contribution to stress

components is related to the first derivatives of the geometric displacement fields, whereas
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the hydrostatic pressure directly contributes to the stress components (Equation (2.43)). To

be compatible the two contributions should vary in a similar manner.

For trilinear interpolation of the deformed geometric solution variables, the hydrostatic

pressure field must be approximated using a piecewise constant scalar field to satisfy the

compatibility condition. One auxiliary parameter is introduced per element and is simply

the hydrostatic pressure within the element. One kinematic incompressibility constraint per

element is introduced to produce a square system of equations, with matching numbers of

unknowns and constraints. For a Galerkin formulation, the form of the incompressibility

constraints is given in Equation (3.42).

ZZZ

Ve

�p
I3�1

�
Ψp
p

G(ξ) dξ3dξ2dξ1 = 0 (3.42)

where Ve denotes the domain of the element and Ψp are the basis functions used to

approximate the three-dimensional hydrostatic pressure field (Ψp = 1 for constant element

based pressure interpolation). Note that the undeformed three-dimensional Jacobian,
p

G(ξ),

is introduced since the integrals are evaluated with respect to the undeformed configuration.

Alternatively, if cubic Hermite interpolation functions are used for the unknown geometric

displacements, the compatibility condition permits trilinear interpolation of the hydrostatic

pressure field. The desirable feature of this scheme is that the hydrostatic pressure field is

implicitly piecewise continuous across element interfaces, which is essential for determining

continuous stress distributions (refer to Section 6.2 for further discussion). The nodal

hydrostatic pressure variables are determined using Galerkin constraints of the form in

Equation (3.42), applied at each vertex of the element. In this case, the weighting functions

Ψp are chosen to be the trilinear basis functions of Equation (3.10), and the hydrostatic

pressure field is implicitly piecewise continuous across element interfaces.

3.4.3 Explicit pressure boundary constraints for the finite element

equations

To ensure that the stress field on the external boundaries of the body exactly matches the

applied pressure loads, an extra constraint may be introduced for each applied surface

pressure. These ideas were originally introduced by McCulloch (1986) and have also been

described by Costa, Hunter, Wayne, Waldman, Guccione and McCulloch (1996), so a brief

summary is included here.
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For the case of element based interpolation of the hydrostatic pressure field, extra degrees

of freedom are required to satisfy these constraints. The hydrostatic pressure field is thus

extended to vary quadratically across each element (for convenience this variation is chosen

to be in the ξ3-direction), as in Equation (3.43).

pe(ξ3) =
2

∑
i=0

pe
i Ψp

i (ξ3) (3.43)

where

Ψp
0(ξ3) = 1 Ψp

1(ξ3) = ξ3 Ψp
2(ξ3) = 2ξ3 (ξ3�1) (3.44)

The constant hydrostatic pressure element variables, pe
0, remain unchanged (see Sec-

tion 3.4.2) and are determined using an element constraint of the form in Equation (3.42).

The two extra element parameters, pe
1 and pe

2, are determined by introducing the explicit

surface traction constraints in Equation (3.45) into the global system.

σ(33)
(wall)

���
ξ3=0

+ p(in) = 0

σ(33)
(wall)

���
ξ3=1

+ p(out) = 0
(3.45)

where p(in) and p(out) are the applied pressure loads at the centre of the ξ3 = 0 and ξ3 = 1

faces, respectively, and σ(33)
(wall) is the physical component of Cauchy stress normal to the

centre of the deformed (ξ1;ξ2) face, which is defined in Equation (3.46).

σ(33)
(wall) =

�
T αβ 1

J

∂νγ

∂Vα

∂νη

∂Vβ

�
∂w3

∂νγ

∂w3

∂νη
(3.46)

where Vα and νγ denote the undeformed and deformed microstructural material coordinates,

respectively, and w3 denotes the (ξ1;ξ2) wall normal coordinate. The wall coordinate system

is described more fully on page 78 of Section 4.3.3.

In Equation (3.46), the physical component of stress normal to the (ξ1;ξ2) surface is

computed using two coordinate transformations. Firstly, the term in parenthesis transforms

components of the second Piola-Kirchhoff stress tensor (referred to microstructural material

coordinates in the undeformed state) into physical components of Cauchy stress referred

to deformed microstructural material coordinates. This is achieved using the Jacobian and

the deformation gradients with respect to the να-material coordinate system. The second
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transformation computes the physical Cauchy stress component normal to the deformed

(ξ1;ξ2) surface using derivatives of the wall normal coordinate with respect to the να-material

coordinates.

For the case of trilinear Lagrange hydrostatic pressure interpolation, there are no explicit

pressure boundary constraints and the applied boundary pressures contribute only to

the equilibrium equations for finite deformation elasticity (Equation (3.41)). The nodal

hydrostatic pressure variables are determined using additional incompressibility constraints,

of the form in Equation (3.42) (see Section 3.4.2).

The global nonlinear system is comprised of Equations (3.41) and (3.42), combined with

Equation (3.45) if explicit pressure boundary constraints are required. The final step in the

analysis is to solve the FE equations using a suitable nonlinear solution method. Section 3.5

briefly describes one common solution technique, known as Newton’s method.

3.5 Solving the nonlinear finite element equations using

Newton’s method

The FEM for finite deformation elasticity requires a system of nonlinear equations to be

solved over the domain of interest. It is convenient to rearrange the equations into a set of

residuals (with zeroes on the right-hand-side), which must be minimised with respect to the

set of solution variables. This set consists of the positions (or equivalently, the displacements)

and arc-length derivatives in each of the coordinate directions, at each global node of the FE

mesh. For incompressible problems additional variables arise from the description of the

hydrostatic pressure throughout the domain as discussed in Section 3.4.2.

The residual equations are made up of rearranged forms of Equations (3.41) and (3.42).

Additional residuals of the form in Equation (3.45) arise if explicit pressure boundary

constraints are required to determine additional element based hydrostatic pressure variables.

Equation (3.41) provides one equation for each coordinate direction (superscript j) at each

node of the FE mesh (subscript n), plus additional equations associated with arc-length

derivatives in each direction at each node. Further residuals arise from the incompressibility

constraint (Equation (3.42)) and any explicit pressure boundary constraints (Equation (3.45)).

Note that in all cases there are the same number of residuals as there are solution variables,

comprising a square system of equations.
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The residuals can be minimised using a nonlinear optimisation technique, such as Newton’s

method. As detailed below, this technique minimises a set of residuals using their first

derivatives with respect to each of the solution variables to determine the parameter space

search direction for the next solution iteration. For a more detailed description of Newton’s

method see Acton (1970, p. 367).

Consider the system of n nonlinear equations of the form fi(x) = 0, (i = 1; : : : ;n), where x

are the solution variables. With an initial estimate of the solution fxig = faig, each function

can be expanded about a in n-space using Taylor’s series. Retaining only the linear terms in

this expansion yields Equation (3.47), where fδig represents the set of deviations from a.

f1(a) + ∂ f1
∂x1

(a) δ1 + ∂ f1
∂x2

(a) δ2 + � � � + ∂ f1
∂xn

(a) δn = 0

f2(a) + ∂ f2
∂x1

(a) δ1 + ∂ f2
∂x2

(a) δ2 + � � � + ∂ f2
∂xn

(a) δn = 0

...
...

fn(a) + ∂ fn
∂x1

(a) δ1 + ∂ fn
∂x2

(a) δ2 + � � � + ∂ fn
∂xn

(a) δn = 0

(3.47)

or

J(a) δ =�f(a) (3.48)

where J is the Jacobian of derivatives evaluated at a, and is defined in Equation (3.49) in

terms if the solution variables x.

J(x) =

2
6666666664

∂ f1
∂x1

∂ f1
∂x2

� � � ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

� � � ∂ f2
∂xn

...
...

∂ fn
∂x1

∂ fn
∂x2

� � � ∂ fn
∂xn

3
7777777775

(3.49)

Equation (3.48) is a system of linear equations that can be solved using direct solvers such

as the LU decomposition method (Press, Flannery, Teukolsky and Vetterling 1989, Sec. 2.3),

which is suitable for small systems, or iterative solvers such as the generalised minimum
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residual (GMRES) method (Saad and Schultz 1986), which is more suitable for large systems

of equations. The solutions to the linear system are the set of deviations fδ ig, which are used

to calculate the new approximation to the solution variables of the nonlinear system from the

initial solutions ai, using Equation (3.50).

xi = ai +δi i = 1; : : : ;n (3.50)

Convergence of Newton’s method is highly dependent on the nonlinearity of the functions

and the choice of the initial solution. For initial solutions sufficiently close to the true

solution, convergence is quadratic. However, for more distant initial solutions, convergence

of Newton’s method is not guaranteed, especially when the functions possess large gradients

with respect to the solution variables. Specific convergence criteria are detailed in

Section 6.2.1.

The initial solution for the FE equations for finite deformation analysis is chosen to be the

undeformed mesh. Thus for small loads, which produce small displacements, convergence

is likely. For larger loads the likelihood of convergence may be improved by splitting up the

applied loads into incremental load steps, and applying them sequentially. This requires a

nonlinear optimisation at each step, where the final solution from the previous load step is

used as the initial solution for the current load step.

Section 6.2.1 details the implementation of the finite element method for finite elasticity,

using Newton’s method to solve the nonlinear system of equations. These techniques are

used in Chapters 6 and 7 to analyse strain and stress in the deforming heart ventricles.



Chapter 4

A mathematical model of ventricular

anatomy

Mathematical models are an essential aid to understanding the complex mechanical behaviour

of the heart. To predict heart wall motion and identify regions of abnormal function or high

mechanical stress, models must include realistic descriptions of cardiac geometry and the

connective tissue network of the ventricles.

Myocardial tissue consists of discrete layers, or sheets, of muscle cells whose three-

dimensional arrangement is associated with a complex hierarchy of extracellular connective

tissue. For modelling purposes we assume the tissue to be a continuum with orthotropic

material properties based on microstructural observations at each point within in the

myocardium.

Mathematical models of the heart have ranged from simple axisymmetric shapes with

isotropic, homogeneous myocardium (Wong and Rautaharju 1968) to accurate geometries

(Nielsen, Le Grice, Smaill and Hunter 1991) with detailed descriptions of the fibrous-

sheet microstructure of myocardium (Le Grice 1992). This chapter presents a detailed

mathematical model of the left ventricles that has been developed at the University of

Auckland 1. The model has been built up from careful anatomical studies of canine hearts

and is based on FE techniques discussed in Chapter 3. Section 4.1 briefly describes important

macroscopic features and functional properties of the heart during its cycle. For further details

refer to standard texts such as Berne and Levy (1988, p. 431) or Katz (1992). Microstructural

architecture of myocardium is addressed in Section 4.2.

1Departments of Engineering Science and Physiology, University of Auckland, New Zealand
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Section 4.3 details the FE model of the ventricles including mathematical descriptions of the

geometry and fibrous-sheet structure of myocardial tissue. This model forms the basis for

deformation and stress analyses of the beating heart, which are discussed in Chapter 7.

4.1 Macroscopic features of the heart

4.1.1 Gross structure

The primary function of the heart is to pump blood throughout the body, delivering nutrients

and removing wastes from each organ. This is achieved through four chambers, namely the

left and right ventricles and the left and right atria (refer to Figure 4.1). The thinner-walled

atria act as large low pressure blood reservoirs for the ventricles which are the predominant

pumping mechanisms. Atrial myocardium is separated from that of the ventricles by the

basal skeleton (otherwise known as the cardiac skeleton, base or basal ring), which is a

fibrous framework formed by the rings of four valves and surrounding connective tissue.

The two atrioventricular valves connect the atria to their respective ventricles. The mitral

valve consists of two leaflets (bicuspid) and ensures blood flow from the LV to the left atrium

(LA). Similarly the tricuspid valve controls the passage of blood from the right atrium (RA)

to the right ventricle (RV). The remaining two semilunar valves join the outflow tracts of

each ventricle with the great arteries into which the ventricle ejects blood. The pulmonic

valve ensures forward flow of blood from the RV into the pulmonary artery and the aortic

valve ensures blood flow from the LV into the aorta.

Although the semilunar and atrioventricular valves perform similar functions, the mecha-

nisms behind them are quite different. Blood flow back into the ventricles through the aortic

and pulmonic valves is prevented by thick, tendinous fibres along the free edges of the valve

cusps. The mitral and tricuspid valves prevent regurgitation of blood from the ventricles

back into the atria through fibrous attachments (chordae tendineae) from the free edges of

the valves to finger-like projections of myocardium (papillary muscles) on the inner surfaces

of the left and right ventricles.

The LV is a thick-walled muscular chamber that pumps blood at physiologically high

pressures (up to approximately 15 kPa or 110 mmHg during the normal heart cycle) to distal

locations throughout the body. The cavity of the LV resembles a truncated ellipsoid in

which both the inflow and outflow tracts are adjacent. The RV, in contrast, pumps blood

at comparatively low pressures (about one seventh the pressure of the LV) and wraps around
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FIGURE 4.1: Longitudinal cross-section of the heart. From Katz (1992, Fig. 1.1, p. 3).

the LV in a crescent-like fashion so that its cavity forms a shallow U-shape. The ventricles

are separated by the interventricular septum which normally functions as part of the LV, and

moves toward the LV free wall during systole.

4.1.2 The cardiac activation sequence

Muscle cells within the cardiac walls generate contractile forces upon electrical depolarisa-

tion. Each cell is excited in turn as a wave of electrical activation propagates throughout the

myocardium. Activation normally begins spontaneously in pacemaker cells of the sinoatrial

(SA) node, which lies between the superior vena cava and the right atrium (see Figure 4.1).

The first structures to be depolarised during the normal cardiac cycle are the atria. As the

wave of electrical activation propagates throughout the atria, they contract and pump blood

into their respective ventricles, marking the final stage of ventricular filling. The ventricular

myocardium is normally electrically isolated from the atria except for a group of slow con-

ducting cells known as the atrioventricular (AV) node. This allows enough time for the atrial

blood to be pumped into the ventricles prior to ventricular contraction.
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The activation wave reaches the ventricular myocardium via the AV bundle (also known as

the common bundle, or bundle of His), which bifurcates into right and left bundle branches

at the top of the interventricular septum. Each branch passes down the septum and curls

around into the apical portions of its respective ventricle. At this point the bundles divide

into networks of fast conducting Purkinje fibres, which spread over and deliver the electrical

impulse to all inner or endocardial portions of the ventricular myocardium. The activation

wave generally proceeds from endocardial layers to epicardial or outer portions of the

ventricular myocardium. As the wave of excitation propagates, individual myocardial cells

are sequentially stimulated to generate tensile forces and contract. At a macroscopic level,

this causes the ventricles to contract and pump blood to distal locations throughout the body.

4.1.3 The heart cycle

The cardiac cycle can be separated into two major phases referred to as ventricular systole,

which is the period of contraction, and ventricular diastole, during which the heart relaxes

and fills ready for the next cycle. It is convenient to start the cycle with left ventricular

contraction, since it is arguably the most important mechanical cardiac event. The start of

systole sees the earliest rise in left ventricular pressure after left atrial contraction. At this

stage the mitral and aortic valves are both closed, preventing blood volume change in the

LV. This period is thus referred to as the isovolumic contraction phase and ends when the

left ventricular pressure exceeds the aortic pressure and the aortic valve opens. The second

systolic phase is responsible for the rapid ejection of blood from the ventricles. This produces

greater aortic blood flow and an abrupt decrease in left ventricular volume. Following rapid

ejection is a longer period of reduced ejection, during which the aortic pressure declines. The

protodiastolic phase constitutes the final interval of systole and ends with the closure of the

semilunar valves.

Following systole, the diastolic phase begins with a period of isovolumic relaxation, during

which ventricular pressure decreases. The mitral valve opens as the left ventricular pressure

drops below the left atrial pressure, and gives rise to a phase of rapid filling. This is closely

followed by a slow filling phase known as diastasis, corresponding to a gradual increase in

the atrial and ventricular pressures. The last part of ventricular diastole coincides with atrial

systole, which gives a final surge of blood into the ventricles before the atrioventricular valves

close.
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4.1.4 The coronary system

The heart is nourished by blood flow through a network of vessels known as the coronary

system. This blood is supplied by two main vessels – the right and left coronary arteries –

which arise from the anterior and left posterior aortic sinuses, respectively. The left coronary

artery (LCA) splits into two main branches, namely the left anterior descending artery (LAD)

and the circumflex artery (CIRC). The LAD follows the anterior interventricular groove and

supplies the anterior walls of the ventricles and the anterior two-thirds of the septum. The

CIRC courses to the left in the atrioventricular groove and supplies the lateral wall of the

LV. The right coronary artery (RCA) runs to the right in the atrioventricular groove to supply

blood to the free wall of the RV. In approximately 90% of human hearts the RCA is connected

to the posterior descending artery (PDA), which heads towards the apex in the posterior

interventricular groove (this is known as right dominant circulation) and supplies blood to

the posterior third of the interventricular septum. In a small minority (approximately 10%)

of human hearts the PDA arises from the CIRC and the circulation is said to be left dominant.

The main coronary vessels and their immediate branches course over the outer surface of the

heart. Nutrient blood flow reaches the myocardium by way of smaller vessels that penetrate

the ventricular walls in a transmural fashion, so that the inner portions of the ventricles

(especially the left) are last to be supplied. During systole the pressure in the coronary

arteries is exceeded by the intramyocardial pressure and so virtually all nutrient coronary

flow takes place during diastole. The venous effluent in the ventricles is collected by small

intramyocardial veins that drain into larger veins on the outer surface of the heart and empty

into the right atrium through its posterior wall. A small fraction of the venous drainage,

however, flows directly into the ventricular cavities by way of thebesian veins.

4.1.5 The connective tissue network

The endocardial surfaces of the atria and ventricles are covered with connective tissue

which also extends over the valves. In addition, ventricular endocardial surfaces include

a complex network of cardiac cells that are arranged in discrete bundles called trabeculae.

The trabeculae are arranged in such a manner as to form small invaginations which are filled

by blood from the cavities during diastole. The systolic phase closes these invaginations

forcing the blood back into the main cavity.

The pericardium is a fibrous sac that encompasses the entire heart to resist rapid increases in

cardiac size. The inner wall of this sac is called the parietal pericardium and is continuous
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with the epicardium or visceral pericardium (the layer of connective tissue on the outer

surface) at the base of the heart, where the great vessels enter and leave. A small amount

of fluid within the pericardial sac provides lubrication for the continuous movement of the

heart.

4.2 Microstructural architecture of the heart

Cardiac muscle cells or myocytes are typically cylindrical with lengths that range from 80

to 100µm and diameters ranging from 10 to 20µm. The fundamental contractile unit is the

sarcomere, which is about 2µm long. The sarcomere spans between adjacent Z-lines along

the longitudinal axis of the cell and contains the contractile apparatus. Cells consist of about

40-50 sarcomeres in series and branch and interconnect end-to-end through intercalated

disk junctions. The branching angle is usually acute so that adjacent cells run almost

parallel with one another. In this way the contractile apparatus between cells is aligned

for efficient mechanical function. Intercalated disks contain nexi or gap junctions, which

provide electrical continuity between cells. Consequently, the electrical impulses propagate

more rapidly along rather than across the axis of the constituent fibres.

Studies of cardiac architecture date back to the turn of the century when MacCallum (1900)

and Mall (1911) viewed the heart as an assembly of discrete fibre bundles originating at

the base of the ventricles and spiralling towards the ventricular apices. This notion was

generally accepted for the first half of this century, but descriptions were largely qualitative.

It was not until Hort (1957) and Streeter and Bassett (1966) that the first quantitative

measurements of fibre orientation throughout the heart wall were made. They found a

smooth transmural variation of fibre orientation, which led to the predominant view that

myocardium is a single muscle mass that is more appropriately described as a continuum

than as discrete muscle bundles. More detailed studies (Streeter et al. 1969; Armour and

Randall 1970) supported this view across different species, including human hearts (Fox and

Hutchins 1972; Greenbaum, Ho, Gibson, Becker and Anderson 1981). However, of these

studies, none appear to have measured the muscle fibre orientation at more than eight sites

on a single heart and Greenbaum et al. (1981) seem to be the sole group to have sampled the

right ventricle. Furthermore, the muscle fibre architecture was not quantitatively referred to

ventricular geometry and so the data obtained provide a limited and essentially qualitative

description of ventricular fibre orientation.

It was not until Nielsen (1987) and McLean and Prothero (1987) that a systematic approach
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was adopted to characterise the muscle fibre orientation in all regions of the ventricular

myocardium. This technique involved cutting the right and left ventricles into thick serial

slices transverse to the base-apex axis, which were then subdivided into wedges. The

distribution of muscle fibre orientations across each wedge was determined by sectioning

them in the transmural plane and employing standard histological techniques. Problems with

this procedure include difficulties with spatial registration between slices, and loss of detail

through averaging.

To date, the most thorough quantitative study of cardiac muscle fibre orientation is that of

Le Grice (1992), who progressively removed fine layers of myocardium from a mounted

intact preparation. Muscle fibre orientation was measured together with the absolute

coordinates at a large number of sites over successive myocardial surfaces (see Nielsen,

Le Grice, Smaill and Hunter (1991) for further details). Using this procedure, spatial

registration is implicitly preserved and local muscle fibre orientation may be determined with

reference to the surrounding myocardium. Measurements obtained from this work confirm

the more selective findings reported by Streeter et al. (1969).

Ventricular sections, particularly near the midwall, reveal extensive extracellular gaps and

thick longitudinal ventricular sections have a layered appearance due to the radial cleavage

planes which run across the wall (Robb and Robb 1942; Spotnitz, Spotnitz, Cottrell,

Spiro and Sonnenblick 1974). Moreover, in an extensive review of fibre studies, Streeter

(1979) acknowledges that there is a substantial discontinuity in the muscular architecture

of the ventricles at both the microscopic and macroscopic level. These findings have

been essentially qualitative until the recent anatomical studies of Le Grice, Smaill, Chai,

Edgar, Gavin and Hunter (1995), who report that the ventricular myocardium should not

be viewed as a uniformly continuous structure. Their detailed studies reveal that cardiac

tissue is a composite of discrete layers of myocardial muscle fibres tightly bound by

endomysial collagen, as illustrated in Figure 4.2. These myocardial laminae or sheets

are loosely coupled by perimysial collagen and have the ability to slide over each other

with relative ease. Laminae are on average four to six cells thick and continuously

branch in each direction throughout the ventricular walls. Their orientation is generally

normal to the ventricular surfaces, except in the subendocardial and subepicardial regions,

where they appear to become almost tangential to the wall surfaces. To quantify the

distribution of sheet orientations, Le Grice, Smaill, Chai, Edgar, Gavin and Hunter (1995)

have systematically recorded measurements from thick longitudinal transverse sections of

ventricular myocardium. As for the muscle fibre study of Le Grice (1992), sheet orientation

was accurately quantified with respect to ventricular geometry, so that three-dimensional
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FIGURE 4.2: Schematic of cardiac microstructure showing fibre orientation and branch-
ing sheet structures.

orthotropic structure of the ventricles could be completely characterised.

For modelling purposes, it is convenient to define a natural set of material directions to

characterise the structure of myocardial tissue at an arbitrary point in the heart wall (refer to

Figure 4.3). The first of these directions is referred to as the fibre axis and coincides with the

muscle fibre direction at each point. The sheet axis is defined to lie in the plane of the muscle

layer and is perpendicular to the fibre direction. The third axis is defined to be orthogonal to

the first two and is referred to as the sheet-normal axis as it is perpendicular to the muscle

layer.

Using quantified information on the orientation of the sheets of myocardial fibres, Le Grice,

Hunter and Smaill (1997) formulated an efficient mathematical representation of ventricular

geometry and microstructure, based on FE fitting techniques. The resulting FE description

of ventricular anatomy is presented in Section 4.3, and forms the basis of the ventricular

mechanics model used for the analysis of deformation and stress presented in Chapter 7.
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sheet-normal axis

fibre axis

sheet axis

FIGURE 4.3: Microstructural material axes for myocardial tissue.

4.3 A finite element model of the ventricles

The cardiac ventricles are arguably the most important chambers of the heart since they are

responsible for pumping blood around the body. They are thick walled cavities appropriate

for the high physiological pressures which they normally develop. On the other hand,

the atria are thin walled blood reservoirs, which normally develop lower cavity pressures.

The mathematical model described here is concerned only with ventricular geometry and

microstructure.

The anatomical FE model of the left and right ventricles consists of two quantitative

fields — the ventricular geometry and the fibrous-sheet structure orientations throughout

the ventricular myocardium. The latter is naturally split into the muscle fibre and sheet

orientation fields discussed below. Each field has been fitted using least squares techniques

based on the FEM (Nielsen, Le Grice, Smaill and Hunter 1991), using data collected from

careful anatomical studies of canine hearts (Le Grice 1992).

4.3.1 Ventricular geometry

The first set of field variables to be defined at the nodes of the FE mesh are the geometric

coordinates (λ;µ;θ). We use a prolate spheroidal coordinate system (see Section 3.2.2)

rather than rectangular cartesian coordinates because the prolate spheroid provides a good
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initial approximation to ventricular boundary geometry and therefore reduces the required

number of nodal parameters. The FE material coordinates ξ1, ξ2 and ξ3 (see Section 3.2.3),

are chosen to lie in the circumferential, longitudinal (apex-to-base) and transmural (through

wall) directions, respectively (refer to Figure 4.4). Note that the ξ1-coordinate increases in the

opposite direction to that of θ to ensure that (ξ1;ξ2;ξ3) is a right-handed coordinate system.

z

y

ξ2

ξ3

d

λ

θ

µ

x

ξ1

FIGURE 4.4: The finite element material coordinates (ξ1;ξ2;ξ3) for the ventricular
model.

To describe the complex shape of the endocardial and epicardial surfaces the model uses

bicubic Hermite interpolation for the radial coordinate, λ, in the (ξ1;ξ2)-wall plane and linear

Lagrange interpolation for λ in the transmural ξ3-direction. More briefly, λ is represented

using bicubic Hermite/linear Lagrange interpolation (see Section 3.1.3). This provides

smoothly continuous ventricular boundary surfaces. In contrast, µ and θ are described using

trilinear Lagrange functions as there is little to be gained by using higher order basis functions

in any of the ξi-directions.

Using these interpolation schemes, the model uses 60 three-dimensional elements connecting

99 nodes to accurately represent the geometry of the ventricles. Figures 4.5 and 4.6 detail

the FE mesh descriptions showing element and node connectivity using polar projections2

viewed from the apex, looking toward the base. There are ten elements in the circumferential

2Three-dimensional prolate spheroidal coordinates may be represented using a two-dimensional polar
projection, defined by x = µcosθ and y = µsinθ. In this way, θ increases in the anticlockwise direction
and µ increases radially. The polar projection provides a convenient two-dimensional display of information
from a surface of the heart tangential to the wall, since transmural information is ignored.
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direction and three levels of elements in the longitudinal direction. The model is comprised

of two transmurally adjacent shells of elements — the inner shell encompasses the septal

wall and inner portions of the left ventricular free wall and apex (Figure 4.6), while the

outer shell of elements makes up the right ventricular free wall and the outer portions of

the left ventricular free wall and apex (Figure 4.5). Table 4.1 lists the geometric degrees of

freedom for the ventricular model. Note that there are three derivatives and one value of

the radial coordinate per node, since high order interpolation is used for λ, and that there

are ten versions3 of θ at each of the three apical nodes — namely nodes 13, 28 and 41 in

Figures 4.5 and 4.6.

Field Nodes Value + Derivatives Versions GDOF
λ 99 4 1 396
µ 99 1 1 99

θ
96 1 1 96

3 (apex) 1 10 30
621

TABLE 4.1: Geometric degrees of freedom (GDOF) for the 60 element ventricular
model. Bicubic Hermite/linear Lagrange interpolation of λ required four
nodal values to be stored. Three nodes at the apex carried ten versions of
theta, which were used to describe the elements at the apex.

Figure 4.7 shows the outlines of the FE configuration for the anatomically accurate ventricular

model. Endocardial and epicardial surfaces are separately shaded. Some global dimensions

of the model are listed in Table 4.2.

Ventricular wall volume 199 ml
LV cavity volume 31 ml
RV cavity volume 29 ml
Average apex-to-base length 72 mm
Coordinate system focus 35:25 mm

TABLE 4.2: Dimensions of the anatomically accurate ventricular model.

3The term version is used here to identify a distinct value of a particular variable carried at a node. Each
apical element incorporates two versions of θ in its description and the ten versions of θ defined at the apical
nodes correspond to the boundaries of these elements.
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FIGURE 4.5: Polar projections of the epicardial and LV endocardial node and element
configurations (viewed from the apex toward the base) for the anatomical
ventricular model. θ increases in the anticlockwise direction and µ
increases radially from the apex (at the centre). The posterior and anterior
walls are located at the top and bottom of each diagram, respectively. Node
numbers (small) and element numbers (bold) are shown.



4.3 A FINITE ELEMENT MODEL OF THE VENTRICLES 73

1

2

9

10

11

12

19

20

14

15

17

19

20

22

24

25

27

78

79 80

81

82

83

(a) RV free wall endocardium.
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(b) RV septal wall endocardium.
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(c) LV free-midwall with adjacent endocardial element
numbers.

FIGURE 4.6: Polar projections of the RV endocardial and LV free-midwall node and
element configurations (viewed from the apex toward the base) for the
anatomical ventricular model. θ increases in the anticlockwise direction
and µ increases radially from the apex (at the centre). Node numbers
(small) and element numbers (bold) are shown.
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(a) Endocardium

(b) Epicardium

FIGURE 4.7: Finite element model of the ventricular wall geometry.
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4.3.2 Myocardial fibre orientations

To model the muscle fibre orientations, it is assumed here that the fibres lie in (ξ1;ξ2)-

coordinate planes so that they are tangential to the endocardial and epicardial surfaces. This

is reasonable throughout the ventricular myocardium except at the left ventricular apex where

the fibres spiral from epicardium to endocardium. Throughout this model, the fibre angle is

defined with respect to the ξ1-coordinate, which is directed along θ coordinate lines and

increases as θ decreases (see Figures 4.8 and 4.4, respectively). The fibre angle at any point

in the model is given by an interpolation of fibre field parameters defined at the same nodal

positions used to define the ventricular geometry.

ξ1

fibre axisξ2

α

(ξ1;ξ2) plane

ξ1

θ

FIGURE 4.8: The fibre angle, α, in the plane of the ventricular wall surface.

The basis functions used to interpolate the fibre angle within an element are chosen to reflect

the extent of the spatial variation of fibre orientation. Generally, fibre orientations rotate

steeply in the transmural direction and so cubic Hermite interpolation is used for the ξ3-

coordinate. In contrast, fibre orientations generally vary more slowly in the plane of the

wall, thus requiring only linear Lagrange interpolation in the ξ1 and ξ2 directions. Figure 4.9

shows line segments on the endocardial and epicardial surfaces that are aligned with the local

fibre orientation.

Special attention is required at the junction of the left and right ventricular free walls and the

ventricular septum. In the right ventricular free wall, fibre orientation typically varies from

�60� at the epicardium to +90� at the endocardium, whereas in the septal wall the fibre angle

ranges from approximately �90� at the right ventricular endocardium to around +80� at the

left ventricular endocardium. Thus on either side of the right ventricular border, the principal

angle for endocardial fibres with a common orientation differs by 180�. In addition, there is a
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(a) Endocardium

(b) Epicardium

FIGURE 4.9: Fibre orientations at the ventricular surfaces.
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discontinuity in fibre angle due to the merging of right ventricular free wall and septal fibres

with left ventricular fibres. To accommodate these abrupt changes in fibre orientation three

versions of the fibre angle (plus arc-length derivatives) are stored at each of the nine nodes

at the junction between the left and right ventricular walls. There is one version of the fibre

angle for the right ventricular free wall, one for the septal wall and one for the adjacent left

ventricular free wall. Errors due to these discontinuities have been localised by using smaller

elements at these sites.

This model uses 234 degrees of freedom (90 nodes with 2 DOF/node and 9 nodes with 6

DOF/node) to fit the fibre field and provides an accurate and efficient representation of the

experimentally measured fibre orientation field since the fitting and measurement errors are

of a similar magnitude (Nielsen, Le Grice, Smaill and Hunter 1991). Moreover, it has been

demonstrated that there is a high level of consistency between fitted fibre orientation fields in

different hearts, defined relative to their measured and fitted geometry (Le Grice, Smaill and

Hunter 1997). It is worth noting that this model shows significant changes in the transmural

variation of fibre orientation at different ventricular sites.

4.3.3 Myocardial sheet organisation

To characterise the orientation of myocardial sheets throughout the ventricles it is necessary

to introduce two new orientation fields, in addition to the fibre angle field discussed in

Section 4.3.2. The fibre angle (α), imbrication angle (β) and sheet angle (γ) are used to

transform components of the fibrous-sheet material vectors between the microstructural

material coordinate system, with base vectors (a;b;c) (chosen to be orthonormal in the

undeformed state), and the wall coordinate system, with orthonormal base vectors, (f;g;h),

which are defined in terms of the FE material coordinates. This transformation is required

because certain aspects of the model are best formulated with respect to microstructural

material coordinates. For example the myocardial material law is expressed in terms of

physical Green’s strains with respect to the microstructural material axes (see Section 5.1.1).

The transformation consists of three coordinate rotations, and requires two intermediate

coordinate systems. (a;b0
;c0) denotes the base vectors of the first intermediate coordinate

system, and arises from a rotation of the microstructural material coordinates about the fibre

axis (a). These components are then rotated about b0 to compute the fibrous-sheet material

vectors in terms of (a0;b0;h), which are the base vectors of the second intermediate coordinate

system. Before the transformation can be detailed more fully, it is first necessary to define

the wall coordinate system.
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The wall coordinate system

Since large deformations occur during the heart cycle it is essential to define the fibrous-

sheet material vectors with respect to material coordinates. This is achieved by first using the

FE material coordinates (ξ1;ξ2;ξ3) to define a wall coordinate system.4 The base vectors

of this coordinate system are referred to as the wall vectors (f;g;h), and are chosen to

be orthonormal, whilst the base vectors for the ξi-coordinate system are not necessarily

orthonormal. Fibre, imbrication and sheet angles are then used to compute global components

of the fibrous-sheet material vectors from the global coordinates of the wall vectors.

Figure 4.10 shows how (f;g;h) relate to the FE material coordinates, (ξ1;ξ2;ξ3). The first

wall vector, f, is a unit vector chosen to coincide with the local ξ1 coordinate direction

throughout the model. The second vector, g, is defined to lie in the (ξ1;ξ2) tangent plane

and perpendicular to the local ξ1 direction (note that in general g may not coincide with the

local ξ2 direction). Like f, g is also a unit vector. Finally, h is normal to both f and g — by

definition h = f � g to ensure that the wall vectors are orthonormal and form the basis of a

right-handed coordinate system.

ξ3

h

ξ2

g

fξ1

FIGURE 4.10: The wall vectors, (f;g;h).

Microstructural material components of the fibrous-sheet vectors are computed by transform-

ing their wall coordinate components. However, it is clearer to describe the inverse of this

transformation, from which the wall components are computed from the microstructural ma-

terial components.

4Not to be confused with the cardiac coordinate system, defined on page 160.
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Fibrous-sheet vector component transformations

With regard to Figures 4.11–4.13, consider the microstructural material coordinate system

with orthonormal base vectors a aligned with the fibre axis, b aligned with the sheet axis and

c aligned with the sheet-normal axis in the undeformed state. For example, in this coordinate

system uT = f0;0;1g represents the undeformed sheet-normal vector, c. To transform the

microstructural material components of the fibrous-sheet vectors into wall coordinates, three

successive coordinate rotations of (a;b;c) are necessary.

Firstly, (a;b;c) are rotated about the fibre vector, a, so that the rotated sheet vector, b0, lies in

the (ξ1;ξ2)-coordinate plane (Figure 4.11). This rotates (a;b;c) into (a;b0
;c0) and the angle

between b and b0 is referred to as the sheet angle, γ. A positive sheet angle represents a

right-handed (anticlockwise) rotation about a from b0 to b, as depicted in Figure 4.11. The

associated coordinate transformation is expressed mathematically in Equation (4.1).

2
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a

b0

c0

3
75=

2
64

1 0 0

0 cosγ �sinγ
0 sinγ cosγ

3
75
2
64

a

b

c

3
75 (4.1)

The second rotation is performed about the b0 axis. In this case, the rotated fibre vector, a0,

also lies in the (ξ1;ξ2)-coordinate plane (Figure 4.12). Consequently the rotated c0 vector is

normal to the (ξ1;ξ2)-coordinate plane and is thus coincident with the third wall vector, h.

Thus, (a;b0;c0) are rotated into (a0;b0;h) and the angle between a and a0 is referred to as the

imbrication angle, β. A positive imbrication angle represents a right-handed rotation about

b0 from a0 to a. Note that Figure 4.12 depicts a negative imbrication angle. Equation (4.2)

defines the coordinate transformation.
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The final rotation is about the h vector (Figure 4.13). In this case a0 rotates into the first wall

vector, f (which is collinear with the ξ1 base vector). The angle subtending a0 and f is referred

to as the fibre angle, α. A positive fibre angle represents a right-handed rotation about h from

f to a0 as depicted in Figure 4.13. Consequently, b0 rotates into the direction of the second
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myocardial sheet plane

b0

c0

fibre axis

c
sheet-normal axis

(ξ1;ξ2) plane

a

b
sheet axis

FIGURE 4.11: The sheet angle, γ, rotates (a;b;c) into (a;b0;c0).

wall vector, g. This coordinate rotation is defined in Equation (4.3) .
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The above transformations are suitable for the experimental measurement and FE fitting

of the microstructural material orientation fields (Le Grice, Hunter and Smaill 1997).

However, to be useful in ventricular mechanics the mathematical model must compute the

microstructural material vectors at any given ventricular location, since it is more convenient

to express quantities such as strain and stress with respect to the microstructural material

coordinates. This is achieved by firstly constructing the wall vectors, (f;g;h), from the finite

element material coordinates, (ξ1;ξ2;ξ3), and subsequently transforming (f;g;h) into (a;b;c)

using interpolated fibre (α), imbrication (β) and sheet (γ) angles. Equation (4.4) defines this
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β

h

c0

a0

a

myocardial sheet plane

b0

(ξ1;ξ2) plane

FIGURE 4.12: The imbrication angle, β, rotates (a;b0;c0) into (a0;b0;h).

coordinate transformation, which consists of the inverse operations to those described in

Equations (4.1)–(4.3), performed in reverse order.

2
64

a

b

c

3
75=

2
64

1 0 0

0 cosγ sinγ
0 �sinγ cosγ

3
75
2
64

cosβ 0 sinβ
0 1 0

�sinβ 0 cosβ

3
75
2
64

cosα sinα 0

�sinα cosα 0

0 0 1

3
75
2
64

f

g

h

3
75 (4.4)

Other conventions for orientation field transformations

The definition of the sheet angle in this thesis differs slightly to that used by Le Grice,

Hunter and Smaill (1997). In their studies, a sheet angle of β� = 0� represents radially

oriented layers. However, the transformations described here represent radially oriented

layers using a sheet angle of β =�90�. The two sheet angle definitions are simply related

using Equation (4.5).

β = β��90� (4.5)
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α

g

b0

a0

f

h

myocardial sheet plane

(ξ1;ξ2) plane

FIGURE 4.13: The fibre angle, α, rotates (a0;b0;h) into (f;g;h).

Currently the ventricular model uses a sheet angle field which has been directly fitted to

the experimental data of Le Grice, Hunter and Smaill (1997). To compensate, the above

relationship has been incorporated into the sheet orientation interpolation to ensure that the

wall vectors are correctly rotated into the true microstructural material directions.

Fitted orientation fields

The ventricular model assumes that the myocardial fibres are parallel to the local epicardial

tangent plane (which is coplanar with the (ξ1;ξ2)-coordinate plane). For the most part this

assumption appears justified since reported out-of-plane (imbrication) angles are less than

10� (Streeter et al. 1969), except for sites near the apex where myocytes appear to descend

steeply into the wall.

Sheet orientations have been systematically recorded in thick longitudinal transverse sections

from dog hearts (Le Grice, Smaill, Chai, Edgar, Gavin and Hunter 1995). The data shows a

significant transmural variation in the extent of coupling between adjacent sheets of muscle

cells in the LV. However, the extent of transmural variation is very similar at different

left ventricular sites. Moreover, there is a significant variation in sheet orientation in the
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longitudinal direction. For this reason, sheet angles are interpolated linearly in the ξ1-

coordinate (circumferential) and using cubic Hermite interpolation in the ξ2 (longitudinal)

and ξ3 (transmural) coordinates.

Generally, myocardial layers are oriented radially with respect to the ventricular surfaces and

the density of branching is least near the centre of the ventricular walls. However, in the

subepicardial and subendocardial regions, the layers appear to turn through 90� to become

tangent to the ventricular surfaces. There are also complex patterns of ventricular sheet

branching in the regions adjacent to the papillary muscles and basal skeleton around the

valve rings. For a more complete description of the sheet orientations refer to Le Grice,

Smaill, Chai, Edgar, Gavin and Hunter (1995) and Le Grice, Hunter and Smaill (1997).

In contrast to the fibre orientation data, the discontinuity seen at the junction of the left and

right ventricular free walls is not apparent in the sheet data. Thus nodal parameters were

fitted to the sheet data at the same positions used to define the geometry and 396 degrees of

freedom (99 nodes with 4 DOF/node) were used to accurately fit the sheet orientation field.

4.4 Summary of the anatomically accurate ventricular

model

The anatomically accurate mathematical model of the ventricles consists of 60 high order

finite elements and 99 nodes defined with respect to a prolate spheroidal coordinate system.

The radial coordinate (λ) is represented using bicubic Hermite/linear Lagrange interpolation,

while the longitudinal (µ) and circumferential (θ) coordinates are interpolated linearly in each

element coordinate.

The myocardial sheet orientation is described using angles defined relative to the wall

coordinate system, which stems from the element material coordinates (hence myocardial

microstructure deforms as the ventricular geometry deforms). The fibre orientation field is

defined with respect to the ξ1-coordinate and lies in (ξ1;ξ2)-coordinate planes. Fibre angles

are interpolated using a bilinear Lagrange/cubic Hermite basis. The imbrication angle is

defined to be zero at all ventricular sites, implying that all fibres lie in (ξ1;ξ2) planes. This

is broadly consistent with the morphological observations of Streeter et al. (1969). As a

consequence of this assumption, the sheet angle used in this model subtends the local sheet

vector and the vector normal to the (ξ1;ξ2)-coordinate plane. Sheet angles are interpolated

using linear Lagrange/bicubic Hermite basis functions.
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It is this model that forms the basis of the finite deformation mechanics model of the ventricles

used for deformation and stress analyses in Chapters 6 and 7.



Chapter 5

Constitutive relations for ventricular

mechanics

In the context of large deformation mechanics, a constitutive relation is used to express

the experimentally observed relationship between the stress and strain tensors of a material.

Moreover, to be used in a numerical stress analysis, the constitutive law must be numerically

efficient and applicable over the range of stress and strain likely to be encountered in its

application. Section 2.3 describes the use of constitutive relations in the framework of finite

deformation elasticity, using a strain energy function. Stress components are related to the

derivatives of the strain energy function with respect to the components of the material strain

tensor.

Heart muscle is comprised of a framework of connective tissue and cells (the solid skeleton),

surrounded by fluid-filled extracellular space (the pores). Both components consist primarily

of water. The nonlinear viscoelastic and poroelastic nature of myocardial tissue has been

a topic of considerable research (see reviews by Huyghe, van Campen, Arts and Heethaar

(1991) and Yang and Taber (1991)). Appendix B introduces a simple model of the fluid

movement throughout the ventricular walls, based on the biphasic constitution of the muscle.

In the absence of adequate experimental data to determine the viscoelastic properties, this

research treats myocardium as an incompressible, elastic solid.

In the first instance, the nonlinear elastic properties of passive myocardium are modelled

using a fully three-dimensional orthotropic relationship between the components of the

second Piola-Kirchhoff stress tensor and Green’s strain tensor (see Section 5.1.1). This model

is appropriate for the diastolic portion of the cardiac cycle.

Once a reliable model of passive mechanics is established it is appropriate to include a

85
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description of the active forces generated by the cardiac fibres during the contractile phase

of the heart cycle (systole). Conceptually, this model is much simpler since, for the present

purpose, it is sufficient to use a one-dimensional relationship between active stress and strain.

It is assumed that contractile forces are generated along the axes of cardiac fibres and depend

only on the state of strain in the fibre direction (we assume that transverse and shear strains

have little effect on generated force). Section 5.2 introduces two models of the active tension

generated by stimulated cardiac muscle fibres.

5.1 Passive response of myocardium

Biaxial tension tests on thin sections of ventricular myocardium (Demer and Yin 1983;

Humphrey, Strumpf and Yin 1990b; Shacklock 1987; Yin et al. 1987) have revealed that

cardiac tissue exhibits highly nonlinear, anisotropic stress-strain behaviour (typical of most

soft biological tissues). More specifically, the strain stiffening properties of myocardium are

more pronounced in the fibre direction than directions normal to the fibre axis. Figure 5.1

schematically illustrates typical stress-strain relationships for myocardium.

Historically, passive myocardial stress-strain behaviour has been mathematically modelled

using two main functional forms: the power form (Bogen 1987; Ogden 1984) and the

exponential form (Choung and Fung 1986; Creswell et al. 1994; Horowitz, Perl, Sideman

and Ritman 1986). For detailed reviews of myocardial constitutive laws refer to Hunter

and Smaill (1988), Smaill and Hunter (1991) or Lanir (1983). The nonlinear form of the

stress-strain relationship can be accurately reproduced using both power law and exponential

type equations, and they are sufficiently stable for use in large scale computer simulations.

For example, Bogen (1987) uses power laws for relating principal stresses and strains in an

analysis of the swelling of biological tissue. However, this model relies on the principal axes

of stress coinciding with the principal axes of strain, which is not the case for anisotropic

materials such as ventricular myocardium. On the other hand, based on their biaxial tension

test observations, Humphrey et al. (1990a) developed a polynomial form of the constitutive

relation to describe the transversely isotropic nature of myocardium. Constitutive parameters

were estimated using a semi-inverse approach (Humphrey et al. 1990b).

One major objection to these phenomenological approaches is that the parameters of the

models bear no direct relation to the underlying structure of the material. Thus, while

adequate for simulating behaviour of a specific preparation, these models offer virtually no

insight into the function, structure and mechanics of tissue components, and generally lead
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to ambiguities in material characterisation.

An alternative approach to constitutive law formulation is to directly model the structure

and physical properties of the material. To this end the constitutive law parameters are

mechanical properties of the material constituents and may be measured directly from

experiments. Lanir (1983), for example, has developed a viscoelastic constitutive law for

fibrous connective tissues based on microstructural and thermodynamic considerations. This

theoretical relationship considers the total strain energy to be the sum of strain energies of the

tissue’s components, and then derives stresses from this strain energy function. This model

uses density distributions for each fibre network in the myocardium — namely the muscle

fibres, and the collagen fibres which connect them laterally. Horowitz et al. (1988) quantified

these distributions for passive myocardium using six constitutive parameters, which are

physical material properties.

In addition to the surface geometry, the most common and arguably most important

structural information included in ventricular mechanics models is the orientation of the

myocardial fibres, since the tissue is much stiffer along the fibre axis compared to other

directions. Authors such as Guccione et al. (1995) and Huyghe et al. (1992) have formulated

axisymmetric models using volumes of revolution of longitudinal left ventricular free

wall sections. Realistic fibre orientations were used together with transversely isotropic

constitutive equations (based on empirical exponential relationships) to simulate passive

mechanics of the left ventricle. These models reasonably simulate global heart mechanics,

but fail to accurately predict local myocardial mechanics, especially the large transverse

shear strains in the ventricular walls (Le Grice, Takayama and Covell 1995). Moreover, the

parameters of the constitutive laws are not physical properties of the tissue.

As discussed in Section 4.2, myocardial fibres are tightly bound into interconnected layers

of tissue separated by cleavage planes. The orientation of the layers may be defined using

a microstructurally based set of material coordinates (fibre, sheet and sheet-normal axes).

Smaill and Hunter (1991) performed biaxial tension tests on thin sections of myocardium

using equipment described by Nielsen, Hunter and Smaill (1991). Samples of tissue about

1:5mm thick were dissected from epicardial and midwall sites in the left ventricular free wall

of the dog. At both sites the samples were cut in a plane tangent to the epicardial surface. At

the epicardium the myocardial sheets were tangent to the epicardial surface so that the sample

taken contained a myocardial sheet plane. On the other hand, at the midwall the myocardial

sheets were oriented radially and thus the midwall sample contained a material plane defined

by the fibre and sheet-normal axes. Biaxial tension tests of these samples therefore revealed

the stress-strain behaviour along all three microstructural axes.
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The stress-strain properties along each of the microstructurally relevant directions were

quite different, reflecting in part the organisation of collagen relative to these three axes.

Figure 5.1 schematically summarises typical stress-strain behaviour of myocardium when

stretched along each of the three microstructural axes (Hunter, Nash and Sands 1997). The

most striking difference between each of the three axes is the limiting strain for an elastic

response. When the tissue was stretched along the fibre direction the limiting extension ratio1

was about 1:28, whereas the limiting extension ratio for the sheet axis was approximately 1:5.

Below an extension ratio of 1:5 very little tension was developed in the direction of the sheet-

normal, but tension increased rapidly above this and irreversible damage occurred when this

extension ratio exceeded 1:72 (Hunter et al. 1997).

axial tension

a2a1 a3

axial strain

sheet
axisaxis

fibre
axis

sheet-normal

FIGURE 5.1: Typical nonlinear stress-strain properties of ventricular myocardium.

Variations in the axial limiting strains can be explained by the organisation of the extracellular

connective tissue matrix. The high fibre stiffness is most probably due to the tightly bound

endomysial collagen coils that surround individual myocytes (Robinson, Geraci, Sonnenblick

and Factor 1988). As the tissue is stretched along the fibre axis these coils straighten and it is

the taut length of the collagen that determines the limiting fibre strain (MacKenna 1994). In

contrast, the relatively low sheet-normal stiffness is most likely to be due to the sparse array of

perimysial collagen links in the cleavage planes between myocardial sheets (Le Grice 1992).

Based on this information, a fully three-dimensional orthotropic constitutive law, which

incorporates material properties that can be directly estimated from the tissue, has been

formulated in Section 5.1.1.

1The extension ratio, usually denoted by λ (not to be confused with the radial coordinate of the prolate
spheroidal coordinate system), is defined as the current length of a material segment divided by the resting
length of the same segment, which is the length to which it returns in the unloaded state.
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5.1.1 The “pole-zero” constitutive law for myocardium

Attempts to model the cellular structures of cardiac tissue have been generally too complex

to include in large scale computer simulations, since the constituents and parameters have

been too numerous. Moreover, current knowledge of the mechanical properties of tissue

components is too limited to fully characterise tissue behaviour. Therefore a compromise

between the phenomenological and microstructural approaches is necessary.

A characteristic feature of Smaill and Hunter’s (1991) biaxial tension test results is that the

stress-strain behaviour along one axis was very nearly independent of the degree of lateral

stretch. This meant that the contribution to the total strain energy of the stretch along one

of the material axes was independent of the contribution from the other two axes. For this

reason, the strain energy function was separated into individual expressions in terms of the

stretch along each of the material axes. It is also evident from the biaxial tests that the axial

stress was very low for small axial strains, but increased rapidly as the strain approached the

limiting strain for that axis. These characteristics, microstructural observations and biaxial

test results have been encapsulated in the pole-zero strain energy function for myocardium

given in Equation (5.1).
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(5.1)

where Eαβ are the components of Green’s strain tensor referred to material coordinates

aligned with the microstructural axes of the tissue (see Section 2.5.2), and the constitutive

parameters (k’s, a’s and b’s) are defined below.

There are three different types of constitutive parameters. The limiting strains or poles,

denoted aαβ, are physical properties of the tissue that may be measured directly from

microstructural observations. In particular, MacKenna (1994) used elastica theory on the

collagen helices surrounding myofibres to determine the yield strain (pole) of a11 = 0:523

along the fibre axis. The second group of parameters, denoted bαβ, are related to the

curvature of the uniaxial stress-strain relationships for each mode of deformation and have

been estimated using the biaxial tension test results of Smaill and Hunter (1991). Lastly, the

kαβ parameters weight the contribution of the corresponding mode of deformation to the total

strain energy of the material. Estimation of these coefficients is discussed below.

The constitutive parameters of Equation (5.1) are naturally split into six groups, one for
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each mode of deformation. These groups correspond to the six independent components

of Green’s strain tensor. The first three terms in Equation (5.1) refer to the three axial

modes of deformation (fibre, sheet and sheet-normal, denoted 11, 22 and 33, respectively).

The parameters associated with these terms have been estimated using a combination of

microstructural observations, biaxial tension test results and non-invasive magnetic resonance

imaging data, and are listed in Table 5.1. Appendix A details the parameter estimation

protocol.

The remaining terms relate to modes of shear deformation between the microstructural axes

(fibre/sheet, fibre/sheet-normal and sheet/sheet-normal, denoted by subscripts 12, 13, and 23,

respectively). Higher order terms involving cross-products of the strain components, such as

E11E22, have not been considered here, but may be justified by further experimental testing.

It is reasonable to assume that the cellular structures responsible for resisting the shearing

deformations are exactly those structures responsible for limiting axial deformations. These

load-bearing connections are simply the collagen struts that link individual cardiac fibres

and sheets. The important implication of this assumption is that the parameters of the shear

terms in Equation (5.1) are strongly correlated to the parameters of the axial terms. The

fibre distribution model described below has been used to help understand and quantify some

of these parameter correlations. To validate these correlations further experiments must be

performed involving shear deformations of cardiac tissue.

It should be noted that the pole-zero constitutive law was based upon the biaxial tension

tests of Smaill and Hunter (1991), and is likely to be inappropriate for other modes of

deformation. For present purposes the compressive tissue behaviour was approximated using

a shallow linear strain energy function in terms of the compressive material strains. Further

experimental measurements involving compressive, shear and torsional deformations are

required to completely characterise the passive behaviour of cardiac tissue under general

loading conditions.

A fibre distribution model for cardiac tissue

A biophysical model of cardiac muscle elasticity has been formulated to help understand

the correlation between the axial and shear parameters of the pole-zero constitutive law for

myocardium (Hunter et al. 1997). The main assumption of this fibre distribution model is that

three families of fibrous connective tissue (mainly collagen) are responsible for storage of the

total strain energy of the myocardium. This implies that some axial and shear deformations
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must be strongly correlated since they involve the same underlying collagen microstructure.

The fibre orientations within each family is assumed to be normally distributed about a mean

direction, which is aligned with one of the microstructural material axes (see Figure 5.2).

Note that in the following description the term ‘fibre’ refers to a collagen connection within

a fibre family and not a cardiac muscle fibre. The latter will be referred to as a ‘myocyte’.

θ2

sheet-normal axis

fibre axis

sheet axis

θ

fibre axis distribution

θ

sheet axis distribution

sheet-normal axis distribution

θ1

FIGURE 5.2: The fibre distribution model: orientation of each fibre family about its
mean orientation.

The first fibre family consists of the large coiled perimysial fibres that are closely associated

with the myocytes (Robinson et al. 1988; MacKenna, Omens and Covell 1996). The mean

direction of this family is coincident with the longitudinal axis of the local myocytes and

individual collagen fibres are assumed to lie in the plane of the myocardial sheet. The second

family has a mean orientation centred about the sheet axis (which also lies in the sheet plane,

but is perpendicular to the myocyte axis) and consists of tightly bound endomysial collagen

(Caulfield and Borg 1979). The third family of fibres is assumed to have an axisymmetric

distribution about a mean direction aligned with the local sheet-normal axis. This family

consists of the sparse array of perimysial collagen struts that connect the myocardial sheets.

The variation of connective tissue fibre orientations about their mean directions is assumed
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to be different for each family of fibres. These variations are defined by standard deviations

that describe the distribution of each family of fibres as illustrated in Figure 5.2. The

first standard deviation defines the variation about the mean direction of the large coiled

perimysial collagen fibres about the mean myocyte axis and is therefore relatively small.

The second standard deviation defines the variation of the direction of in-sheet endomysial

collagen about the local sheet axis and is greater than the first. Two further standard deviations

define the axisymmetric variation of the inter-sheet collagen strut direction.

To evaluate the contribution that one particular fibre of a family makes to the total strain

energy, consider a unit length fibre in the reference state at an angle of Θ to the Y1-axis, as

illustrated in Figure 5.3. The Y1 and Y2 axes are not material axes (they do not change with

material deformation), but rather are local orthogonal reference axes with the Y1 coordinate

defined to be aligned with one of the microstructural material axes. In the deformed state,

the fibre has length λ and is oriented at an angle of θ to the Y1-axis. In the undeformed state

X = cosΘ and Y = sinΘ, and in the deformed state x = λcosθ and y = λsinθ.

Y2

(X ;Y )

(x;y)

θ

λ

1

Θ

Y1

FIGURE 5.3: Kinematic analysis of a typical deforming fibre.

Consider now a particular state of strain in the tissue, characterised by extension ratios λ1

and λ2 along the local reference axes, Y1 and Y2, respectively. These extension ratios can be

expressed using Equation (5.2).

λ1 =
x
X

= λ
cosθ
cosΘ

λ2 =
y
Y

= λ
sinθ
sinΘ

(5.2)

By dividing the extension ratios, Equation (5.2) may be used to determine an expression for
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the angle of the deformed fibre, θ, given in Equation (5.3).

λ2

λ1
=

tanθ
tanΘ

or θ = tan�1
�

λ2

λ1
tanΘ

�
(5.3)

Thus, given λ1 and λ2, a fibre at initial position Θ is rotated to an angle θ and stretched by

extension ratio λ in Equation (5.4).

λ =

8>><
>>:

λ1
cosΘ
cosθ

when θ <

π
2

λ2 sinΘ when θ =
π
2

(5.4)

The fibre strain is calculated from the extension ratio using Equation (5.5).

E f =
1
2

�
λ2�1

�
(5.5)

The next step is to assume that the fibre orientations for each of the families are normally

distributed about their mean directions. In this way, for example, the family of fibres

associated with the myocyte axis may be approximated using the Gaussian probability

distribution (with standard deviation σ1) defined in Equation (5.6). Note that the mean of this

distribution is aligned with the local myocyte axis in the reference state and that Θ quantifies

the difference between the direction of a particular fibre and the mean fibre direction.

p1 (Θ) =
1p

2πσ1
exp

�
�1

2
Θ2

σ2
1

�
(5.6)

The total strain energy (due to the deformation) stored in the family of fibres associated with

the myocyte axis may be computed by summing up the individual strain energies of all fibres

in the family. Equation (5.7) expresses this sum as the integral over all possible fibres since

the probability distribution function varies continuously with the undeformed position, Θ. In

this expression, k1, a1 and b1 are properties of the family of fibres associated with the myocyte

axis. The dependence of the fibre strain, E f , on Θ is defined using Equations (5.3)–(5.5).

W1 =

π
2Z

� π
2

p1 (Θ)
k1E2

f

(a1�E f )b1
dΘ (5.7)
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In a similar manner, the total strain energy stored in the family of fibres associated with the

myocardial sheet axis may be calculated using Equation (5.8).

W2 =

π
2Z

� π
2

p2 (Θ)
k2E2

s

(a2�Es)b2
dΘ (5.8)

where p2 (Θ) is the Gaussian probability distribution function for the family of fibres

associated with the sheet axis, k2, a2 and b2 are properties of this family, and Es is the material

strain along the sheet axis. Note that Es and p2 (Θ) may be evaluated using expressions

similar to Equations (5.5) and (5.6), respectively.

The strain energy for the third family of sheet-normal fibres is calculated using Equation (5.9),

and the probability distribution function for this family is expressed in Equation (5.10) in

terms of the two standard deviations that describe an axisymmetric variation of inter-sheet

collagen fibre orientations.

W3 =

2πZ

Θ4=0

π
2Z

Θ3=0

p3 (Θ3;Θ4)
k3E2

n

(a3�En)b3
dΘ3dΘ4 (5.9)

with

p3 (Θ3;Θ4) =
1

2πσ3σ4
exp

�
�1

2

�
Θ2

3

σ2
3
+

Θ2
4

σ2
4

��
(5.10)

where En is the material strain along the family of collagen fibres associated with the sheet-

normal axis and k3, a3 and b3 are properties of this family. Finally, it is assumed that the

combined strain energy from each of the three families sums to yield the total strain energy

in the tissue.

For present purposes, the fibre distribution model has been used to express the limiting strains

for shear (namely a12, a13, and a23 in Equation (5.1)) as a function of the axial poles, since it

was assumed that the same underlying distributions of collagen connections determine both

the tensile and shear characteristics of the tissue. This relationship is derived by considering

the kinematics of a typical fibre during a simple shear deformation as shown in Figure 5.4.

The bold line segment in Figure 5.4 represents a particular connective tissue fibre oriented

at angle η to the mean direction for its family in the reference state. Using Pythagoras,

this undeformed fibre has length
p

1+ tan2 η = secη. During the deformation the fibre
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η

11

tanηtanφtanη

1 1

φ

FIGURE 5.4: Kinematic analysis of a fibre during simple shear.

moves through a shear angle of φ and due to the simple kinematics of the deformation,

the deformed fibre length is
p

1+(tanη+ tanφ)2. The extension ratio (deformed length

divided by undeformed length) of the fibre is defined in Equation (5.11) as a function of the

undeformed fibre angle, η, and the shear angle, φ. Refer to Appendix C for more detail.

λη =
q

1+ tan2 φcos2 η+ tanφsin2η (5.11)

For a given shear angle φ, the fibre angle η� which produces maximum stretch is found from

Equation (5.11) by solving ∂λη
∂η = 0 for η�. The result is given in Equation (5.12).

η� =
1
2

tan�1(2cotφ) (5.12)

As φ increases from 0� to 90�, η� decreases from 45� to 0�. The extension ratio of

the fibre with maximum stretch is determined by substituting Equation (5.12) back into

Equation (5.11). Using some considerable manipulation (see Appendix C) the maximum

extension ratio for a given shear angle is written in Equation (5.13).

λmax =
1
2

�
κ+

p
4+κ2

�
(5.13)

where κ = tanφ. If this particular fibre yields when its Green’s strain reaches the limit

stop a = 1
2

�
λ2

max�1
�
, then the maximum possible elastic shear strain is calculated using

Equation (5.14).

κ =
2ap

1+2a
(5.14)



5.1 PASSIVE RESPONSE OF MYOCARDIUM 96

The key point here is that the shear poles of Equation (5.1) (namely a12, a13 and a23) may

be directly determined from the limiting strains of the fibre families. For example, consider

simple shearing deformations within the plane of the myocardial sheet, referred to here as

the (1;2)-plane. The yield strain for a simple shear of the (1;2)-plane in the direction of

the myocyte axis (a 2� 1 shear) is limited by the sheet axis pole position, a22, since the

collagen connections associated with the sheet axis family are put into tension. On the other

hand, a 1� 2 shear is limited by the fibre axis pole position, a11, since the collagen fibres

aligned with the myocyte axis sustain the load. Thus for a general shear of the (1;2)-plane, a

reasonable approximation to the limiting shear strain, a12, may be determined by substituting

the minimum of a11 and a22 into Equation (5.14), which monotonically increases with a. The

pole position for the in-plane (1;2) shear is defined in Equation (5.15). Pole positions for the

other shear terms may be determined in an analogous manner.

a12 =

8><
>:

2a22p
1+2a22

if a22 � a11;

2a11p
1+2a11

if a22 > a11:

(5.15)

It remains then to estimate the coefficients and curvature parameters for the shear terms in

Equation (5.1). It is conceivable to achieve this by applying the fibre distribution model

to a range of kinematically simple experiments, which involve various axial and shear

deformations. The relative contributions to the strain energy of the tissue could then be

used to estimate these unknown parameters. This work is currently in progress. At this stage

these shear parameters have been assigned arbitrarily. It is clear that detailed experiments

involving shear deformations of myocardium, relative to the microstructural material axes,

are required to validate this model. The University of Auckland2 is currently investigating

the shear and compressive characteristics of myocardial tissue to elucidate these issues.

Chapter 6 incorporates the pole-zero constitutive law into a mathematical model of

ventricular mechanics, which is used in Equation (7) to analyse myocardial deformation

and stress in the beating heart. Table 5.1 lists the material properties used for the modelling.

2Bioengineering Research Group, Departments of Engineering Science and Physiology, University of
Auckland, New Zealand. Further information can be retrieved from:
URL: http://www.esc.auckland.ac.nz/Groups/Bioengineering/CMISS/
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Type Axial Properties Shear Properties

Coefficients
k11 1:937 k12 1:0
k22 0:028 k13 1:0
k33 0:310 k23 1:0

Poles
a11 0:523 a12 0:731
a22 0:681 a13 0:731
a33 1:037 a23 0:886

Curvatures
b11 1:351 b12 2:0
b22 5:991 b13 2:0
b33 0:398 b23 2:0

TABLE 5.1: Material properties of myocardium for the pole-zero constitutive law.

5.1.2 Residual strain and stress in ventricular muscle

In the absence of external loads (the no-load state), intact passive myocardium is not stress

free. Omens and Fung (1990) demonstrated this by radially cutting an equatorial cross-

sectional ring from an isolated potassium-arrested rat heart, and observing how it sprang open

into an arc when the so-called residual stress was relieved. This observation has important

implications for mathematical models of ventricular mechanics that refer material strains (and

hence stresses) to a well defined stress-free state for which the material strains and stresses

are assumed to be zero. To date, most ventricular mechanics models have approximated

this stress-free state using the unloaded, but residually stressed configuration (Bovendeerd,

Huyghe, Arts, van Campen and Reneman 1994; Demiray 1976; Feit 1979; Huyghe et al.

1992; Mirsky 1973). As a consequence, predicted myocardial stresses may be misleading

since the analysis has not accounted for the pre-existing state of stress in the chosen reference

configuration. In particular, stress analyses of passive LV filling which do not incorporate

residual stresses predict significantly greater magnitudes of stress at the endocardium

compared to the epicardium (Demiray 1976; Feit 1979; Mirsky 1973). In contrast, several

studies suggest that residual stresses give rise to more uniform transmural distributions of

end-diastolic myocardial stress (Guccione et al. 1991; Nevo and Lanir 1994; Rodriguez,

Omens, Waldman and McCulloch 1993). During systole, however, Guccione et al. (1995)

found that the residual stresses were negligible compared to the large stresses generated by

the contractile apparatus.

To characterise the stress-free configuration, Omens and Fung (1990) measured the opening

angle (see Figure 5.5) for 2-3mm thick equatorial slices of fresh potassium-arrested rat
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(a) Unloaded left
ventricle

radial cut

(b) Residually stressed,
no load state

opening angle

(c) Stress-free state

FIGURE 5.5: Opening angle in an equatorial cross-sectional slice.

ventricular myocardium. From 11 slices the mean initial opening angle was 45 � 10� (SD).

By tracking the movement of small markers placed on the cross-sectional surface, transmural

residual strains were estimated, revealing negative (compressive) endocardial and positive

(tensile) epicardial residual strains in the intact ventricular wall. A second radial cut produced

deformations significantly smaller than those produced from the first cut, implying that a

specimen with one radial cut may be considered stress-free. Once ischaemic contracture had

set in, they observed a continual increase in the opening angle, to 180�, associated with a

dramatic increase in the stiffness of the specimen.

In a similar study, Rodriguez et al. (1993) measured a mean opening angle of 45 � 15� (SD)

from eight rat hearts. This study also quantified the sarcomere length (SL) distribution in the

no-load and stress-free states, from which they concluded that

: : : in the zero-stress state the transmural distribution of SL is uniform and
significantly different from that in the unloaded, but residually stressed, state
where SL decreases from the epicardium toward the endocardium : : : This
gradient may offset the opposite gradient in sarcomere extension during filling
thus leading to a more uniform transmural distribution of SL at end diastole and
hence more uniform development of systolic force.

Rodriguez et al. (1993, Fig. 5) measured transmural SL distributions from eleven stress-free

rat hearts. SL varied from 1:91 � 0:08µm (SD) at the epicardium to 1:78 � 0:07µm (SD) at

the endocardium. The transmural average stress-free SL was 1:84 � 0:01µm (SD).

Modelling residual strain

Mathematical models of large deformation mechanics compute material strains (and hence

stresses) with respect to a well defined reference configuration, for which the strain
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components are assumed to be zero. However, if no such state exists for an intact specimen

such as the heart, the closest approximation is the no-load state, in which some structures

may be pre-stretched or residually stressed. The residual strains within the specimen may

be approximated by introducing the concept of a growth tensor (Rodriguez, Hoger and

McCulloch 1994). The growth tensor, denoted Fg, modifies the deformation gradient tensor

of Equation (2.1) to account for the differences between the no-load state and the stress-free

state of the specimen. This transformation is defined in Equation (5.16).

Fi
M =

∂xi

∂XN
�FgNM (5.16)

Entries in the growth tensor with respect to the microstructural material coordinates, express

deformation gradients relating the unloaded and stress-free states. The diagonal elements of

Fg, (Fg11 � λ0
f , Fg22 � λ0

s and Fg33 � λ0
n) define the initial extension ratios due to the residual

strains for the fibre, sheet and sheet-normal axes, respectively. The off-diagonal elements of

Fg represent initial shear deformation gradients, which for this analysis are assumed to be

zero due to lack of measured data at the time of this modelling.

The most appropriate information with which to estimate the fibre deformation gradients for

the unloaded ventricles is the measurements of Omens and Fung (1990) and Rodriguez et al.

(1993). From this data, initial fibre extension ratios have been approximated and are listed in

Table 5.2. The initial sheet and sheet-normal extension ratios are set to unity for the ventricles

due to lack of experimental information.3

Applying the growth tensor to a body upsets its internal equilibrium, since the modified strain

field is non-zero and hence incompatible with the zero-stress state. It is therefore necessary to

determine the residual stresses necessary to re-establish internal equilibrium of the material

with a compatible strain field. This is achieved by solving the boundary value problem with

no external loads to compute the residual stresses for the no-load state. This requires a stress-

free configuration to which computed strains (and hence stresses) are referred. However,

the stress-free reference configuration is not available and is therefore approximated by the

unloaded, residually stressed state for this solution procedure. This seems reasonable since

the displacements due to residual stresses are presumably small. Section 7.1 presents residual

3 Subsequent to the modelling in this thesis, Costa, May-Newman, Farr, O’Dell, McCulloch and Omens
(1997) quantified distributions of three-dimensional residual strain in the canine midanterior LV free wall.
Residual strains were referred to the anatomical fibre coordinates and showed a consistent gradient of residual
fibre strain to the data used here. However, significant sheet and sheet-normal residual strain distributions were
also observed by Costa et al. (1997), which have not been included in this research. Shear components of
residual fibre strain were observed to be small.
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Ventricular region Transmural location Initial fibre extension ratio, λ0
f

Equator LV endocardium 0:95
LV free-midwall 1:00
RV endocardium 1:00
LV/RV epicardium 1:05

Base, Apex all 1:00

TABLE 5.2: Initial fibre extension ratios due to the residual strains sustained by the
passive ventricular myocardium.

strain and stress distributions for the intact ventricular myocardium using the ventricular

mechanics model developed in this thesis.

5.2 Active contraction of myocardium

Upon stimulation, cardiac muscle fibres generate contractile forces. For the purposes of

this research it is assumed that cardiac muscle fibres only generate force in the direction of

their longitudinal axes. This means that just one term must be added to the passive three-

dimensional stress tensor of Equation (2.43) to model the active behaviour of myocardium.

The additional active stress acts in the muscle fibre direction (aligned with the ν1-coordinate),

and so if the stress tensor is expressed with respect to the microstructural material axes, it is

in fact only the T 11 component that is modified, as given in Equation (5.17).

T αβ =
1
2

�
∂W

∂Eαβ
+

∂W
∂Eβα

�
� pAαβ

(ν)+T δα
1 δβ

1 (5.17)

where T = T
�
t;λ11;

�
Ca2+

�
i

�
is the active tension generated by a fibre at time, t. For

the current modelling, active tension is defined to depend on the time varying muscle fibre

extension ratio, λ11 =
p

2E11 +1, and the concentration of free intracellular calcium,�
Ca2+

�
i which is taken to characterise the level of activation of a cardiac muscle cell. It

is assumed here that the transverse and shear strains have no effect on the active tension

generated by the fibres. The steady state mechanical properties of active myocardium are

summarised below at a constant level of activation. For more detailed descriptions refer to

Hunter et al. (1997).

The dynamic properties of myocardium have been investigated using a continuum mechanics
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framework by several authors. Hunter (1995) presents a model of active tension which is

influenced more by recent length changes than by the earlier history of length changes. This

empirical fading memory model is based on length step, constant velocity and frequency

response response experiments at a constant level of activation. Guccione and McCulloch

(1993) adopted a more biophysical approach and developed constitutive equations for active

tension based on a general cross-bridge model, which is driven by a length-dependent free

calcium transient. The current research uses a framework into which these more complex

models of active contraction may be incorporated, once the passive material behaviour has

been validated.

5.2.1 Steady state
�
Ca2+

�
–tension relation

Under equilibrium conditions, ter Keurs, Rijnsburger, van Heuningen and Nagelsmit (1980)

measured the tension developed in rat cardiac trabeculae for different levels of extracellular

calcium concentration. At a constant level of activation, muscle tension is an increasing

function of muscle length – characterised by the muscle fibre extension ratio, λ. At steady

state it is reasonable to assume that there is a direct relationship between the extracellular

and free intracellular calcium concentrations (denoted
�
Ca2+

�
o and

�
Ca2+

�
i, respectively).

Moreover, at
�
Ca2+

�
o = 2:5mM, the intracellular calcium is fully saturated, thus the level

of activation is maximal.

By subtracting the passive component of tension from the measured total tension (for�
Ca2+

�
o = 2:5mM), Hunter et al. (1997) found that the maximally activated isometric

tension T0(λ) is a linear function of λ with slope dT0
dλ = 145 kPa or a non-dimensional slope

of β =
h

1
T0

dT0
dλ

i
λ = 1

= 1:45. At the unloaded SL of 1:9µm (where λ = 1, corresponding

to the resting length with no passive tension), the measured tension was T0 = 100 kPa. This

leads to the T0(λ) relation in Equation (5.18) for given level of activation.

T0(λ) = Tref � [1+β(λ�1)] (5.18)

where Tref = 100 kPa is the isometric, actively developed tension at λ = 1 and saturating�
Ca2+

�
i.

The variation of isometric tension with
�
Ca2+

�
i under steady state conditions and constant

λ, is described by the sigmoidal Hill relation for dose-response behaviour in Equation (5.19)

(Hunter 1995).



5.2 ACTIVE CONTRACTION OF MYOCARDIUM 102

T0
��

Ca2+�
i

�
=

��
Ca2+

�
i

�h

��
Ca2+

�
i

�h
+(c50)

h
(5.19)

where c50 is the intracellular calcium concentration at which the isometric tension is 50% of

its maximum, and h is the Hill coefficient, determining the shape of the saturation curve.

Assuming that
�
Ca2+

�
i is independent of the extension ratio, Equations (5.18) and (5.19)

may be combined to give a simple expression for the isometric tension in terms of the

extension ratio and intracellular calcium concentration, written in Equation (5.20). Note

that in general
�
Ca2+

�
i is also length dependent, since the release of calcium from the

sarcoplasmic reticulum is influenced by stretch.

T0
�
λ;
�
Ca2+�

i

�
=

��
Ca2+

�
i

�h

��
Ca2+

�
i

�h
+(c50)

h
�Tref � [1+β(λ�1)] (5.20)

The intracellular calcium concentration in Equation (5.20) is replaced by
�
Ca2+

�
i = Caactn ��

Ca2+
�

max, where
�
Ca2+

�
max = 2:5mM is the intracellular calcium concentration for

maximal activation and Caactn is a non-dimensional parameter which represents the level

of activation. The result is written in Equation (5.21).

T0 (λ;Caactn) =

�
Caactn �

�
Ca2+

�
max

�h

�
Caactn �

�
Ca2+

�
max

�h
+(c50)

h
�Tref � [1+β(λ�1)] (5.21)

Active muscle fibre stresses from Equation (5.21) are combined with the passive stress tensor

using Equation (5.17) to compute components of the total stress tensor that appear in the

equilibrium equations. Section 6.4 incorporates the steady state
�
Ca2+

�
–tension relation into

a ventricular mechanics model to simulate contraction during the isovolumic and ejection

phases of the cardiac cycle. Section 7.3 compares model predictions with measured systolic

deformations reported in the literature.



Chapter 6

Formulation of the ventricular mechanics

model

The formulation of a ventricular mechanics model draws on the techniques developed and

information presented in Chapters 2–5. A full derivation and validation of the model is

given in Costa, Hunter, Rogers, Guccione, Waldman and McCulloch (1996) for cylindrical

and spherical polar coordinate systems, and Costa, Hunter, Wayne, Waldman, Guccione and

McCulloch (1996) for the prolate spheroidal coordinate system. One particular problem is

chosen here to verify the current implementation and to illustrate the accuracy of the FEM

for finite deformation elasticity. Numerical results are compared with a closed form solution

for the inflation, axial extension and twist of a homogeneous circular cylinder in Section 6.1.

This chapter also addresses issues arising from the use of the anatomically accurate 60

element ventricular model described in Section 4.4 (referred to hereafter as the anatomical

model) as a basis for the analysis of strain and stress in the deforming heart. Section 6.2

discusses the choice of interpolation functions for the solution fields (namely the deformed

geometric coordinates and the hydrostatic pressure), which is essential for accurate

predictions of myocardial distributions of strain and stress. Moreover, solution accuracy

is determined in part by the resolution of the FE mesh. Section 6.2.3 compares strain

distributions for various mesh resolutions to determine which is most appropriate for the

analysis of strain and stress. Section 6.3 assesses the effect that various displacement

boundary constraint scenarios have on global mechanics of the ventricular model during

diastole. To simulate systole, Section 6.4 presents a simple model of ventricular contraction.

This model is used to simulate the isovolumic contraction and ejection phases of the cardiac

cycle. Finally, Section 6.5 presents a summary of the most suitable ventricular mechanics

model for the analysis of strain and stress in the deforming ventricles, presented in Chapter 7.

103
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6.1 Validation of the FEM for finite deformation elasticity

To test the implementation of the FEM for finite deformation elasticity and to illustrate

solution convergence with mesh resolution, a geometrically simple model is considered here.

This section compares stress distributions from FE analysis with the closed form solutions

for the simultaneous inflation, axial extension and torsion of a circular cylindrical tube.

Following Rivlin (1950, p. 178), consider a circular cylindrical tube which, in the undeformed

state, has length l and external and internal radii denoted by a1 and a2, respectively. For

mathematical simplicity, it is assumed that the cylinder is homogeneous, isotropic and

incompressible. The material is assumed to be of Mooney-Rivlin nature, with material

constants c1 and c2 (see the constitutive law in Equation (2.31) on page 25). The deformation

is described by:

1. a uniform inflation through which the external and internal radii change to:

r1 = µ1a1 and r2 = µ2a2 (6.1)

respectively. The deformed radii depend upon the surface tractions, pa and pb, which

act on the external and internal surfaces, respectively;

2. a uniform simple axial extension, where the ratio of the deformed to undeformed

cylinder lengths, or the extension ratio, is denoted by λ;

3. a uniform simple torsion in which transverse planes are rotated about the longitudinal

axis through an angle proportional to the distance from one end. The constant of

proportionality is denoted ψ.

6.1.1 Closed form solution for the inflation, extension and twist of a

homogeneous circular cylinder

Rivlin (1950, p. 179) derived physical Cauchy stress components using the theory of finite

deformation elasticity. The non-zero stress components and the hydrostatic pressure are

written in Equations (6.2) and (6.3) as a function of the undeformed radial coordinate, R.
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where the hydrostatic pressure p is a function of the undeformed radial coordinate R and is

given by
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with
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(6.5)

Equations (6.4) and (6.5) have been quoted directly from Rivlin (1950, Equations (3.2) and

(3.4), respectively) and Equation (6.2) is a rearranged form of Equation (4.3) of Rivlin (1950,

p. 179). Equation (6.3) is the result of algebraically integrating Equation (4.7) of Rivlin (1950,

p. 180).

The inner surface traction constraint, written in Equation (6.6), completes the closed form

analysis (Rivlin 1950, Equation (5.1)). Note that the negative sign appears since pb is a

surface pressure, which acts as a compressive stress.

σ(rr)
���
(R=a2)

=�pb (6.6)
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Stress distributions based on this analysis are presented in Section 6.1.2 and were determined

using the following nonlinear solution procedure. Firstly, µ1 was determined by solving

Equation (6.6) using the Newton-Raphson method (Acton 1970, p. 367). Equation (6.5)

was then used to calculate µ2 and Equation (6.1) yielded the deformed radii. Finally, the

physical Cauchy stress and hydrostatic pressure distributions were calculated by substituting

Equations (6.4) and (6.5) into Equations (6.2) and (6.3).

6.1.2 Finite element analysis versus closed form solutions

FE analysis of the cylindrical tube was performed using the CMISS software package, which

is described in Section 6.2.1. The FE models were based on the cylindrical polar coordinate

system (see Section 3.2.1) to test the implementation of the FEM for curvilinear coordinates.

Section 6.1.1 shows that the closed form analysis yields stress distributions which possess

spatial gradients with respect to the radial coordinate. For this reason, the number of radial

elements and the order of the interpolation functions for the radial coordinate were varied to

assess the quality of the stress distributions from the FE analysis. Equations (6.2)–(6.6) show

that the derived stress distributions are independent of the circumferential and longitudinal

coordinates. It was therefore sufficient to use a single element with linear interpolation in

each of these directions.

The FE models were set up to be directly comparable to the closed form analysis. The

geometric parameters, material properties and pressure boundary loads for these models are

listed in Table 6.1. The torsion constant of proportionality is determined using ψ = π V
180 d and

is measured in rad=cm. Note that although the length of the model cylinder is of the same

order as the radii, the kinematics have been constrained to reflect a portion of an infinitely

long cylinder, as required for the validity of the closed form analysis.

To verify the implementation of the FEM and to illustrate the effect of different interpolation

schemes and mesh resolution on the prediction of stress, several FE models were analysed.

Their accuracy was assessed by comparing radial distributions of the physical stress

components, the hydrostatic pressure field and the third invariant of Green’s strain tensor

(I3) against results from the closed form analysis.

Three low order models were selected to demonstrate the improvement in solution accuracy

with radial mesh resolution. The models consisted of one, two and four radial elements

with trilinear Lagrange interpolation of the three spatial coordinates. Eight point Gaussian

quadrature (two points along each ξ coordinate) provided sufficient accuracy for evaluation
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Parameter Symbol Value

External radius (cm) r1 1:5
Internal radius (cm) r2 1:0
Axial extension ratio λ 1:2
Cylinder length (cm) d 1:0
Torsion angle (degrees) V 30:0

Material properties (kPa)
c1 2:0
c2 6:0

External pressure (kPa) pa 0:0
Internal pressure (kPa) pb 1:5

TABLE 6.1: Input parameters for the closed form and FE analyses.

of the element integrals. For compatibility, the hydrostatic pressure field was chosen to

be constant within each element (see Section 3.4.2). Figure 6.1 illustrates convergence

of the derived FE distributions to the closed form solutions as the radial resolution of the

model was increased. Note, however, that stress components were not continuous across

element interfaces. This was due to the spatially discontinuous strain and hydrostatic pressure

distributions.

To improve the local incompressibility nature of the model, the next FE model used isochoric

interpolation1 for the radial coordinate. For geometrically simple problems in cylindrical

polar coordinates, components of the metric tensors may be expressed as functions of the

square of the radial coordinate (see Equation (3.19) on page 47 or refer to Green and Zerna

(1968, p. 88)). Therefore, by interpolating the square of the radial coordinate, the metric

tensors obtained at the Gauss points are exact. It follows that components of strain (and

hence I3) are also exact. Comparison of Figures 6.2 and 6.1 illustrates the improvement in the

incompressibility characteristics of the deformation when isochoric interpolation was used

instead of conventional interpolation. However, note that accuracy of the stress distributions

did not improve with isochoric interpolation.

Regardless of the simplistic isotropic and homogeneous material properties, the hydrostatic

pressure distribution, given by Equation (6.3), depends nonlinearly on the radial coordinate.

Clearly, a radially constant hydrostatic pressure interpolation scheme is inappropriate. To

1For simple curvilinear deformations, isochoric (volume preserving) interpolation may be used to allow
the kinematic incompressibility constraint (I3 = 1) to be satisfied identically throughout each element. For
cylindrical polar coordinates, this is achieved by using a change of variables from (R;Θ;Z) to

�
R2

;Θ;Z
�
. For

more information refer to McCulloch (1986).
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FIGURE 6.1: Closed form solution (solid line) versus low order FE analysis with
constant hydrostatic pressure interpolation for the inflation, axial extension
and torsion of a thick walled homogeneous cylindrical tube. Low order FE
models with one (�), two (+) and four (�) radial elements demonstrated
stress distribution convergence with increasing radial mesh resolution.
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FIGURE 6.2: Closed form solution (solid line) versus FE analysis for the inflation,
axial extension and torsion of a thick walled homogeneous cylindrical
tube. Low order FE models with either isochoric interpolation (�) or
quadratic hydrostatic pressure interpolation (+) failed to predict accurate
stress distributions. However, a combination of both the isochoric
and quadratic hydrostatic pressure interpolation schemes (�) markedly
increased accuracy of stress predictions. Similar accuracy was achieved
using a high order FE model with trilinear Lagrange hydrostatic pressure
interpolation (�).
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investigate the effect that higher order hydrostatic pressure interpolation has on accuracy,

FE analysis was performed using a single conventional trilinear element with quadratic

radial interpolation of the hydrostatic pressure field. To account for the additional radial

variation, element integrals were evaluated using twelve point Gaussian quadrature with

three computational points along the radial coordinate. The additional hydrostatic pressure

variables were determined using explicit pressure boundary constraints of the form in

Equation (3.45), on page 57, to match external boundary stresses with applied surface

pressures. Stress distributions derived using this model are presented in Figure 6.2 and

show that there is little improvement in solution accuracy in comparison to Figure 6.1.

However, when combined with the isochoric interpolation scheme of the previous model,

solution accuracy was markedly increased (see Figure 6.2) in comparison to the standard

interpolation scheme. A major drawback with this specialised analysis is that solution

accuracy is compromised when describing more complex geometries and deformation

patterns (McCulloch 1986; Costa, Hunter, Rogers, Guccione, Waldman and McCulloch 1996;

Costa, Hunter, Wayne, Waldman, Guccione and McCulloch 1996).

The main disadvantage with the low order models described above was that they did

not guarantee continuous hydrostatic pressure (and hence stress) distributions across

element boundaries. This was overcome by using a higher order interpolation scheme

for the hydrostatic pressure field. To be compatible, trilinear Lagrange interpolation of

the hydrostatic pressure field requires higher order interpolation for the geometry (see

Section 3.4.2). In light of this, the next step was to determine the accuracy of solutions

derived using a high order FE model.

The final cylindrical FE model incorporated a single element with tricubic Hermite inter-

polation of the radial coordinate and trilinear Lagrange interpolation of the circumferential

and longitudinal coordinates. The numerical integration scheme incorporated 27 Gaussian

quadrature points (three points along each ξ coordinate) to evaluate the element integrals ac-

curately. The hydrostatic pressure field was also interpolated using trilinear Lagrange basis

functions, which introduced one further degree of freedom per node. The additional solution

variables were determined using incompressibility constraints of the form in Equation (3.42)

on page 56. This high order FE model exhibited similar accuracy to the best of the low order

models (namely the isochoric model with quadratic hydrostatic pressure interpolation), as

illustrated in Figure 6.2.
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6.2 An anatomically accurate ventricular mechanics

model

The first step to setting up an anatomically accurate ventricular mechanics model is to select

an appropriate set of interpolation functions to describe the solution fields (there is one field

for each deformed geometric coordinate and one for the hydrostatic pressure). It is convenient

to formulate the ventricular mechanics model isoparametrically since the nodal coordinates

used to describe the geometry are a subset of the solution variables. A suitable interpolation

scheme provides the desired solution accuracy while incorporating as few degrees of freedom

as possible, to maximise the computational efficiency of the model. One desirable aspect of

the model that is affected by the interpolation scheme chosen for the solution fields is its

ability to predict spatially continuous stress and strain distributions.

In general, myocardial stress components are derived from components of the strain tensor,

the hydrostatic pressure field, the active tension developed by the fibres (Equation (5.17))

and of course the material properties of ventricular tissue (Equation (5.1)). Thus to achieve

continuity of myocardial stress, these quantities must vary continuously throughout the

ventricular walls.

For current purposes, the active fibre tension is restricted to vary only as a function of

sarcomere extension ratio and an activation parameter based on the concentration of free

intracellular calcium (see Section 5.2). As a first approximation, the activation parameter

is modelled using a globally constant field (and is therefore continuous) throughout the

myocardium. For coupled models of electro-mechanics, the activation model produces

smoothly continuous distributions of intracellular calcium, and hence active tension.

Therefore, stress discontinuities will not be due to active tension.

Two interpolation schemes for modelling the hydrostatic pressure variation are introduced in

Section 3.4.2. In the first instance, element parameters are used to model the variation, but this

only provides a piecewise constant description which is not spatially continuous. The second

scheme uses trilinear Lagrange interpolation of nodal parameters to model the hydrostatic

pressure variation, and is thus implicitly continuous throughout the myocardium. To reduce

the possible sources of discontinuity in the predicted myocardial stress distributions, the latter

scheme is incorporated into subsequent ventricular models. As discussed below, this decision

affects the choice of basis functions used to approximate the deformed ventricular geometry.

The anatomical model uses bicubic Hermite/linear Lagrange interpolation for the radial coor-

dinate (λ), and trilinear Lagrange interpolation for the longitudinal (µ) and circumferential (θ)
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coordinates. The use of these approximations for the deformed geometric coordinates would

highly restrict the transmural movement of material points within the tissue. In particular,

the normalised transmural spacing of myocardial material points through a single wall span-

ning element would remain constant throughout the deformation, since all three geometric

coordinates are chosen to vary linearly through the wall. Thus to predict the large transmural

variation in wall thickening strains measured through diastole (Waldman et al. 1985; Omens,

May and McCulloch 1991) and systole (Le Grice, Takayama and Covell 1995), a model

incorporating the above interpolation scheme would require several transmural elements2.

An alternative to this is to increase the order of the transmural interpolation for the radial

coordinate.

To be consistent when calculating components of stress the interpolation scheme chosen

to approximate the deformed geometric coordinates should be of a higher order than the

interpolation scheme for the hydrostatic pressure field (see Section 3.4.2). This condition is

satisfied in the circumferential and longitudinal directions, since in the anatomical model λ
is chosen to vary cubically along each of the associated FE material coordinates (ξ1 and ξ2,

respectively). However, all three geometric coordinates vary linearly in the transmural FE

material coordinate (ξ3). Therefore to satisfy the above compatibility condition, and noting

that for ventricular mechanics the applied pressure gradient is directed across the wall, there

is a clear need use a higher order interpolation scheme in the transmural coordinate.

Following the above reasoning, tricubic Hermite interpolation is chosen to approximate the

λ coordinate of the ventricular mechanics model, as opposed to the bicubic Hermite/linear

Lagrange basis used in the anatomical model. This increases the number of nodal parameters

for λ from four, for the anatomical model, to eight, which are the value of λ at the node

plus its seven spatial derivatives. The µ and θ coordinates are interpolated using trilinear

Lagrange basis functions (as for the anatomical model) for computational efficiency. This

does not compromise solution accuracy due to mesh resolution (see Section 6.2.3). 27 point

Gaussian quadrature (three points along each ξ coordinate), was required to evaluate the

element integrals accurately.

The main disadvantage with the above interpolation scheme is that although the geometric

solution fields are piecewise continuous, they are not slope continuous. As a consequence,

predicted strain (and hence stress) distributions are not guaranteed to be continuous across

2Appendix B introduces a simple two phase model for myocardial tissue that simulates the radial
translocation of intramyocardial fluid in the direction of decreasing hydrostatic pressure. This model has not
been incorporated into the ventricular mechanics model since it employs a hydrostatic pressure description that
does not vary continuously in the longitudinal or circumferential directions.
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element boundaries, since strain components are related to spatial derivatives of displacement

(see Sections 2.1.2 and 2.5.2). However, Figures 6.6–6.8 show that these strain discontinuities

are typically small.

The breakdown of solution degrees of freedom for the 60 element ventricular mechanics

model is detailed in Table 6.2. When compared with the geometric degrees of freedom for

the anatomical model (Table 4.1), the differences are:

1. The ventricular mechanics model uses eight λ variables per node, as opposed to

the four λ variables used in the anatomical model. This is due to the higher order

interpolation scheme required to approximate λ.

2. The hydrostatic pressure field introduces one extra variable per node in the ventricular

mechanics model.

3. For each element of the ventricular mechanics model, two additional variables are used

to define the pressure boundary constraints applied to external endocardial (ξ3 = 0)

and epicardial (ξ3 = 1) faces. For ξ3 faces that lie within the LV free-midwall,

these variables are not coupled into the solution scheme. The boundary pressures are

included as degrees of freedom (as opposed to fixed constraints) for use in the models

of systole presented in Section 6.4, where the endocardial pressures increase in an

undetermined fashion as isovolumic contraction proceeds.

Nodal
Variables

Field Nodes Value + Derivatives Versions SDOF
λ 99 8 1 792
µ 99 1 1 99

θ
96 1 1 96

3 (apex) 1 10 30
p 99 1 1 99

Element
Variables

60 elements
2 pressure b.c.

variables per element
120

1236

TABLE 6.2: Solution degrees of freedom (SDOF) for the 60 element ventricular
mechanics model. Tricubic Hermite/linear Lagrange interpolation of λ
required eight nodal values to be stored. Three nodes at the apex carried
ten versions of theta, which were used to describe the elements at the apex.
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6.2.1 Solving ventricular mechanics models

Deformation of the ventricular mechanics model is governed by the theory of finite

deformation elasticity (Chapter 2). The system of nonlinear equations is solved using

Newton’s method (Section 3.5), which incorporates a sparse GMRES method (Saad and

Schultz 1986) to solve the resulting set of linear equations. Convergence is achieved when

both the ratio of unconstrained to constrained residuals3 and the sum of solution vector

increments for the current Newton iteration are less than a prescribed error tolerance.

Nonlinear FE analyses were performed using the CMISS4 software package. CMISS is

the product of 20 years of collective work by bioengineering researchers and their graduate

students at the University of Auckland and according to the web site:

: : : is a mathematical modelling environment that allows the application of FE
analysis, boundary element and collocation techniques to a variety of complex
bioengineering problems. It consists of a number of modules including a
graphical front end with advanced 3D display and modelling capabilities, and
a computational back end that may be run remotely on powerful workstations or
supercomputers.

The computational back end of CMISS is written primarily in Fortran and the X/Motif

graphical front end is written in C. Communication between the computational and graphical

modules is either by the use of data files, or by direct connection via a UNIX socket protocol.

CMISS currently runs on a number of different platforms, including Silicon Graphics Indy,

DEC Alpha and IBM RS6000 workstations, and Silicon Graphics Power Challenge and

Cray Y-MP supercomputers. Examples of CMISS command and input files are presented in

Appendix E.

Ventricular mechanics simulations for this research were performed on a Silicon Graphics

(SG) Power Challenge GR, with 16 symmetric MIPS R10000 (R10K) processors and 2 GB

physical DRAM (4-way interleaved). Each processor has 64 KB on-chip Level One cache

(32 KB data cache and 32 KB instruction cache), 2 MB Level Two cache and is rated at

3Newton’s method minimises a system of nonlinear residuals with respect to the set of unknown solution
variables. Constrained residual equations are associated with degrees of freedom for which boundary
conditions have been fixed (thus these equations are removed from the problem), and unconstrained residuals
are associated with the solution variables which are to be determined.

4The CMISS (an acronym for Continuum Mechanics, Image analysis, Signal processing and System
identification) package is continually being developed at the Department of Engineering Science, University of
Auckland, New Zealand. Further information can be retrieved from:
URL: http://www.esc.auckland.ac.nz/Groups/Bioengineering/CMISS/
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195 MHz. The Power Challenge operates under SG IRIX 6.2, which is a 64 bit SMP-based

version of UNIX.

Parallel processing techniques

The solution process for the ventricular mechanics model is comprised of several distinct

phases, which are listed in Table 6.3 together with the percentage of total time spent in each

phase for solution on a single R10K processor. By far the greatest proportion of time is

spent determining the element stiffness matrices, which are implicitly independent, since the

element integrals that contribute to the global system in Equation (3.41) are independent.

For this reason parallel processing techniques were used to reduce solution times of the

finite element analyses. This was achieved with concurrent evaluations of element stiffness

matrices prior to assembly of the global stiffness matrix J(x) in Equation (3.49).

Solution phase Percentage of total time

Calculation of element residuals 1:3%
Calculation of element stiffness matrices 95:2%
Constraint reduction of the global system of equations 0:5%
Solution of the linear system of equations 1:9%
Other 1:1%

TABLE 6.3: Time proportions for the various solution phases of the 60 element
ventricular mechanics model.

The nature of the parallelisation in CMISS provides control over the number of threads5 used

to calculate element stiffness matrices. To compare the various ventricular mechanics models

discussed in this chapter, global stiffness matrix assembly and solution times are reported for

a single thread. This is equivalent to performing the analysis on a single R10K processor of

the Power Challenge. However, to increase solution speed the number of threads available for

global assembly can be increased. The 60 element ventricular mechanics model was solved

using a varying number of threads and the speed up relative to the assembly time using a

single thread (see Equation (6.7)) is illustrated in Figure 6.3. Note that there is a close to

linear speed up with the number of threads available to calculate element stiffness matrices.

5In the current context, a software thread refers to a slave process initiated by the CMISS package to
calculate one or more element stiffness matrices during the solution process. The Power Challenge hardware
scheduler controls on which processor each thread will execute and this decision depends on the current load
and load history of each processor to maximise performance. Hence, for a lightly loaded machine, 16 threads
will be distributed over the 16 available processors.
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Speed up factor =
Assembly CPU time using a single thread

Assembly CPU time for main thread when using n threads
(6.7)
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FIGURE 6.3: Speed up factor versus number of software threads during global stiffness
matrix assembly for a 60 element ventricular mechanics model.

For a short period of time the configuration of the Power Challenge was changed so that

there were 36 R10K processors at the expense of the main memory being reduced to 2-way

interleaved as opposed to the standard 4-way interleaved memory. All other hardware features

were identical. Using this configuration a 120 element ventricular mechanics model was

solved (see Section 6.2.3 for details of the model) and the global stiffness matrix assembly

time was compared for various numbers of threads. Figure 6.4 illustrates the speed up factor

as a variation of the number of threads available during global stiffness matrix assembly.

Note that even though speed up factor tails off slightly, extra processors are clearly beneficial

to reduce solution times. The tail off is due to the fact that as the number of threads increases,

it approaches a smaller divisor of the number of elements in the model. For example, with

20 threads, each thread computes exactly six element stiffness matrices and with 30 threads,

each one computes four matrices. The point here is that the more computational work each

thread executes, the greater the proportion of time spent on useful work as opposed to thread

overhead, which includes time spent spawning the process and allocating memory. In the

limit, it is clear that if there were more threads than elements, solution times would in

fact increase slightly compared to the single threaded code, due to thread overhead. For



6.2 AN ANATOMICALLY ACCURATE VENTRICULAR MECHANICS MODEL 117

the current modelling, Figure 6.4 suggests that any more than 30 threads would minimally

increase solution speed.
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FIGURE 6.4: Speed up factor versus number of software threads during global stiffness
matrix assembly for a 120 element ventricular mechanics model (main
memory 2-way interleaved).

6.2.2 Inflation of the passive cardiac ventricles

The FEM for finite deformation elasticity has been verified (Section 6.1) and a 60 element

anatomically accurate ventricular mechanics model has been formulated. The framework

is therefore in place to begin an analysis of strain in the deforming ventricles. In the first

instance, a 60 element ventricular mechanics model was inflated with LV and RV pressures

of 0:4 kPa and 0:08 kPa, respectively, to simulate the first portion of passive diastolic

filling during the cardiac cycle. This model was subsequently inflated to physiologically

realistic LV and RV end-diastolic pressures of 1:0 kPa and 0:2 kPa respectively. For current

purposes, strain distributions are presented for the reduced inflation pressures so that they

may be compared with strain distributions from other ventricular mechanics models (see

Section 6.2.3).

To incorporate the influence of the pericardium on ventricular deformation, the radial (λ)

coordinate plus all of its spatial derivatives were fixed6 at their undeformed values for each

6Late in this research it was noted that the transmural derivatives of λ should not have been constrained.
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of the 31 epicardial nodes of this model (depicted in Figure 6.5). The consequences of

this pericardial constraint are discussed further in Section 6.3.2. In addition, the three apical

nodes ( ) were constrained to lie on the long axis of the LV (for compatibility) and the

central RV epicardial node on the basal ring ( ) was fixed in the circumferential direction

(to prevent rigid body rotations). The applied pressure loads and displacement boundary

constraints are illustrated in Figure 6.5.

PLVPRV

µ = 34�

µ = 77�

µ = 103�

Same as

Same as plus fixed in θ

plus fixed in µ

Fixed in λ and all spatial
derivatives of λ

Fixed in µ only

FIGURE 6.5: Ventricular pressure boundary conditions and displacement constraints
using the pericardial constraint (see text for explanation). Dashed lines
show the three sites at which transmural strain distributions are compared
for the various mesh resolutions of the ventricular mechanics model.

Applying the pericardial constraint to the 60 element ventricular mechanics model, removed

372 variables (listed in Table 6.4) from the system of equations, leaving 1236 � 372 = 864

unknown variables, which were determined during the nonlinear solution procedure. Four

equivalent load steps were used to inflate the LV and RV to 0:4 kPa and 0:08 kPa, respectively.

Each load step required between ten and fifteen full Newton iterations to converge to an error

tolerance of 10�3. On average, each Newton iteration took approximately 3m 47s (CPU)

on a single R10K processor, of which about 3m 36s (CPU) was spent calculating the global

solution matrix, and 4s (CPU) was spent solving the linear equations.

Figure 6.6 presents transmural strain distributions with respect to the microstructural material

This oversight is likely to have introduced very localised wall thickening errors only at the epicardial portions
of the ventricles.
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Nodal
Variables

Field Nodes Value + Derivatives Versions FDOF
λ 31 (epicardium) 8 1 248
µ 3 (apex) 1 1 3
θ 1 (RV) 1 1 1

Element
Variables

16 elements (RV, septum) 2 face pressure b.c.s per element 32
44 elements (LV) 1 face pressure b.c. per element 44
44 elements (LV) 1 redundant variable per element 44

372

TABLE 6.4: Fixed degrees of freedom (FDOF) due to the pericardial constraint
boundary conditions for the 60 element ventricular mechanics model. See
text for explanation.

coordinates (hereafter referred to as fibre strains) from three different longitudinal sites in the

middle of the LV free wall (the circumferential coordinate for all three sites was θ = 180�,

with reference to the centre of the RV free wall which was located at θ = 0�). The sites were

positioned at near-base, equatorial and near-apex locations (µ = 103�, µ = 77� and µ = 34�,

respectively) in the reference configuration of the ventricles, as illustrated in Figure 6.5.

Strain distributions trends are not discussed at this stage as these plots are included strictly

for comparison purposes between the ventricular mechanics models. Chapter 7 presents an

analysis of myocardial strain and stress during the heart cycle.

This model was subsequently inflated to physiologically realistic LV and RV end-diastolic

pressures of 1:0 kPa and 0:2 kPa, respectively, and it is interesting to note that similar

convergence behaviour was achieved for this remaining portion of the diastolic filling phase.

6.2.3 Spatial strain convergence using the ventricular mechanics

model

The next step to assessing the accuracy of the ventricular mechanics model was to examine

the sensitivity of predicted strain distributions with respect to the discretisation of the FE

mesh. The original 60 element mesh of Section 6.2.2 was refined7 independently along

each of the ξi finite element material coordinates and transmural strain distributions were

7One full refinement of a FE mesh along the ξ i material coordinate divided each parent-element (from the
original mesh) into two sub-elements. The boundary between the sub-elements corresponded to the ξ i =

1
2

coordinate plane of the parent-element.
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FIGURE 6.6: Physical fibre strains at three transmural locations in the LV free wall for
the 60 element model during diastole (LV pressure 0:4 kPa, RV pressure
0:08 kPa). (a), (c) and (e) show axial components and (b), (d) and (f) show
shear components of strain.
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compared at the same three sites for which the strain components of the original 60 element

model were presented (see Figure 6.5). For comparison purposes, each refined ventricular

mechanics model was inflated to LV and RV pressures of 0:4 kPa and 0:08 kPa, respectively.

Transmural mesh resolution

To test sensitivity of the strain distributions with respect to the transmural resolution of the

model, the original 60 element mesh was refined in the transmural FE coordinate, ξ3. This ξ3-

refined ventricular mechanics model consisted of 120 elements which connected 161 global

nodes. It incorporated 2056 solution degrees of freedom, of which 494 were fixed due to the

pericardial constraint (1562 unknowns). The solution procedure consisted of four equivalent

load steps to inflate the LV and RV to 0:4 kPa and 0:08 kPa, respectively. Each load step

required six full Newton iterations to converge to an error tolerance of 10�3. On average,

each Newton iteration took approximately 7m 23s (CPU) on a single R10K processor, of

which about 6m 43s (CPU) was spent calculating the global solution matrix and 25s (CPU)

was spent solving the linear equations.

Transmural strain distributions at the three chosen sites are presented in Figure 6.7 for the

ξ3-refined model. The main difference between the predicted strains using this model as

opposed to the original 60 element model (Figure 6.6) is at the near-apex location, where the

subendocardial sheet (Ess) and sheet-normal (Enn) strain distributions are notably dissimilar.

Otherwise, trends in the transmural variation of strain are acceptably similar for the two

models. For this reason, the transmural mesh resolution of the original 60 element ventricular

mechanics model was deemed adequate for the analysis of strain and stress in Chapter 7.

The ξ3-refined model was subsequently inflated beyond the above loads with a load step

of one fifth the magnitude of the initial load increment. However, for reasons not clearly

understood, the model failed to converge beyond LV and RV pressures of 0:48 kPa and

0:096 kPa, respectively. Under these conditions the largest non-zero equilibrium residuals

were observed at nodes near the apical portions of the RV, where the RV free wall is very

thin. It is possible that numerical instabilities arose due to the localised transmural bunching

of computational points for the ξ3-refined model. Large equilibrium residuals were also

observed at the base of the LV free wall, which is also relatively thin.
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(e) Near apex (µ = 34�)
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FIGURE 6.7: Physical fibre strains at three transmural locations in the LV free wall for
the ξ3-refined, 120 element model during diastole (LV pressure 0:4 kPa,
RV pressure 0:08 kPa). (a), (c) and (e) show axial components and (b), (d)
and (f) show shear components of strain. Similar strain distributions for
the original 60 element model are presented in Figure 6.6.
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Circumferential mesh resolution

Sensitivity of the strain distributions with respect to the circumferential resolution of the

mesh was tested by refining the original 60 element model in the ξ1 (circumferential) finite

element coordinate. This ξ1-refined ventricular mechanics model consisted of 120 elements

which connected 197 global nodes. It incorporated 2474 solution degrees of freedom, of

which 732 were fixed due to the pericardial constraint (1742 unknowns). The solution

procedure consisted of four equivalent load steps to inflate the LV and RV to 0:4 kPa and

0:08 kPa, respectively. Each load step required required between eight and twenty full

Newton iterations to converge to an error tolerance of 10�3. On average, each Newton

iteration took approximately 6m 55s (CPU) on a single R10K processor, of which about

6m (CPU) was spent calculating the global solution matrix and 36s (CPU) was spent solving

the linear equations.

Transmural strain distributions at the three chosen sites are presented in Figure 6.8 for the

ξ1-refined model. Comparison of these distributions with those for the original 60 element

model (Figure 6.6) yield acceptably small differences in all of the strain components. For this

reason the circumferential mesh resolution of the original 60 element ventricular mechanics

model was deemed suitable for the analysis of strain and stress in Chapter 7.

Similar convergence behaviour was achieved for the remaining portion of the diastolic filling

phase, up to LV and RV end-diastolic pressures of 1:0 kPa and 0:2 kPa, respectively. To

achieve these pressures, however, the load increment was reduced during the second half of

the filling phase to one fifth of its initial magnitude.

Longitudinal mesh resolution

The original 60 element model was refined along the ξ2 finite element coordinate to test the

convergence of computed strain distributions with respect to the longitudinal discretisation

of the model. This ξ2-refined ventricular mechanics model consisted of 120 elements which

connected 195 global nodes. The FE mesh configuration for this model is illustrated in

Appendix D. It incorporated 2412 solution degrees of freedom, of which 732 were fixed

due to the pericardial constraint (1680 unknowns). The solution procedure consisted of four

equivalent load steps to inflate the LV and RV to 0:4 kPa and 0:08 kPa, respectively. Each

load step required eight full Newton iterations to converge to an error tolerance of 10�3.

On average, each Newton iteration took approximately 6m 55s (CPU) on a single R10K

processor, of which about 6m 5s (CPU) was spent calculating the global solution matrix and
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FIGURE 6.8: Physical fibre strains at three transmural locations in the LV free wall for
the ξ1-refined, 120 element model during diastole (LV pressure 0:4 kPa,
RV pressure 0:08 kPa). (a), (c) and (e) show axial components and (b), (d)
and (f) show shear components of strain. Similar strain distributions for
the original 60 element model are presented in Figure 6.6.
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33s (CPU) was spent solving the linear equations. The CMISS command file used to analyse

this model is listed in Appendix E.1 on page 217.

Transmural strain distributions at the three chosen sites are presented in Figure 6.9 for the ξ2-

refined model. Predictions for all components of strain are somewhat different at the apical

and basal locations in comparison to the original 60 element model (Figure 6.6), especially

in the subendocardial layers. Moreover, the transmural sheet/sheet-normal (Esn) shear strain

variation is markedly different at the equatorial site for the two models. These differences

highlight a clear need for mesh refinement in the longitudinal direction to predict accurate

ventricular strain distributions.

The ξ2-refined model was subsequently inflated beyond the above pressures and exhibited

stable solution behaviour up to LV and RV pressures of 3:0 kPa and 0:6 kPa, respectively.

Convergence characteristics were similar to that of the initial diastolic phase described above.

To check that the strain distributions were adequately converged with respect to the

longitudinal mesh resolution, the ξ2-refined mesh was refined once more in the longitudinal

direction. This twice ξ2-refined ventricular mechanics model consisted of 240 elements

which connected 387 global nodes. It incorporated 4764 solution degrees of freedom, of

which 1452 were fixed due to the pericardial constraint (3312 unknowns). The solution

procedure consisted of four equivalent load steps to inflate the LV and RV to 0:4 kPa and

0:08 kPa, respectively. Each load step required nine full Newton iterations to converge

to an error tolerance of 10�3. On average, each Newton iteration took approximately

16m 17s (CPU) on a single R10K processor, of which about 12m 10s (CPU) was spent

calculating the global solution matrix and 3m 7s (CPU) was spent solving the linear

equations.

Comparison of predicted strain distributions for the twice ξ2-refined ventricular mechanics

model (Figure 6.10) with those for the once ξ2-refined model (Figure 6.9) reveal acceptably

small differences in the strain components at the basal and equatorial regions. Near the apex,

however, the subendocardial sheet and sheet-normal axial components and subendocardial

sheet/sheet-normal shear component of strain are markedly different. This would warrant

further local longitudinal refinement, if these locations were of particular interest. All other

strain components are acceptably similar between the once and twice ξ2-refined ventricular

mechanics models. For current purposes, the longitudinal mesh resolution of the once ξ2-

refined model is suitably accurate for the analysis of strain and stress in the deforming

ventricles presented in Chapter 7.
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(e) Near apex (µ = 34�)
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(f) Near apex (µ = 34�)
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FIGURE 6.9: Physical fibre strains at three transmural locations in the LV free wall for
the ξ2-refined, 120 element model during diastole (LV pressure 0:4 kPa,
RV pressure 0:08 kPa). (a), (c) and (e) show axial components and (b),
(d) and (f) show shear components of strain. Strain distributions for the
original 60 element model and a twice ξ2-refined model are presented in
Figures 6.6 and 6.10, respectively.
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FIGURE 6.10: Physical fibre strains at three transmural locations in the LV free wall
for the twice ξ2-refined, 240 element model during diastole (LV pressure
0:4 kPa, RV pressure 0:08 kPa). (a), (c) and (e) show axial components
and (b), (d) and (f) show shear components of strain. Similar strain
distributions for the once ξ2-refined model are presented in Figure 6.9.
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6.3 Displacement boundary constraints for the ventricular

mechanics model

As the heart beats various structures play an important role in the deformation of the

ventricles. For example, the basal skeleton, ventricular valves and pericardial sac all constrain

motion of the ventricular myocardium in some way. To accurately predict strain and stress

distributions in the deforming ventricles, the influence of these structures must be accounted

for in the model. Their effect can be approximated by restricting the motion of specific

portions of the ventricular myocardium using model boundary constraints.

One set of displacement boundary constraints was common to all of the ventricular mechanics

models presented in this thesis. The so-called apex constraint fixed nodes at the apex

to lie on the longitudinal axis (x-axis). This was required to prevent “holes” opening up

at the apex as the ventricles deformed and was necessary because of the chosen (prolate

spheroidal) coordinate system. Constraining the apex in this fashion is consistent with the

MRI observations of Young, Kramer, Ferrari, Axel and Reichek (1994) and Rogers, Shapiro,

Weiss, Buchalter, Rademaker, Weisfeldt and Zerhouni (1991), whose reported that the apex

remained approximately stationary during the normal human heart cycle.

This section analyses the consequences of various boundary constraint scenarios on the global

mechanics of the ventricles using the 120 element ξ2-refined ventricular mechanics model

described in Section 6.2.3. For current purposes, ventricular deformation was analysed during

diastole only. Some global dimensions of the ventricles in the residually stressed, no-load

reference state are listed in Table 6.5.

Ventricular wall volume 199 ml
LV cavity volume 32 ml8

RV cavity volume 27 ml8

Average apex-to-base length 73 mm8

Coordinate system focus 35:25 mm

TABLE 6.5: Dimensions of the anatomically accurate ventricular mechanics model in
the residually stressed, unloaded reference state.

8Some of the dimensions measured here are slightly different to those of the anatomical model (see Table 4.2
on page 71), because the ventricular mechanics model has been solved subject to the residual strains (Table 5.2)
and in the absence of boundary pressures. This was required to establish internal equilibrium with compatible
residual stress and strain fields. For further details refer to Section 5.1.2.
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6.3.1 The influence of the basal skeleton and ventricular valves

Any realistic model of the deforming heart must incorporate the influence of the stiff basal

skeleton on ventricular deformation. Clearly the best way to account for these effects would

be to couple the ventricular mechanics model to a model of the basal skeleton and atria.

However, in the absence of detailed experimental measurements of the shape and properties

of these structures, it was not feasible for this research. The alternative was to restrict motion

of the basal portions of the ventricles using displacement boundary constraints.

As a first attempt to simulate the influence of the basal skeleton, the epicardial nodes on the

basal ring were constrained so that their µ coordinates were fixed throughout the deformation.

Unfortunately, the 120 element (ξ2-refined) ventricular mechanics model did not converge

under these conditions. The reason for this was not well understood, but it was possibly due to

numerical inaccuracies at the thin apical portions of the RV free wall adjacent to the septum.

On the other hand, the 60 element ventricular mechanics model described in Section 6.2.2

showed more stable convergence behaviour when subjected to these constraints, although

convergence could not be achieved beyond LV and RV pressures of 0:5 kPa and 0:1 kPa,

respectively. Observations using this model are included here for comparison purposes.

These boundary conditions removed 134 variables from the global system, reducing the

number of solution variables to 1102. The solution procedure required between thirteen

and twenty full Newton iterations for each of five equivalent load steps to inflate the LV

and RV to 0:5 kPa and 0:1 kPa, respectively. Beyond these pressures the oscillatory nature

of the iterations prevented solution convergence. On average, each Newton iteration took

approximately 3m 53s (CPU) on a single R10K processor, of which about 3m 37s (CPU)

was spent calculating the global solution matrix and 9s (CPU) was spent solving the linear

equations.

The most striking consequence of this constraint was to unrealistically restrict the apex-to-

base stretch during diastole as illustrated in Figure 6.11. At LV and RV pressures of 0:4 kPa

and 0:08 kPa, respectively, the average apex-to-base dimension remained approximately

constant at 73mm. The LV volume had increased by 12ml to 44ml, while the RV volume

increased by 2ml to 29ml.

The next scheme involved fixing the same set of epicardial, basal nodes in the radial

coordinate (λ) instead of µ. These boundary conditions removed 324 variables from the

global system, reducing the number of solution variables to 2088. This analysis was based

on the 120 element ξ2-refined ventricular mechanics model, however convergence could not
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(a) Unloaded, residually stressed state. (b) Inflated to LV:0:4 kPa and
RV:0:08 kPa.

FIGURE 6.11: Diastolic ventricular deformation with µ fixed at all epicardial nodes on
the basal ring. Note the shortening of the longitudinal axis during the
deformation.

be achieved beyond LV and RV pressures of 0:47 kPa and 0:094 kPa, respectively. To reach

these pressures, the solution procedure was split into three phases. Firstly, sixteen equivalent

load steps were required to inflate the LV and RV to 0:32 kPa and 0:064 kPa, respectively.

Subsequently, twelve equivalent load steps continued to inflate the LV and RV to 0:46 kPa

and 0:092 kPa, respectively. The final phase used one load increment, which was one quarter

of the magnitude of that used in the first phase, to reach the final pressures. Each load step

consisted of between eight and twelve full Newton iterations. On average, each iteration took

approximately 8m 23s (CPU) on a single R10K processor, of which about 7m 13s (CPU)

was spent calculating the global solution matrix and 50s (CPU) was spent solving the linear

equations.

At LV and RV pressures of 0:4 kPa and 0:08 kPa, respectively, this model predicted an

increase of the LV volume from 32ml to 38ml and a decrease of the RV volume from 27ml to

20ml. Moreover, the model predicted an 8mm translation of the base along the long axis of

the LV, away from the apex. However, the apex also ascended, which resulted in an average

apex-to-base length increase of approximately 3mm (4%).

Perhaps the most striking observation with this model is an undesirable “apical pinching”, as

illustrated in Figure 6.12. This limitation can be explained in part by the nature of the prolate

spheroidal coordinate system, as discussed below.
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(a) Unloaded, residually stressed state. (b) Inflated to LV:0:4 kPa and
RV:0:08 kPa.

FIGURE 6.12: Diastolic ventricular deformation with λ fixed at all epicardial nodes on
the basal ring. Note how the deformed apical portions of the LV have
“pinched”.

The boundary conditions of this model constrained nodes on the basal ring to lie within

surfaces of constant λ, which arc toward and perpendicularly cross the long axis of the LV (or

x-axis, as shown in Figure 6.13). Therefore to inflate the ventricles while maintaining tissue

incompressibility, the basal ring moved away from the apex. As a consequence, the apex was

pulled towards the focus (d) of the prolate spheroidal coordinate system. To translate the

apical nodes along the x-axis in this manner, it was necessary to reduce their λ coordinates,

since µ was fixed for these nodes and θ bears no relation to the cartesian coordinates of

nodes on the x-axis (see Equation (3.21)). Moreover, as the value of λ decreases, surfaces

of revolution of constant λ approach the x-axis, as illustrated in Figure 6.13. Thus, the LV

acted as though it was being stretched around a rod oriented along the x-axis with one end at

the focus, beyond which the apex could not progress. Under these circumstances the prolate

spheroidal coordinate system placed unrealistic restrictions on the deformation of the apical

region.

To avoid apical pinching, one alteration to the above model could be to refine the apical

elements of the model. Alternatively, the axial movement of one of the apical nodes could

be constrained. Young et al. (1994) and Rogers et al. (1991) showed from tagged MRI

observations of the human heart that the apex remained approximately stationary during the

heart cycle. For this reason the latter option was investigated. Moreover, it reduced the
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FIGURE 6.13: “Apical pinching” using the prolate spheroidal coordinate system.
Surfaces of constant λ approach the x-axis as the value of λ decreases.

number of solution degrees of freedom and maintained an efficient computational model.

Using these boundary conditions, 332 variables were removed from the global system,

leaving 2080 solution variables to be determined. For this analysis, the solution procedure

was stable up to LV and RV pressures of 0:92 kPa and 0:184 kPa, respectively. However,

convergence could not be achieved beyond these loads. To reach these pressures, the solution

procedure required between seven and ten full Newton iterations for each of 46 equivalent

load steps. On average, each Newton iteration took approximately 8m 17s (CPU) on a single

R10K processor, of which about 7m 6s (CPU) was spent calculating the global solution

matrix and 51s (CPU) was spent solving the linear equations.

This small addition to the boundary constraints had a very significant effect on the global

mechanics of the ventricles. Under these conditions the motion of the basal ring was

adversely affected, as illustrated in Figure 6.14. Rather than a basal shift away from the apex,

this model predicted an axial shortening of approximately 6mm (9%), when subjected to LV

and RV pressures of 0:4 kPa and 0:08 kPa, respectively. At these pressures, the predicted

LV volume was 43ml (an increase of 11ml) and the RV volume was 30ml (an increase of

3ml). The apical pinching of the previous model was replaced by a somewhat more peculiar

deformation pattern, as illustrated in Figure 6.14.
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(a) Unloaded, residually stressed state. (b) Inflated to LV:0:4 kPa and
RV:0:08 kPa.

FIGURE 6.14: Diastolic ventricular deformation with λ fixed at all epicardial nodes on
the basal ring and at the apex. Note the marked longitudinal shortening
and abnormal apical deformation.

Katz (1992, p. 366) comments that the pericardial sac plays an important role in limiting

ventricular filling due to its low compliance. In the absence of such constraining loads, the

above model predicted excessive radial expansion and wall thickening. Consequently, the

basal ring descended towards the apex to maintain tissue incompressibility. This shows a

clear need to couple the ventricular mechanics model to a model of the pericardial sac. In

the absence of such a model, Section 6.3.2 presents a suitable alternative, in which the radial

motion of the epicardial nodes is constrained.

6.3.2 A simple pericardial constraint

To simulate the limiting effect of the pericardial sac during passive filling, the λ coordinate

plus all spatial derivatives of λ were fixed9 throughout the deformation for each epicardial

node in the model. The apex nodes were constrained to remain on the x-axis and rigid body

rotations were prevented by circumferentially fixing the central RV epicardial node on the

basal ring. Solution degrees of freedom and times for the ventricular mechanics model,

subject to this so-called pericardial constraint are reported in Section 6.2.3 on page 123.

9See footnote (6) on page 117.
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Figure 6.15 shows the reference state of the ventricles plus the deformed states at three

different stages of passive filling with (LV, RV) pressures of (0:4;0:08) kPa, (1:0;0:2) kPa

and (3:0;0:6) kPa, respectively.

Figure 6.15(b) illustrates the ventricular shape at the mid-diastolic cavity pressures. By this

stage, the basal ring had ascended away from the fixed apex by approximately 1mm or 2%

of the average apex-to-base dimension in the unloaded state. Moreover, the LV volume had

increased from 32ml to 41ml, while the RV volume had decreased from 28ml10 to 25ml.

At typical end-diastolic pressures (Figure 6.15(c)), the model predicted an axial stretch of

approximately 3mm (4%). By this stage, the LV volume had increased to 52ml and the RV

volume had decreased to 22ml. Ventricular cavity pressures were subsequently increased to

three times the magnitudes of the typical end-diastolic pressures (Figure 6.15(d)). At this

point, the long axis had stretched by approximately 6mm (8%), the LV volume had increased

to 70ml and the RV volume had decreased to 20ml.

The form of the pericardial constraint is perhaps too restrictive when considering the

physiological interaction of the pericardium with the ventricular myocardium. A less

restrictive alternative would be to externally constrain the ventricles by applying pericardial

pressures to the epicardial surfaces. These pressures vary significantly during the heart cycle

and their measurement has been a topic of considerable discussion (Tyson, Maier, Olsen,

Davis and Rankin 1984; Tyberg and Smith 1990; Hamilton, Dani, Semlacher, Smith, Kieser

and Tyberg 1994).

Perhaps the best alternative to the pericardial constraint is to couple the ventricular mechanics

model with a model of the pericardial sac. Such a model could consist of a thin layer of

pericardial elements, which exhibit high axial stiffness to simulate the low compliance of the

pericardium and low transmural shear resistance, to account for the ability of the pericardial

sac to slide over the epicardial surface. This thesis does not investigate these alternatives.

For current purposes, the pericardial constraint serves as a reasonable approximation to the

role of the pericardium in ventricular mechanics. For this reason, it is incorporated into the

120 element, ξ2-refined ventricular mechanics model (described on page 123) and used for

analysis of ventricular deformation and stress during diastole, presented in Chapter 7.

10The reference RV cavity volume for this model was slightly different to that listed in Table 6.5. This was
again due to the solution of the model subject to the residual strains and in the absence of boundary pressures to
determine the unloaded, residually stressed reference state. Refer to footnote (8) on page 128 and Section 5.1.2
for further explanation.



6.3 VENTRICULAR DISPLACEMENT BOUNDARY CONSTRAINTS 135

(a) Unloaded, residually stressed state. (b) Inflated to LV:0:4 kPa and
RV:0:08 kPa.

(c) Inflated to LV:1:0 kPa and
RV:0:2 kPa.

(d) Inflated to LV:3:0 kPa and
RV:0:6 kPa.

FIGURE 6.15: Diastolic ventricular deformation under the influence of the pericardial
constraint. As the ventricles were inflated, the walls thinned and the
longitudinal axis stretched.
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6.4 Modelling ventricular systole

Following the passive diastolic inflation phase of the heart cycle, the activation sequence

rapidly spreads through the ventricular walls. This wave electrically excites the myocardial

fibres, causing them to contract as it passes, and marks the onset of ventricular systole. At this

stage the atrioventricular valves close to prevent back surge of blood into the atria. Moreover,

the semilunar valves remain closed since the ventricular cavity pressures are less than the back

pressures in the great arteries. In accordance, this period of approximately 50ms is known as

the isovolumic contraction phase and continues until the ventricular cavity pressures reach

the impedance pressures of the great arteries. At this time the semilunar valves open and

the ejection phase begins. Sections 6.4.1 and 6.4.2 present models used to simulate the

isovolumic contraction and ejection phases of the heart cycle, respectively. Section 6.4.3

details the configuration of the LV and RV cavity models incorporated in the analysis of

systolic ventricular function in Section 7.3.

6.4.1 Simulating isovolumic contraction

To model the isovolumic contraction phase of the cardiac cycle, three non-overlapping

regions11 of elements are required. The ventricular wall elements are conveniently grouped

into one region, while the LV and RV cavities are defined by two further distinct regions of

elements. At the onset of contraction, the total volume of each ventricular cavity is fixed, but

the ventricular walls are free to change shape about them.

A very simple model is sufficient to reproduce the isovolumic behaviour of the ventricular

cavities. Cavity regions are chosen to comprise of incompressible elements. For trilinear

cavity elements, this introduces three geometric degrees of freedom for each node of the

mesh plus one hydrostatic pressure variable per element to be determined. At this stage,

it is assumed that all geometric parameters are known for the undeformed and deformed

configurations. This assumption is qualified below, in the discussion on coupling the cavity

regions with the ventricular wall region.

For simplicity, it is convenient to couple together all hydrostatic pressure variables within a

cavity region. Hence during the solution procedure there is just one undetermined variable

per cavity region — namely the ventricular pressure. Cavity pressures are determined using

11A region is a convenient grouping of elements in a FE model. Non-overlapping neighbouring regions may
be governed by different models, but must satisfy compatibility conditions at their interfaces.
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one global constraint for each cavity region, which simply equates current volume of the

cavity to its initial volume. Note that this condition is applied as a hard constraint and not

a Galerkin weighted residual, as opposed to the incompressibility constraint for ventricular

wall elements (see Section 3.4.2).

The next step is to couple the cavity regions to the ventricular wall region. In essence,

the cavity regions act as feedback mechanisms to weakly constrain the deformation of the

ventricular wall region through two levels of coupling. In the first instance, positions of

the external nodes for the cavity elements are coupled to the endocardial nodes of the wall

elements on the wall–cavity interfaces. Hence, as the wall region contracts there is a tendency

to reduce the size of the cavities. On the other hand, the cavity regions are constrained to

be strictly isovolumic, and so under these circumstances the hydrostatic (cavity) pressures

increase. The second level of coupling is to apply the LV and RV cavity pressures as

boundary constraints on their respective endocardial surfaces of the ventricular wall region.

This feedback coupling provides the loads against which the ventricular wall contract. The

result is that as ventricular contraction proceeds, cavity pressures increase, while cavity

volumes remain constant. This continues until the ventricular cavity pressures exceed outflow

impedances — namely the aortic and pulmonary pressures — at which stage the semilunar

valves open, marking the onset of the rapid ejection phase.

6.4.2 Ventricular ejection

The ejection phase begins with the opening of the semilunar valves. Blood is rapidly pumped

from the LV and RV into the aorta and pulmonary artery, respectively. This occurs at

relatively high physiological pressures — LV and RV pressures rise to approximately 15 kPa

and 3 kPa, respectively, during the normal heart cycle — due to the high impedances in the

great vessels. To accurately simulate this behaviour, a detailed model of the fluid mechanics

within the ventricles and great arteries is required. In the absence of such a model, a simple

arterial impedance model is presented here.

To simulate the ejection of blood from the ventricles, clearly the ventricular cavities must

have the ability to contract. To achieve this, a simple extension to the isovolumic contraction

model of Section 6.4.1 is sufficient. If the elements of a cavity region are arranged such

that there is one free node (not shared by the ventricular wall region) at the basal surface of

the mesh, then this node can be constrained to move in such a manner as to permit cavity

contraction, while still obeying the constant volume conditions placed on the cavity mesh.

In this way, the volume of blood within each cavity may decrease as the ventricular walls
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impedance
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(a) Pre-ejection.
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(b) Ejection.

FIGURE 6.16: Contraction of the ventricular walls forces the basal cavity node to move
against an impedance to simulate the ejection of blood against an arterial
back pressure.

contract.

With reference to Figure 6.16, consider a ventricle represented by two wall elements

surrounding two ventricular cavity elements, which share one free basal node. Motion of this

central node is fixed in two of the three spatial coordinates (λ and θ), leaving its longitudinal

(µ) displacement to be determined. This adds just one degree of freedom to the model, which

is determined using a constraint of the form in Equation (6.8). Note that this constraint

is applied in the standard Galerkin fashion — the basis function used to approximate the

deformed geometry (Ψµ) appears as the weighting function in the residual equation, which

is integrated over each element Ωe.

Z

Ωe

(k∆µ+∆p)ΨµdΩe = 0 (6.8)

where ∆µ is the longitudinal displacement, ∆p is the difference between the reference (pre-

ejection) and current cavity pressures, and k is an impedance parameter which may be varied

to adjust the ejection characteristics of the cavity.

The basic premise behind this constraint is to provide a mechanism to simulate the effect of
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arterial resistance on the ventricular myocardium during the ejection phase of the cycle. This

model make no provision for the inertial and viscous properties of blood. If the effects of

these properties were important, they could be incorporated by coupling a model of the fluid

dynamics within the cavities and great vessels with the ventricular wall model.

The amount by which the cavity contracts can be in part controlled by variations of the

impedance parameter, k, in Equation (6.8). For large impedances, movement of the free

basal node is greatly penalised, and so the volume of blood in the cavity remains almost

exactly constant. Therefore, as the ventricular myocardium contracts, the cavity pressures

rise. This is useful for simulating the isovolumic contraction phase of the cycle.

Once cavity pressures reach pre-defined limits (namely the blood pressures in the great

vessels), the impedance parameter may be reduced to permit the free basal node to move out

of the cavity as shown in Figure 6.16(b). The amount by which the node moves determines

the volume of blood ejected by the ventricle. An alternative to varying the impedance is to

fix it throughout systole to a value based on the mean arterial blood pressure. In this way

sudden changes in flow rate will not occur, but there will be a graded ejection of blood as the

level of contraction increases. Further investigation is required to determine which of these

alternatives (if either) is suitable for the analysis of ventricular ejection.

6.4.3 Ventricular cavity models

The most suitable model to study the passive mechanics of the ventricles was the 120 element

model, derived from one full longitudinal refinement of the anatomically accurate 60 element

ventricular model (see Section 6.2.3 for details). To investigate the contractile phase using the

model of ventricular systole described above, it was necessary to construct a mesh for each

ventricular cavity. To couple the wall and cavity models, inter-surface mesh compatibility

was required. This was achieved by incorporating the endocardial nodes of the ventricular

wall region into the cavity models. Figure D.4 on page 216 illustrates the node and element

numbering for each ventricular cavity mesh.

6.5 Summary of the ventricular mechanics model

The 60 element FE model of ventricular anatomy (described in Section 4.4) was used as the

starting point for an accurate analysis of the mechanics of the deforming ventricles. The



6.5 SUMMARY OF THE VENTRICULAR MECHANICS MODEL 140

analysis was based on the FEM for finite deformation elasticity, which was validated in

Section 6.1. For spatial convergence of the strain distributions, refinement of the anatomical

model in the longitudinal (µ) coordinate was necessary (see Section 6.2.3). The resulting 120

element anatomically accurate ventricular mechanics model incorporated tricubic Hermite

interpolation for the radial (λ) coordinate, while the longitudinal (µ) and circumferential (θ)

coordinates and the hydrostatic pressure field were approximated using trilinear Lagrange

basis functions. 27 point Gaussian quadrature, with three points along each ξ coordinate, was

incorporated to evaluate the element integrals. The FE mesh configuration for the ventricular

walls is presented in Appendix D.

Passive diastolic inflation was simulated by applying fixed boundary pressures on the

endocardial surfaces of the ventricles (Section 6.2.2), and the limiting influence of the

pericardial sac on ventricular deformation was approximated using a simple pericardial

constraint (Section 6.3.2). The CMISS command file used to analyse passive ventricular

inflation is listed in Appendix E.1 on page 217. Section 7.2 compares model predictions with

experimental observations during ventricular diastole.

To investigate systolic ventricular function, a simple model of the myocardial contraction

was incorporated into the passive ventricular mechanics model described above. Contractile

forces developed by myocardial fibres were approximated by the steady state
�
Ca2+

�
–tension

relation, described in Section 5.2.1. Active and passive components were combined to

describe the complete state of stress at all instances.

The isovolumic contraction and ejection phases were simulated using FE models of the

ventricular cavities to conveniently control their volumes without directly constraining the

ventricular walls (see Sections 6.4.1 and 6.4.2). The FE mesh configuration of the ventricular

cavity models is illustrated in Appendix D. For compatibility, cavity models approximated

λ using bicubic Hermite/linear Lagrange interpolation (it was sufficient to use a linear

approximation for λ to compute cavity volumes). Trilinear Lagrange basis functions were

used for µ and θ, and the hydrostatic (cavity) pressure field was approximated using constant

interpolation throughout each cavity. Systolic ventricular function was investigated using

this coupled model and a comparison of model predictions with experimental observations

is presented in Section 7.3. The CMISS command file used to analyse ventricular systole is

listed in Appendix E.1 on page 224.



Chapter 7

Deformation and stress in the beating

heart

The anatomically accurate ventricular mechanics model of the ventricles developed in

Chapter 6 was used to analyse deformation and stress in the beating heart. The geometry and

microstructural architecture of the ventricles were efficiently described using 120 elements

with high order FE interpolations of nodal parameters. The analysis was based on the theory

of finite deformation elasticity, developed in Chapter 2, since large deformations occur during

the heart cycle. Moreover, to be useful in practise, accurate and concise descriptions of the

material response of ventricular myocardium were incorporated. Chapter 5 describes the

microstructurally based “pole-zero” material law appropriate for passive response of heart

muscle, and a suitable quasi-static model to approximate the active forces generated by

myofibres during active contraction. The resulting nonlinear equations were solved using

the Galerkin FEM (Chapter 3) subject to appropriate boundary constraints, which include

the ventricular pressures acting on the endocardial surfaces and the limiting effect of the

pericardial sac.

This chapter uses the ventricular mechanics model to predict the deformation and stress

patterns throughout the myocardium during the normal heart cycle. A subset of the vast

amount of literature quantifying deformation and strain of the intact heart was used to assess

the accuracy of model predictions and suitability of assumptions. Section 7.1 quantifies

the residual strains and stresses in the ventricular myocardium at the end of the isovolumic

relaxation phase of the heart cycle. This is used as the reference state1 for the model.

Sections 7.2 and 7.3 presents model predictions during diastole and systole, respectively.

Predicted ventricular stress distributions during the heart cycle are also presented.

1The reference state is the ventricular configuration to which deformations and stress are referred.

141
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7.1 Residual stresses for the ventricular model

The concepts of residual strain and residual stress in intact ventricular muscle were introduced

in Section 5.1.2 together with a suitable method to incorporate these properties into the

ventricular mechanics model by use of the growth tensor in Equation (5.16). Using studies

that have quantified residual strain distributions in intact ventricular muscle (Omens and

Fung 1990; Rodriguez et al. 1993), the initial fibre extension ratios of Table 5.2 (on

page 100) were incorporated into the ventricular mechanics model.2 Internal equilibrium

was subsequently restored by applying the nonlinear FEM solution procedure to this model

in the absence of external loads.

Transmural distributions of the axial components of residual strain and stress in the lateral

LV free wall3 are presented in Figure 7.1. In the basal and equatorial regions, residual fibre

stresses were compressive near the subendocardium and tensile near the subepicardium. All

other components of residual stress were relatively small. In contrast, all components of

residual strain varied with similar magnitudes. The variation differences between stress and

strain components were likely to be due to the comparatively high stiffness along the fibre

axis as opposed to the other microstructural axes. The large residual fibre stresses were a

direct consequence of the residual fibre strains incorporated into the model. However, the

predicted maximum residual fibre stress was small compared to maximum end-diastole and

end-systolic fibre stresses, as illustrated in Figures 7.14 and 7.26, respectively.

7.2 Passive inflation during ventricular diastole

Passive ventricular function has been quantified using a variety of global mechanical indices,

including the diastolic cavity pressures and volumes, longitudinal elongation, and axial twist

of the base relative to the apex. Regional function has been quantified using diastolic strain

distributions referred to cardiac wall and fibre coordinate systems.

Many experimental studies have reported various aspects of in-vivo diastolic ventricular

2See footnote (3) on page 99.
3With reference to the finite element mesh of the ventricular mechanics model, illustrated in Appendix D,

elements 95 and 65 represented the near-base location (ξ 1 = 0:85; ξ2 = 0:25), elements 106 and 76
represented the equatorial region (ξ1 = 0:25; ξ2 = 0:25), and elements 116 and 86 represented the near-
apex location (ξ1 = 0:5; ξ2 = 0:25) of the lateral LV free wall. Element pairs are listed with the endocardial
element number first, followed by the epicardial element number. The transmural finite element coordinate ξ 3

was varied from zero to one in each element.
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FIGURE 7.1: Residual physical fibre strains and stresses at three transmural locations in
the unloaded lateral LV free wall. (a), (c) and (e) show axial components
of strain and (b), (d) and (f) show the corresponding axial components of
stress. Physical fibre components of residual shear strain were typically
small and the corresponding residual stresses were negligible.
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deformation. Techniques such as LV angiography, echocardiography and computed

tomography have provided largely qualitative observations of ventricular mechanics. More

quantitative regional observations have been reported in studies using pulse-transit ultrasonic

dimension transducers (Rankin, McHale, Arentzen, Ling, Greenfield and Anderson 1976),

piezoelectric crystals (Villarreal and Lew 1990), and implantable beads (Waldman et al.

1985; Omens et al. 1991; Rodriguez et al. 1992; Arts, Hunter, Douglas, Prinzen and

Reneman 1995). Moreover, finite element techniques have been used to interpret the

observations of the bead studies (Omens et al. 1991; McCulloch, Hunter and Smaill 1992)

in an efficient mathematical manner. A variety of experimental observations have been

considered below to assess the suitability and accuracy of the ventricular mechanics model

for the diastolic portion of the heart cycle.

7.2.1 Diastolic cavity pressure and volume variations

The global properties of the diastolic LV have been commonly characterised by the cavity

pressure-volume relation. Many studies have quantified this relationship using various

techniques in isolated, supported and in-vivo hearts. Typically researchers have fitted

their pressure-volume data using a range of empirical models, including exponential and

polynomial functions. Four canine studies have been selected to assess the accuracy of the

pressure-volume relationship predicted by the ventricular mechanics model. For comparison

purposes, the ventricular volume has been transformed into a percentage volume change

relative to the volume of the unloaded cavity, for which the cavity pressure is zero.

To quantify the passive properties of the intact LV, Nikolić, Yellin, Tamura, Vetter,

Tamura, Meisner and Frater (1988) fitted a logarithmic diastolic pressure-volume relation

to measurements from eight open-chest anaesthetised dogs. The mean estimated unloaded

volume for this study was V0 = 37ml. They proposed a model of the “average” canine

diastolic behaviour using Equation (7.1).

Pp =�14:6ln
(116�V )

79
for V >V0 (7.1)

where Pp is the positive portion of the pressure-volume relation and V is the LV cavity

volume. This relation is represented by the dashed line in Figure 7.2. The main drawback

with this study was the need to estimate ventricular volume from the ventricular weight, due

to the inability to measure absolute volumes.

McCulloch, Smaill and Hunter (1989, Fig. 2) measured the passive LV volume change for a
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FIGURE 7.2: Diastolic pressure-volume relations for the canine LV. The ventricular
mechanics model (�) predicted realistic diastolic stiffening of the LV
compared to the experimental studies (see text for details). Error bars
show standard deviations.

range of cavity pressures averaged over eleven static loading cycles in six isolated potassium-

arrested canine hearts. The normalised pressure-volume relationship is represented by

asterisks (�) in Figure 7.2, with volume changes expressed as mean � SD. In this study,

the mean ventricular cavity volume at zero pressure was 40ml.

In seven isolated potassium-arrested canine LVs, Omens et al. (1991, Fig. 3) obtained

stable passive pressure-volume curves up to LV pressures of 2:7 � 4 kPa (20 � 30 mmHg).

Mean changes in LV cavity volume were reported for each of four pressure loads. The

mean unloaded LV cavity volume was not quantified in this study, but an unloaded volume

of approximately 20ml was reported for one heart. This volume was used to normalise

the reported volume changes. The normalised passive pressure-volume relationship is

represented by triangles (4) in Figure 7.2, with volume changes expressed as mean � SD.
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McCulloch et al. (1992, Table 3, Fig. 2) reported LV pressure versus percentage volume

change for five isolated potassium-arrested dog hearts subjected to static pressure loading.

These observations are represented by box symbols (�) in Figure 7.2, with volume changes

expressed as mean � SD. The reported mean unloaded LV volume was 36 � 8ml (SD).

The ventricular mechanics model was passively inflated to LV and RV pressures of 3:0 kPa

(22:5 mmHg) and 0:6 kPa (4:5 mmHg), respectively, using thirty equal load steps. The LV

volume was computed at each step, for which the model had converged to an error tolerance

of 10�3. Volume changes were normalised by the unloaded LV volume of 32ml. The

predicted normalised passive pressure-volume relationship is represented by diamonds (�)

in Figure 7.2. It is clear from this comparison that the ventricular mechanics model predicted

sufficiently realistic diastolic pressure-volume characteristics.

7.2.2 Apex-to-base elongation during diastole

Rankin et al. (1976, Tables 1 and 2) used pulse-transit ultrasonic dimension transducers to

measure global dynamic dimensions from eight dogs. They reported an end-diastole apex-

to-base length (to the top of the left atrium) of 79 � 1mm (SEM) at a left ventricular end-

diastolic pressure (LVEDP) of 1:8 � 0:1 kPa (13:7 � 0:8 mmHg [SEM]). During diastole,

Rankin et al. (1976, Fig. 2) observed an apex-to-base length increase of approximately 5mm

or 7% of the apex-to-base length at the onset of ventricular filling. At a LVEDP of 1:8 kPa

and a right ventricular end-diastolic pressure (RVEDP) of 0:36 kPa (3 mmHg), the ventricular

mechanics model predicted a similar average apex-to-base length increase of approximately

6%, from 73mm to 77mm. Note that this comparison excludes the apex-to-base lengthening

which normally occurs during the isovolumic relaxation phase of diastole.

Rankin et al. (1976, Fig. 2) observed nonlinear dynamic length changes, with the major

proportion of the diastolic dimension change occurring during the rapid filling phase. The

rate of longitudinal length change decreased as the LV pressure increased during diastole.

Figure 7.3(a) illustrates a similar characteristic as predicted by the ventricular mechanics

model. The quasi-static nature of the model made it difficult to assess the accuracy of these

predictions, since the time-varying pressure changes observed in-vivo were not accounted

for in the model. It is interesting to note, however, that the predicted apex-to-base length

increased approximately linearly with normalised volume, as illustrated in Figure 7.3(b).
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FIGURE 7.3: Percentage increase in the longitudinal apex-to-base dimension (∆ A-
B length) during passive diastolic inflation of the ventricular mechanics
model. Length changes are normalised with respect to the apex-to-base
length of the unloaded ventricles. Not included here is the apex-to-
base lengthening, which normally occurs during the isovolumic relaxation
phase of diastole.

7.2.3 Apex-to-base twist during diastole

Many experimental studies have reported various observations related to the LV twist during

the cardiac cycle. However, much of this work has been limited to the systolic phase of

the cycle. Naturally, diastolic torsion may be estimated by assuming that it is of the same

magnitude and of opposite handedness to the systolic measurements. For current purposes,

however, this is of little use due to the nature of the different phases of diastole and the

choice of reference state (see below). Of greater applicability are experiments which have

quantified torsion throughout each phase of the cycle. Two such studies have been cited

below to compare with predictions from the ventricular mechanics model.

When measuring ventricular deformations, an appropriate choice of the reference state is

essential. Many experimental studies have referred torsion to either the end-diastolic or end-

systolic configuration. However, this is not appropriate for the ventricular mechanics model,

which refers deformation to the unloaded, residually stressed state. The most suitable in-vivo

reference state is the ventricular configuration at the end of the isovolumic relaxation phase

of diastole, at which stage the cavity pressures and elastic strain energy of the myocardium
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are small. Note that the ventricular twist, which normally occurs during the isovolumic

relaxation phase of diastole, is excluded from this comparison.

Beyar, Yin, Hausknecht, Weisfeldt and Kass (1989, Tables 1 and 3) measured the dynamic

relationship between circumferential rotation and long axis position throughout the cardiac

cycle in the LV midwall of six dog hearts (four open-chest and two closed-chest) using

radiopaque markers. For each experiment, differences between the y-z in-plane angle of

the markers for the deformed state and their positions at end-diastole (∆Θ), were plotted

against the long axis distance from the apex (x). When viewed along the long axis from

the apex, ∆Θ was defined to be positive for anticlockwise marker rotations. LV twist

was quantified by the slope of the x-∆Θ relation (calculated using linear regression). At

end-systole, the mean x-∆Θ slope was �3:21 � 0:97 degrees=cm (�0:056 � 0:017 rad=cm

[SD]), which corresponded to a maximal apex-to-base rotation of 13:4 � 5:4� (SD). From

these observations the average apex-to-base length was approximately 13:4=3:21 = 4:2cm

(this was not reported). During isovolumic relaxation they reported substantial LV untwist

(48 � 20% [SD] of the total systolic twist), despite only an approximate 15% increase in

the mean radial dimension from end-systole. During this phase, the average slope of the x-

∆Θ relation was 1:60� 1:03 degrees=cm (0:028� 0:018 rad=cm [SD]). During mid-diastole

the average x-∆Θ slope was 1:49 � 0:57 degrees=cm (0:026 � 0:010 rad=cm [SD]), which

corresponded to 48 � 17% (SD) of the total systolic twist. Thus approximately half of the

diastolic torsion occurred during isovolumic relaxation and approximately half during mid-

diastole. This emphasises the need to interpret reported measurements of diastolic torsion

with care.

Figure 7.4 illustrates the average x-∆Θ relations for the epicardial and LV endocardial

surfaces, as predicted by the ventricular mechanics model for the normal end-diastolic state,

with a LVEDP of 1:0 kPa (7:5 mmHg) and a RVEDP of 0:2 kPa. Note that the epicardial

surface incorporated the RV. For each surface, ten nodal angular displacements were averaged

for each of seven different axial locations. For comparison purposes, the predicted average

LV endocardial rotation at the apex (�26�) has been omitted from Figure 7.4. One source of

error for the apical region is the absence of fibre imbrications in the ventricular mechanics

model. Misrepresentation of the fibre direction near the apex (where myofibres descend

steeply into the ventricular wall) undoubtedly affected the predicted circumferential rotation

for the apical region. These localised inaccuracies may also indicate a need for further mesh

refinement in this region of the ventricular mechanics model. The model predicted a slight

decrease in the average epicardial rotation from equator to base. On the other hand, the

predicted average LV endocardial rotation increased from equatorial to basal locations.
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FIGURE 7.4: Average end-diastolic long axis rotation (∆Θ) as a function of longitu-
dinal location and referred to the unloaded state. Positive angles repre-
sent anticlockwise rotations as viewed from the apex towards the base.
Symbols show predictions from the ventricular mechanics model with
LVEDP: 1:0 kPa (7:5 mmHg) and RVEDP: 0:2 kPa (1:5 mmHg). The
dashed line represents the measured torsion gradient from one experimen-
tal study (see text for details).

To compare model predictions with the observations of Beyar et al. (1989), it was most

appropriate to use the reported mid-diastolic slope of the x-∆Θ relation, since the onset

of this phase approximately coincided with the reference state of the model. Moreover,

the reported slope had been computed from the absolute axial length, so for the present

comparison, this slope was normalised by the average apex-to-base length (4.2cm) from the

study. Note that the ∆Θ-intercept was arbitrarily chosen to be 2� (0:035 rad), as it was not

reported in the experimental study. This does not confound the twist comparison, since

the ∆Θ-intercept is equivalent to a rigid body rotation of the ventricles about the long axis.

The ventricular mechanics model underestimated the longitudinal rotations during diastolic

filling compared to the experimental recordings of Beyar et al. (1989), as shown in Figure 7.4.

Predicted LV endocardial rotation (�) varied slightly less than the measured torsion, however

the longitudinal variation of the average epicardial rotation (�) was fundamentally different.

Arts et al. (1995, Fig. 4) quantified the dynamic LV torsion versus normalised volume

relationship by tracking radiopaque markers in six open-chest dog hearts. Previous studies

by the same group defined LV torsion (γ) using Equation (7.2), which was equivalent to the

shear angle at the outer surface of their cylindrical model (Arts, Meerbaum, Reneman and
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FIGURE 7.5: Average diastolic long axis twist and torsion (relative to the unloaded state)
as a function of normalised LV volume (cavity volume normalised to total
wall volume). A positive angle represents an anticlockwise rotation (as
viewed from the apex) of the apex relative to a fixed base and is consistent
with a right-handed torsional deformation. Ventricular mechanics model
predictions at the epicardial (�) and LV endocardial (�) surfaces are
compared with torsional observations from one experimental study (see
text for details). ED denotes the predicted normalised cavity volume at a
typical physiological LVEDP of 1 kPa (7:5 mmHg).

Corday 1984; Arts, Veenstra and Reneman 1982).

γ =
�
αmv�αl p

�
� d

2h
(7.2)

where αmv and αl p are the angles of rotation at the mitral valve level (base) and low papillary

muscle level (near the apex), respectively, h is the axial distance between the mitral valve and

low papillary levels and d is the outer short-axis diameter of the mid-papillary (equatorial)

section.

In the latter study, the LV cavity volume was normalised to total wall volume and γ was

estimated by minimising the sum of squared distances between measured and predicted

marker positions, using a kinematic model of the left ventricle (Arts, Hunter, Douglas,

Muijtjens and Reneman 1992). During mid-diastole, the slope of the normalised volume-

γ relation was approximately �6� (this slope was not reported, but was estimated as

approximately �0:1 rad from Fig. 4 of Arts et al. (1995)).
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Figure 7.5(a) illustrates ventricular mechanics model predictions of the variations in average

epicardial and LV endocardial twist angles with normalised LV volume (normalised to the

total wall volume of 199ml, which included the RV wall). Predicted normalised volumes

ranged from 0:16 � 0:26 over the normal in-vivo range of diastolic pressures (0 � 1 kPa or

0 � 7:5 mmHg). Arts et al. (1995) calculated normalised volumes ranging from 0:2 � 0:8,

but did not report the wall volume. It is likely that the normalised volume range differences

arose from wall volume differences.

For each ventricular wall surface, the twist angle was determined by subtracting the average

rotation of the low-papillary level4 (αl p) from that of the basal level (αmv). The axial locations

of these two levels are labelled in Figure 7.4. Note that when viewed along the long axis from

the apex toward the base, anticlockwise rotations were defined to be positive. Thus a positive

twist angle represents a left-handed torsion, for which there is an increase in the clockwise

angular displacement from the basal level to the low-papillary level, as viewed from the apex.

In seven isolated potassium-arrested canine LVs, Omens et al. (1991, Fig. 6) quantified strain

components for the equatorial region of the anterior free wall during filling, using biplane

radiography of three transmural columns of radiopaque beads. They reported small negative

in-plane shear strains, which increased in magnitude with depth from the epicardium.

Negative in-plane shear strains were also measured for both the anterior and posterior LV

midwalls by Villarreal and Lew (1990), who implanted piezoelectric crystals in six open-

chest canine hearts. These observations are consistent with a left-handed torsion about the

long axis during passive filling. However, they contradict the right-handed torsion reported

by Arts et al. (1995, Fig. 4) for mid-diastole, even though all three studies quantified midwall

torsion of the LV.

Ventricular mechanics model predictions of surface torsion (γ) were calculated by substituting

the computed average twist angle into Equation (7.2). Figure 7.5(b) illustrates ventricular

mechanics model predictions together with the mid-diastolic slope of the volume-γ relation

from Arts et al. (1995, Fig. 4), as discussed above. At the LV endocardial surface, the

model predicted a left-handed torsion for diastolic filling, which is broadly consistent with

the observations of Omens et al. (1991) and Villarreal and Lew (1990). However, at the

epicardial surface, the model predicted a right-handed LV torsion, which increased with

LV volume during diastolic filling, which agrees with the observations of Arts et al. (1995)

4Nodes on the LV endocardium were grouped according to their longitudinal location. The seven groups
were labelled from A to G, with A identifying the apical node group and G identifying the basal node group.
Average circumferential rotations were computed for node groups at the basal (G) and low-papillary (E) levels.
Similar twist averages were computed for nodes on the epicardial surface.
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discussed above. The opposing torsional deformations predicted for the epicardial and LV

endocardial surfaces were possibly due to the transmural distribution of the fibre orientations

and it is likely that the changes in transmural wall thickness seen during the heart cycle (see

Section 7.2.5) are partially due to this ability of the endocardial and epicardial surfaces to

twist in opposing directions.

7.2.4 Diastolic principal strains

Regional ventricular deformation during the heart cycle has been quantified using various

strain measures by many in-vitro and in-vivo studies. Since strain provides a relative

measure of the local length changes, it is essential that comparisons between experimental

and predicted strain distributions are referred to the same (or suitably similar) reference states.

Moreover, careful consideration must be given to the coordinate system to which the strain

tensor is referred.

To quantify the maximum degree of myocardial stretch, the deformation may be characterised

using the principal components of strain, together with the axes along which these principal

strains are directed5. Among the vast amount of literature quantifying regional principal

strains, three studies have been selected to compare with predictions from the ventricular

mechanics model. Each of these studies quantified deformation with respect to the

unloaded, residually stressed configuration. In order to compare ventricular mechanics

model predictions with these studies, a similar reference state was determined by solving

the model in the absence of cavity pressures (see Section 7.1). In the following comparisons,

this unloaded, residually stressed configuration was used as the reference state to which

subsequent deformations were referred.

McCulloch, Smaill and Hunter (1987, Table 2) reported epicardial principal extensions6

for the equatorial region of the anterior (four hearts) and posterior (one heart) LV walls

of isolated potassium-arrested dog hearts. Homogeneous strain theory was used to quantify

deformation for LV cavity pressures up to 2:7 kPa (20 mmHg). Observations from this study

are represented by asterisks (�) in Figures 7.6–7.8.

In a similar study, McCulloch et al. (1989, Table 4) reported regional epicardial principal

5Principal strains and the axes along which they act may be determined by computing the eigenvalues and
eigenvectors of the strain tensor, respectively (see Section 2.1.2 on page 16)

6Principal components of strain (Ei) are related to the principal extensions (Λ i) using Ei = (λ2
i � 1)=2,

where the principal extension ratios, λ i = 1+Λi=100. Note that Ei, λi and Λi are all oriented in the same
direction.
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extensions and orientations for the passive LV filling of isolated potassium-arrested canine

hearts. Epicardial extensions were measured near the base, equator and apex of the anterior

and posterior LV walls. Anterior equatorial extensions were averaged over six hearts,

whilst anterior base and apex and posterior measurements were reported for a single heart.

Homogeneous strain theory was used to quantify deformation for LV cavity pressures up

to 1:7 kPa (13 mmHg). Observations from this study are represented by triangles (4) in

Figures 7.6–7.8.

Ventricular mechanics model predictions of the diastolic epicardial principal strains (E1,

E2) and direction (φ1) as a function of the LV pressure are represented by diamonds (�)

in Figures 7.6–7.8, respectively. The regional sites7were chosen to approximate the locations

described in the experimental studies.

The ventricular mechanics model predicted reasonable magnitudes of epicardial principal

strains at the basal and equatorial locations for the anterior wall. However, at the anterior

base the steeper slope of the second principal strain illustrated that in this region the material

properties of the model were more compliant than the experimental studies suggested and

possibly indicates a need to increase the stiffness associated with the myocardial fibre axis

(by reducing the limiting fibre strain or pole) for this region. At the anterior apex site, the

ventricular mechanics model clearly exhibited stiffer properties than the experimental studies.

Similar principal strain comparisons were illustrated for the posterior wall and the ventricular

mechanics model consistently exhibited stiffer properties than the experimental studies,

especially near the apex. Discrepancies at the apex may indicate the need to incorporate

fibre imbrications for the apical regions of the ventricular mechanics model.

Several shortcomings of the ventricular mechanics model may have been responsible for

the unfavourable comparisons near the apex. Firstly, the model assumed that the myocytes

lay in the plane of the ventricular wall (the imbrication angle was assumed to be zero

throughout the model). This was broadly consistent with the microstructural observations

7Ventricular mechanics model locations selected for the two-dimensional principal epicardial strain
comparisons were:

Location Element number ξ1 ξ2

(a) Anterior base 63 0:25 0:25
(b) Posterior base 68 0:50 0:25
(c) Anterior equator 74 0:75 0:25
(d) Posterior equator 78 0:50 0:25
(e) Anterior apex 85 0:25 0:25
(f) Posterior apex 88 0:50 0:25

ξ3 = 1 for all epicardial sites (see Appendix D for details of the element configuration).
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FIGURE 7.6: Regional variation of the epicardial 2D maximum principal strain (E1) ver-
sus LV pressure during diastole. Ventricular mechanics model predictions
(�) are compared to the experimental observations of McCulloch et al.
(1989, 4) and McCulloch et al. (1987, �). See text for explanation.
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FIGURE 7.7: Regional variation of the epicardial 2D minimum principal strain (E2) ver-
sus LV pressure during diastole. Ventricular mechanics model predictions
(�) are compared to the experimental observations of McCulloch et al.
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of Streeter et al. (1969), except near the apex, where myocytes descend steeply into the wall.

Clearly, a misrepresentation of the structure near the apex would have given rise to erroneous

predictions of local deformation. Secondly, further model refinement may have been

advantageous near the apex, as discussed in Section 6.2.3. Moreover, differences may have

arisen due to the fact that not all of the material properties used in the ventricular mechanics

model were estimated from experimental studies (see Table 5.1 on page 97). Nevertheless,

it is interesting to note that the ventricular mechanics model predicted predominantly greater

compliance for the base and equator of the anterior wall in comparison to predictions for the

posterior wall. On the other hand, the anterior apex was marginally stiffer than the posterior

apex, based on the model predictions.

In comparison to the experimental studies, the ventricular mechanics model predicted

markedly different orientations of the maximum principal strain, as illustrated in Figure 7.8,

but large variations in the reported principal angles made this comparison difficult. From

six hearts, McCulloch et al. (1989) reported large standard deviations in the principal angle

for the anterior equator (Figure 7.8(c)), but at higher pressures the principal directions were

consistently clockwise from the circumferential axis. This is in good agreement with their

earlier study (McCulloch et al. 1987, n=4) and with the observations of Omens et al. (1991,

Fig. 4), who reported a 2D epicardial principal angle of approximately 45� clockwise to the

circumferential direction in seven isolated potassium-arrested dog hearts. The anticlockwise

principal angles predicted by the ventricular mechanics for the anterior equatorial LV wall

contradicted the experimental observations and reasons for this discrepancy remain unclear.

Interestingly, McCulloch et al. (1989, Fig. 6) illustrated anticlockwise principal directions

during early filling for the anterior equatorial region of one heart.

At all other locations in the experimental studies, principal angles were reported for just one

heart. Notably, in the latter study (McCulloch et al. 1989) the principal direction for the

posterior equator remained approximately circumferential, whereas McCulloch et al. (1987)

reported that the principal direction was > 45� clockwise from the circumferential axis.

Consistency of principal angles at different locations between different hearts is therefore

questionable and in this respect it is difficult to assess the suitability of ventricular mechanics

model predictions.

In seven isolated potassium-arrested canine LVs, Omens et al. (1991, Fig. 4) quantified three-

dimensional principal strains in the equatorial region of the anterior midwall using biplane

radiography of three transmural columns of radiopaque beads. Mean strains were reported

at four normalised volume changes, which corresponded to approximately 5ml increments

in LV volume. The corresponding LV pressures were estimated from Fig. 3 of Omens et al.



7.2 PASSIVE INFLATION DURING VENTRICULAR DIASTOLE 158

10LVP (mmHg) 5

LV pressure (kPa)

15 20
E

1

-0.2

-0.4

0

0.2

0 1 2 3 10050 75
LV volume increase (%)

E
1

-0.2

-0.4

0

0.2

0.4

0 25

10LVP (mmHg) 5

LV pressure (kPa)

15 20

E
2

-0.2

-0.4

0

0.2

0 1 2 3 10050 75
LV volume increase (%)

E
2

-0.4

-0.2

0

0.2

0.4

0 25

10LVP (mmHg) 5

LV pressure (kPa)

15 20

E
3

-0.2

-0.4

0

0.2

0 1 2 3 10050 75
LV volume increase (%)

E
3

-0.4

-0.2

0

0.2

0.4

0 25

FIGURE 7.9: 3D principal strains (E1, E2 and E3) versus LV pressure and volume at
the midwall of the anterior equatorial region during diastole. Ventricular
mechanics model predictions (�) are compared to the midwall principal
strains (mean � SD, n=7) of Omens et al. (1991, �). See text for
explanation.
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(1991) and the authors commented that the angle between the radial axis and the principal

axis of greatest thinning (E3) was < 1�. Observations from this study are represented by box

symbols (�) in Figure 7.9.

In comparison, the ventricular mechanics model (� in Figure 7.9) predicted realistic wall

thinning (E3) and minimum in-plane (E2) strains at the midwall of the anterior LV8. However,

the predicted maximum principal strain (E1) illustrated more compliance of the ventricular

mechanics model as opposed to the isolated potassium-arrested hearts. More realistic

predictions could have been achieved if the model had accounted for the heterogeneous

material properties of ventricular myocardium.

It is interesting to note that ventricular mechanics model predictions for the three-

dimensional midwall strains agreed more favourably with the experimental measurements

(Figure 7.9) than the epicardial principal strain predictions (Figures 7.6 and 7.7). This

may reflect a misrepresentation by the ventricular mechanics model of the rapid change

in the fibre orientation near the epicardium, although Figures 7.6 and 7.7 illustrate that the

ventricular mechanics model clearly underestimated the in-plane principal strain components.

These discrepancies were most likely to be due to the lack of spatial variation of the

myocardial material properties. Experimental observations of the midwall principal strain

distributions near the apex were not available for comparison with ventricular mechanics

model predictions.

7.2.5 End-diastolic strains referred to cardiac coordinates

To quantify myocardial deformations in terms of a topologically relevant system of local

coordinates, Meier, Ziskin, Santamore and Bove (1980) introduced the cardiac coordinate

system. Cardiac coordinates have been used by researchers to characterise ventricular

deformation in terms of components relative to the epicardial or endocardial wall surfaces.

Two such experimental studies are discussed below, but at this stage it is appropriate to briefly

introduce the system of local cardiac coordinates.

The orthonormal base vectors of the cardiac coordinate system, (wc;wl;wr), are illustrated

in Figure 7.10 and may be constructed by first considering a small surface tangential to the

heart wall. The circumferential base vector, wc, is defined by the intersection of the (ξ1;ξ2)-

8With reference to the finite element mesh of the ventricular mechanics model, illustrated in Appendix D, the
anterior equatorial LV wall location was represented by elements 104 and 74, with ξ 1 = 0:75 and ξ2 = 0:25.
The epicardial surface was selected by choosing ξ3 = 1 in element 74, the midwall location was selected by
choosing ξ3 = 1 in element 104 and the endocardial surface was selected by choosing ξ 3 = 0 in element 104.
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wall plane and the (y;z)-plane, and is oriented clockwise when viewed from the base toward

the apex. The longitudinal base vector, wl , is also defined to lie in the (ξ1;ξ2)-wall plane

and is perpendicular to wc. For convenience, wl is oriented in the opposite hemisphere to

the x-axis. The transmural or radial base vector is defined as wr = wc � wl and represents

the outward normal to the heart wall9. In the cardiac coordinate system, the six independent

components of the strain tensor are the circumferential (Ecc), longitudinal (Ell) and radial

(Err) normal strains, representing extensions along the three axes, and the in-plane shear

(Ecl) and transverse shears (Ecr and Elr), representing changes in the angles between the

corresponding pairs of undeformed coordinate axes.

z

x

wc

wl

wr

y

FIGURE 7.10: The base vectors of the local cardiac coordinate system, (wc;wl ;wr).

Omens et al. (1991, Fig. 6) computed end-diastolic strains referred to the cardiac coordinate

system for the equatorial region of the anterior midwall. Transmural strain distributions

were reported for seven isolated potassium-arrested canine hearts, except for at the most

endocardial depth, where data from only five hearts were available. Mean LVEDP was

1:1 � 0:5 kPa (8 � 4 mmHg). Generally, normal strain components decreased in magnitude

from the endocardium to the epicardium. Ecc and Ell were consistently positive, whereas Err

was negative, representing wall thinning. The mean in-plane shear was small and negative

and the transverse shears were negligible, with very small transmural gradients. Observations

from this study are represented by box symbols (�) in Figure 7.11, where the standard

deviations for the shear strain components were estimated from the ranges reported in the

Fig. 4 legend of Omens et al. (1991).

9In general, the cardiac coordinate system is different from the wall coordinate system, defined on page 78.
However, if the ξ1 base vector is chosen to lie in the (y;z)-plane (which is the case for all elements of the
ventricular mechanics model, except those adjacent to the base and apex), then the wall vectors and the base
vectors of the cardiac coordinate system are identical.
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FIGURE 7.11: Transmural distributions of 3D strain with respect to cardiac coordinates
at end-diastole (LVEDP: 1 kPa [7:5 mmHg]) for the equatorial region
of the anterior wall. Normal strain components (circumferential Ecc,
longitudinal Ell and radial Err) are shown on the left-hand-side and shear
strains (in-plane Ecl and transverse Ecr, Elr) are shown on the right-
hand-side. Ventricular mechanics model predictions (�) are compared to
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Newman et al. (1994, �, n=8). Error bars show standard deviations.
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Using similar methods, May-Newman et al. (1994, Fig. 4) quantified transmural end-diastolic

cardiac coordinate strains from the midanterior LV free wall of eight isolated potassium-

arrested dog hearts. LV pressure was 1:3 kPa (10 mmHg) and deformations were referred

to the unloaded, residually stressed ventricular state. Deformation trends were qualitatively

similar to the previous study and are represented by crosses (�) in Figure 7.11. The error bars

represent the standard deviations and were computed by multiplying the reported standard

errors of the means (SEM) by
p

n, where n = 8.

To assess the accuracy of the ventricular mechanics model, the LV and RV cavities were

inflated to 1:0 kPa (7:5 mmHg) and 0:2 kPa (1:5 mmHg), respectively. Predictions of the

normal strain components for the equatorial anterior wall10 (represented by diamonds [�] in

Figure 7.11) were generally within one standard deviation of the experimental observations.

Shear cardiac strain components achieved similar accuracy, however it is likely that the

subendocardial distribution of the transverse shear strain, Ecr, was inaccurate. It is plausible

that this discrepancy was due to the choice of material properties associated with the shearing

modes of deformation (see Section 5.1.1). Estimates of shear material properties based on

experimental measurements would clearly have been beneficial. It is interesting to note

that the axisymmetric model of the canine LV proposed by Guccione et al. (1995, Fig. 6),

which incorporated a transversely isotropic constitutive law into a geometrically accurate

description of the anterior LV free wall, also failed to reproduce the experimentally observed

transmural distribution of Ecr. The predominantly negative Ecr distributions during diastolic

filling indicate a greater anticlockwise twist of the endocardium relative to the epicardium as

viewed from the apex. This mode of deformation may be partially responsible for ventricular

wall thinning during diastole.

The predicted transmural distribution of the in-plane component of shear strain, Ecl, was

predominantly negative, as illustrated in Figure 7.11. This is consistent with a left-handed

torsional deformation about the longitudinal axis during diastolic filling, for which the apex

rotates clockwise with respect to a fixed base, as viewed from the apex. Predicted ventricular

torsion increased monotonically with wall depth and was maximal at the endocardial surface.

This agreed well with the experimental observations.

10See footnote (8) on page 159 for the finite element mesh location of the anterior equatorial wall.
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7.2.6 End-diastolic fibre strains

When referred to the microstructural material (fibre) coordinate system (described in

Section 4.2), strain components represent deformations experienced by the different

myocardial constituents. More specifically, the fibre strain (E f f ) is directly related to the SL

change during the deformation, the sheet strain (Ess) quantifies relative transverse separation

of myocytes within a sheet, and the sheet-normal strain (Enn) provides a measure of the

relative separation of myocardial sheets.

Direct measurement of the components fibre strain is made difficult by the complex

three-dimensional branching network of myocytes. To quantify in-vivo fibre strains,

researchers have generally measured segment length changes with respect to some

topologically based coordinate system (for example the cardiac coordinate system) and then

transformed computed strain components into the fibre coordinate system using post-mortem

measurements of the fibre orientations. Two such indirect studies are described below.

Omens et al. (1991, Fig. 8) reported the mean transmural in-plane fibre angle distribution

for the equatorial region of the anterior midwall in six isolated potassium-arrested dog

hearts. Fibre angles varied linearly from approximately�40� at the epicardium, to 70� at the

endocardium (errors were estimated to be up to 10�), where a positive angle represented

an anticlockwise rotation from the circumferential direction in the wall plane. Cardiac

components of strain at a LV pressure of 1:1 � 0:5 kPa (8 � 4 mmHg) were rotated to in-

plane fibre strains using interpolated fibre angles at the various wall depths (see Fig. 9 of

Omens et al. (1991)). The transmural distribution of fibre axis strain (E f f ) from this study is

represented by box symbols (�) in Figure 7.12.

Using similar techniques, May-Newman et al. (1994, Fig. 5) plotted mean transmural

fibre strains from the anterior LV free wall of eight isolated potassium-arrested dog hearts

inflated to a LV pressure of 1:3 kPa (10 mmHg). Fibre angles varied from �37 � 18� at

the epicardium to 70 � 24� at the endocardium. The resulting fibre strain distribution is

represented by crosses (�) in Figure 7.12.

Ventricular mechanics model predictions of the six independent fibre strain components in the

anterior equatorial wall11 are represented by diamonds (�) in Figure 7.12. For this analysis,

the LV and RV were inflated to 1:0 kPa (7:5 mmHg) and 0:2 kPa (1:5 mmHg), respectively.

The fibre axis strain (E f f ) was small and relatively uniform through the wall, and generally

within one standard deviation of the mean experimental distributions.

11See footnote (8) on page 159 for the finite element mesh location of the anterior equatorial wall.
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At the endocardial surface, the fibre and sheet angles were 76� and �41�, respectively,

corresponding to a sheet plane which lay oblique to the wall surface, with an almost

longitudinal fibre orientation. The large tensile sheet-normal strain (Enn) at the endocardial

surface signifies a marked sheet separation, which corresponds to the large circumferential

stretch for this region (see Ecc in Figure 7.11). The endocardial sheet strain (Ess) was

large and compressive (for incompressibility, since E f f was small), which corresponded

to ventricular wall thinning in this region (see Err in Figure 7.11). The large compressive

sheet/sheet-normal transverse strain (Esn) at the endocardial surface is consistent with

an anticlockwise epicardial twist relative to the endocardium, as viewed from the apex.

Interestingly, this twisting deformation was relatively small for the outer 80% of the wall,

due to the steep subendocardial gradient of Esn. The other shear components of fibre strain

were comparatively small. The small inter-element discontinuities were probably due to the

low order (linear Lagrange) basis functions used to interpolate the circumferential (θ) and

longitudinal (µ) geometric coordinates.

Rodriguez et al. (1992) described another approach to characterise dynamic fibre axis

deformations. SL distributions were reconstructed during the heart cycle using a combination

of in-vivo and post-mortem histological measurements. Triangular arrays of radiopaque

markers were implanted in the lateral equatorial LV free wall of a single canine heart to

determine local deformation gradients during the heart cycle. Subsequently, the heart was

arrested and fixed (this configuration was used as the reference state) and fibre orientations

were measured for the tissue triangles. Dynamic SL distributions at three transmural locations

were plotted as functions of LV volume (Rodriguez et al. 1992, Fig. 5), and showed that

SL remained almost constant during LV filling (from 20ml to 40ml). The resting SL was

1:96 � 0:09µm (SD) and the majority of the SL extension was reported to have occurred

during the isovolumic relaxation phase.

During filling SL was approximately 2:2µm in the epicardial layer. At the midwall location

(4mm below the epicardial surface) SL was approximately 2:25µm. For the deepest

layer (8mm from the epicardial surface and close to the endocardium) SL ranged from

approximately 2:3µm to 2:45µm and the authors speculated that this variation could have

been due to a non-homogeneous distribution of the radial strain component (the technique

assumed that deformation was homogeneous within each tissue triangle). These observations

are represented by dashed lines in Figure 7.13, where the volume increase has been expressed

as a percentage of the relaxed volume for comparison purposes.
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FIGURE 7.13: Diastolic sarcomere lengths (SL) at three locations within the lateral
equatorial LV wall. Ventricular mechanics model predictions (�) are
compared to the experimental observations of Rodriguez et al. (1992,
dashed lines).

SL changes predicted by the ventricular mechanics model12 (represented by � in Figure 7.13)

exhibited more compliant behaviour at all three depths in the lateral equatorial LV wall13.

than those reported by Rodriguez et al. (1992, dashed lines). In these experiments, ventricular

volume was controlled by a water filled latex balloon. Such a technique generally makes the

12For each depth, the predicted SL was computed from the fibre strain by calculating the fibre extension
ratio λ =

p
2E f f +1, and multiplying it by the SL reported by Rodriguez et al. (1992) at the onset of filling

— specifically, 2:2µm, 2:25µm and 2:3µm for the epicardial, midwall and subendocardial depths, respectively.
Note that these reference lengths were substantially greater than the reported resting SL (1:96µm). They were
selected because the reference state of the model corresponds to the onset of diastolic ventricular filling.

13With reference to the finite element mesh of the ventricular mechanics model, illustrated in Appendix D,
the lateral equatorial LV wall location was represented by elements 106 and 76, with ξ 1 = 0:25 and ξ2 = 0:25.
The epicardial surface was selected by choosing ξ3 = 1 in element 76, the midwall location was selected by
choosing ξ3 = 1 in element 106 and the endocardial surface was selected by choosing ξ 3 = 0 in element 106.
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ventricles appear stiffer than they actually are. In addition, the chordae tendineae were cut

to insert the balloon, which possible reduced the SL changes dues to the overestimation of

the axial lengthening during filling. Interestingly, Guccione, O’Dell, McCulloch and Hunter

(1997, Fig. 1) used a similar technique to reconstruct SL changes for six canine hearts and,

although the diastolic SL changes were not quantified, large SL increases were observed at

anterior and posterior midwall locations during diastolic filling.

7.2.7 End-diastolic fibre stress distributions

The ability of the ventricular mechanics model to reproduce realistic distributions of end-

diastolic strain, suggested that the predicted end-diastolic stress distributions that arose

from the finite element equilibrium equations (Equation (3.41)) were also physiologically

reasonable. During diastole, fibre stresses generally dominated all other predicted stress

components throughout the ventricles. Figure 7.14 illustrates anterior and posterior views of

the predicted epicardial and endocardial end-diastolic fibre stress distributions superimposed

on the inflated ventricles.

At end-diastole, the predicted tensile fibre stress was greatest near the endocardial region

of the apex, while small tensile stresses were predicted for epicardial fibres at apical and

equatorial regions. This is consistent with the SL increases observed in these regions during

diastole. On the other hand, small compressive fibre stresses were predicted for epicardial

regions near the base. This was likely to be due to the stiff constraining effects of the basal

ring on the mechanics of the ventricles.
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FIGURE 7.14: Predicted end-diastolic fibre stress distributions superimposed on the
inflated ventricles. Stresses are referred to the unloaded residually
stressed state. Lines represent element boundaries of the FE mesh.
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7.3 Active contraction during ventricular systole

Systolic ventricular mechanics has been quantified using a variety of methods. Techniques

for measuring in-vivo wall deformations have included the use of pulse-transit ultrasonic

dimension transducers (Rankin et al. 1976), cinéradiographic imaging of radiopaque beads

(Waldman et al. 1985) and non-invasive MRI using tissue tagging (Axel and Dougherty

1989a; Azhari, Weiss, Rogers, Siu, Zerhouni and Shapiro 1993). Moreover, finite

element techniques have been used to interpret observations of the bead studies (Omens

et al. 1991; McCulloch et al. 1992) and MRI tagging studies (Young and Axel 1992) in an

efficient mathematical manner. In this section, observations from several studies have been

considered to assess the suitability of the ventricular mechanics model predictions of systolic

deformation.

Due to the nature of the systolic model (see Section 6.4), experimental studies that distinguish

between the various systolic phases of the heart cycle were required for validation. However,

rather than independently identifying deformations during the isovolumic contraction and

ejection phases of the cycle, the majority of experimental studies have quantified general

systolic deformations with reference to the end-diastolic configuration. Where possible,

comparisons of predicted ventricular mechanics versus experimental observations have

been presented for the isovolumic contraction and ejection phases separately. For some

measures of deformation suitable experimental comparisons were not available, in which

case ventricular mechanics model predictions have been presented alone.

7.3.1 Systolic cavity pressure and volume variations

Isovolumic contraction

Many experimental studies have recorded peak ventricular cavity pressures during systole:

in eight closed-chest dogs, Rankin et al. (1976, Table 2) measured a mean peak systolic

LV pressure of 19:7 � 0:5 kPa (147:5 � 4:1 mmHg); in five open-chest dogs, Waldman

et al. (1985, p. 155) reported a mean end-systolic LV cavity pressure of 15:5 � 2:8 kPa

(116 � 21 mmHg); and in eight open-chest dogs, Le Grice, Takayama and Covell (1995)

reported mean end-systolic LV and RV cavity pressures of 14:7 � 1:1 kPa (110 � 8 mmHg)

and 4:4 � 0:8 kPa (33 � 6 mmHg), respectively.

To reproduce the ventricular cavity pressure increase during isovolumic contraction using
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FIGURE 7.15: Ventricular mechanics model predictions for LV and RV cavity pres-
sures as a function of the level of activation during isovolumic contrac-
tion. LV pressure (LVP) and RV pressure (RVP) are shown by diamonds
(�) and box symbols (�), respectively. At the onset of isovolumic con-
traction, haemodynamic variables were LVEDP: 1:0 kPa (7:5 mmHg),
RVEDP: 0:2 kPa (1:5 mmHg), LVEDV: 52ml and RVEDV: 22ml.

the ventricular mechanics model, cavity volumes were fixed at their end-systolic state and

the level of activation for the steady state
�
Ca2+

�
–tension relation (see Section 5.2.1) was

increased globally. In this simulation, the dynamic
�
Ca2+

�
heterogeneities, due to the spread

of electrical excitation, were not taken into account. Figure 7.15 illustrates the nonlinear

increase in the predicted ventricular cavity pressures with the level of activation during

isovolumic contraction.

Following the normal end-diastolic state of LVEDP: 1:0 kPa (7:5 mmHg), RVEDP: 0:2 kPa

(1:5 mmHg), LVEDV: 52ml and RVEDV: 22ml, the activation parameter (Caactn) was

gradually increased to 0:24, while the ventricular cavity volumes were held constant. By

this point, the LV and RV cavity pressures had increased to 9:2 kPa (69 mmHg) and

3:9 kPa (29 mmHg), respectively. Solution procedure convergence could not be achieved

for Caactn > 0:24. Reasons for this were not fully understood, but may have been due to

unrealistic deformations involving the RV. Although the predicted peak LV cavity pressure

was significantly lower than the reported observations, simulations of the ejection phase were

still useful for illustrating trends in the ventricular deformation variations.
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Ejection

Ventricular cavity volume changes during ejection have been quantified by many experimen-

tal studies. Among the studies on closed-chest dog hearts, Rankin et al. (1976, Table 2) mea-

sured a mean ejection fraction (EF) of 42 � 2% (eight hearts), Fann, Sarris, Ingels, Niczy-

poruk, Yun, Daughters, Derby and Miller (1991, Table 1) reported a mean EF of 38 � 7%

(eight hearts) and Azhari et al. (1993, p. H209) measured a mean EF of 46 � 5% (seven

hearts).

To simulate the ejection phase of the cardiac cycle using the ventricular mechanics model,

the cavity impedance parameter (see Section 6.4.2) was successively decremented until the

LV had ejected 44% of its end-diastolic volume to reduce to a capacity of 29ml. Predicted

volume changes for the RV cavity were somewhat unreliable (see below). By end-systole, the

LV and RV cavity pressures had decreased to 5:5 kPa (41 mmHg) and 1:6 kPa (12 mmHg),

respectively. Figure 7.16 illustrates the predicted cavity pressure and volume variations as

functions of the cavity impedance. Note that during these simulations, impedances for the LV

and RV cavities were equal at each step. Figure 7.17 illustrates the predicted pressure-volume

relationship for ventricular ejection.

Figure 7.16(b) and Figure 7.17 illustrate a physically unrealistic discontinuity for the RV

volume variation as the cavity impedance parameter was decreased. The RV volume

drastically increased as the cavity impedance parameter was decremented below 3.0. It is

possible that the nonlinear solution process may have switched between local minima (which

involved different RV cavity volumes) as the cavity impedance was decreased. A reduction

in the size of the cavity impedance decrement may have eliminated this sudden RV volume

change, but this was not investigated. Interestingly, the LV volume varied continuously and

dominated the global mechanics of the ventricles.

7.3.2 Apex-to-base shortening during systole

In eight closed-chest dogs, Rankin et al. (1976, Table 1) reported a mean apex-to-base

length (to the top of the left atrium) of 79 � 1mm at the beginning of ejection. By end-

systole, the apex-to-base length had shortened by 4:7 � 0:3% relative to the start of ejection.

The ventricular mechanics model overestimated this length decrease with approximately 8%

shortening, from 75mm at the beginning of ejection to 69mm at end-systole. Note that this

comparison may be confounded by the atrial length change, since model predictions were

based on the ventricular apex-to-base length.
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FIGURE 7.16: Ventricular mechanics model predictions for LV (�) and RV (�) cavity
pressures and volumes versus cavity impedance during ejection.
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FIGURE 7.17: Ventricular mechanics model predictions of the LV (�) and RV (�)
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Arts et al. (1982) measured base-to-apex and circumferential deformations in the anterior wall

of four open-chest dogs using an inductive method with a rotating magnetic field generating

coil and two sensing coils. Global deformations were expressed in terms of the base-to-apex

natural strain, εz and the natural volume strain, εv.14 Base-to-apex shortening was interpreted

using the ratio εz=εv, which was reported as 0:19 � 0:13. Arts et al. (1982, p. H386) also

reported a ratio of 0:24 from the study of Rankin et al. (1976), which was not significantly

different from their experimental result.

Comparative natural strains were computed from ventricular mechanics model predictions15

and the resulting ratio εz=εv was 0:85. It is likely that this overestimation was due to the

absence of the constraining effects of the papillary muscles in the ventricular mechanics

model. Interestingly, the simple cylindrical model of the LV proposed by Arts et al. (1982)

also overestimated ventricular shortening, with a natural strain ratio of 0:37.

Figure 7.18 illustrates apex-to-base shortening versus LV pressure and LV volume changes as

predicted by the ventricular mechanics model during ejection. Apex-to-base length decreased

approximately linearly with LV volume change, but tailed off with the decrease in LV

14Arts et al. (1982) computed the natural strains using ε z = ln(h=H) and εv = ln[(Vlv + Vw)=(Vlv0 + Vw)],
where h and H were the deformed and reference heights of the LV, respectively, V w was the ventricular wall
volume and Vlv and Vlv0 were the deformed and reference LV cavity volumes, respectively.

15At the beginning of ejection, the ventricular mechanics model predicted H = 75mm and V lv0 = 51ml. At
end-systole model predictions were h = 69mm and Vlv = 29ml. Ventricular wall volume was Vw = 199ml.
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FIGURE 7.18: Percentage decrease in the apex-to-base dimension (∆ A-B length)
during ejection as predicted by the ventricular mechanics model.
Shortening was referred to the apex-to-base length at the beginning of
ejection (75mm).

pressure.

7.3.3 Apex-to-base twist during systole

Beyar et al. (1989, Table 1) quantified systolic short axis rotation using radiopaque markers

in the LV midwall of canine hearts (refer to the description of this study on page 148 for more

detail). Ventricular twist was calculated as a linear regression slope of the relation between

the long axis coordinate (x) and the circumferential rotation relative to the end-diastolic state

(∆Θ). Anticlockwise rotations were defined to be positive when viewed from the apex

towards the base. The mean systolic x-∆Θ slope (twist) was �3:21 � 0:97 degrees=cm

(�0:056 � 0:017 rad=cm [SD]) and the apex-to-base length was estimated from the report

to be approximately 4:2cm (this was not reported – see page 148 for more detail). The

average twist from this study is represented by the dashed line in Figure 7.19(a), where the

∆Θ-intercept was arbitrarily chosen to be 20� (0:35 rad) for comparison purposes (it was not

reported). This does not confound the twist comparison, since the ∆Θ-intercept is equivalent

to a rigid body rotation of the ventricles about the long axis.
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FIGURE 7.19: Average systolic short axis rotation (∆Θ) as a function of longitudinal
location. Positive angles represent anticlockwise rotations as viewed
from the apex towards the base. Ventricular mechanics model predictions
of the average epicardial (�) and LV endocardial (�) surface rotations
are compared with observations from two experimental studies (dashed
lines). See text for details.
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Ventricular mechanics model predictions of the systolic short axis rotations are illustrated in

Figure 7.19(a). The predicted average epicardial rotation (�) showed a longitudinal variation

similar to the midwall twist measurements of Beyar et al. (1989) (dashed line). On the other

hand, the predicted average LV endocardial rotation (�) generally varied less as a function

of the long axis location compared to the measured twist, except towards the apex, where

predicted rotations oscillated. Possible reasons for these apical inaccuracies are discussed on

page 148.

The total systolic short axis rotation from Figure 7.19(a) has been separated into contributions

during the isovolumic contraction and ejection phases in Figures 7.19(b) and 7.19(c),

respectively. Clearly, ventricular mechanics model predictions show that the majority of

the systolic rotation occurred during isovolumic contraction phase.

Arts et al. (1984, p. 189) measured LV torsion during the ejection phase in nine closed-chest

dogs using two-dimensional ultrasonic echocardiography. The angle of rotation of the mitral

transverse section at the start of ejection was defined to be zero, and short axis rotations were

measured relative to this torsional reference. During ejection, the mitral valve plane rotated

7 � 3� clockwise (�0:119 � 0:054 rad [SD]) as viewed from the apex. In comparison, the

low-papillary level rotated 3� 4� anticlockwise (0:055� 0:067 rad [SD]). The low-papillary

level was assumed to be approximately two-thirds of the distance from the mitral valve plane

to the apex16 (this was not reported). The average twist from this study is represented by

the dashed line in Figure 7.19(c), where the ∆Θ-intercept was arbitrarily chosen to be 9�

(0:16 rad) for comparison purposes (it was not reported). The ventricular mechanics model

slightly underestimated the longitudinal twist measurements of Arts et al. (1984) for the

ejection phase, but the trend was similar.

Figure 7.20 illustrates the predicted relationship between average surface torsion and

normalised LV volume (normalised to the total wall volume) during ventricular systole. This

figure follows naturally from Figure 7.5(b) on page 150 for the diastolic phase of the heart

cycle. Average epicardial and LV endocardial surface torsions were computed using the

method described in Section 7.2.3 (refer to Equation (7.2) and footnote (4) on page 151 for

more detail).

Arts et al. (1995, Fig. 4) measured the dynamic LV torsion in the beating canine heart (refer

to the description of this study on page 149 for more detail). LV cavity volume and torsional

16Arts et al. (1984, p. 189) reported an axial distance between mitral valve and low-papillary levels of
42:4� 6:7mm (SD), but did not report the mean base-to-apex length. For comparison purposes, the normalised
distance from mitral valve to low-papillary level was estimated from the ventricular mechanics model to be
two-thirds of the base-to-apex length.
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FIGURE 7.20: Average systolic long axis torsion as a function normalised LV volume
(cavity volume normalised to total wall volume). A positive angle
represents an anticlockwise rotation (as viewed from the apex) of the
apex relative to a fixed base and is consistent with a left-handed torsional
deformation. Ventricular mechanics model predictions for the epicardial
(�) and LV endocardial (�) surface torsion have been computed for the
isovolumic contraction and ejection phases of the cardiac cycle. The
cross represents the unloaded, residually stressed ventricular reference
state.

deformation were referred to the post-mortem state. Direct comparison of Figure 7.20 with

Fig. 4 in Arts et al. (1995) verifies that ventricular mechanics model predicted a realistic

right-handed epicardial torsion, which increased during isovolumic contraction. However,

during this phase the model predicted an increasing left-handed LV endocardial torsion,

which remains to be verified experimentally.

For the ejection phase, Arts et al. (1995, p. 389) measured a mean slope of the relation

between LV torsion and the logarithm of the normalised cavity volume of�0:173� 0:028 rad

(SD). Thus left-handed LV torsion increased as the cavity volume decreased during ejection.

For reasons that are not well understood, this could not be reproduced using the ventricular

mechanics model. As illustrated in Figure 7.20, the predicted average left-handed torsion

slightly decreased at both the epicardial and LV endocardial surfaces during ejection.
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7.3.4 End-systolic principal strains

The majority of experimental studies that have quantified end-systolic distributions of strain

have used the end-diastolic configuration as the reference state. Three such studies have

been selected to assess the accuracy of end-systolic principal strain distributions predicted by

the ventricular mechanics model. In these studies, E1 represented maximum shortening and

E3 represented maximum stretch, which was generally associated with wall thickening. φ1

represented the angle to the axis of principal shortening in the plane of the ventricular wall,

where positive angles referred anticlockwise rotations from the circumferential direction.

Waldman, Nossan, Villareal and Covell (1988, Table 3) imaged columns of radiopaque

markers implanted in the anterior equatorial LV free wall of seven open-chest dogs. End-

systolic three-dimensional principal strains were computed with respect to the end-diastolic

reference state. The peak systolic and end-diastolic LV pressures were 16:6 � 2:5 kPa

(125 � 19 mmHg) and 0:6 � 0:2 kPa (4:7 � 1:5 mmHg), respectively. Observations from

this study are represented by crosses (�) in Figure 7.21.

Using similar methods, Villarreal, Lew, Waldman and Covell (1991, Table 2) measured

transmural distributions of end-systolic three-dimensional principal strains and directions

referred to the end-diastolic state in the anterior equatorial LV free wall of seven open-chest

dogs. The peak systolic LV pressure was 16:1� 2:9 kPa (121 � 22 mmHg) and LVEDP was

0:3 � 0:2 kPa (2:3 � 1:5 mmHg). Observations from this study are represented by triangles

(4) in Figure 7.21.

McCulloch and Omens (1991, Fig. 3) analysed the experimental results from a set of bead

studies by Waldman et al. (1985) using non-homogeneous strain analysis. End-systolic three-

dimensional principal strains referred to the end-diastolic state were computed for the anterior

LV free wall of six open-chest dogs. The peak systolic LV pressure was 15:5 � 2:8 kPa

(116 � 21 mmHg) and LVEDP was 0:7 � 0:3 kPa (5 � 2 mmHg). Observations from this

study are represented by plus symbols (+) in Figure 7.21.

End-systolic strains for the anterior equatorial LV wall17 computed using the ventricular

mechanics model (represented by diamonds [�] in Figure 7.21) were referred to the predicted

end-diastolic state for comparison with the experimental studies. Reasonable predictions

were produced for the maximum shortening (E1) and thickening (E3) strains, although it is

likely that the large subendocardial thickening was unrealistic. The discontinuities in the

distributions of E1 and E2 were due to the element interface in the LV midwall and may

17See footnote (8) on page 159 for the finite element mesh location of the anterior equatorial wall.
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FIGURE 7.21: Transmural distributions of 3D principal strain at end-systole (referred
to the end-diastolic state) for the equatorial region of the anterior
wall. Ventricular mechanics model predictions (�) are compared to the
observations from three experimental studies (see text for descriptions).
The predicted in-plane angle to the second principal strain (φ2) is shown
for comparison purposes (see text for details).

have revealed a need to either refine the model transmurally or increase the order of the

interpolation scheme within the wall plane.

The predicted subepicardial in-plane angle to maximum shortening (φ1) was realistic, but

for deeper wall locations there were fundamental differences between the predicted and

reported first principal angles. At approximately 25% of the wall thickness below the

epicardium, E1 and E2 reached similar magnitudes and there was a marked change in the

predicted principal angle, φ1 (this was not surprising, since the principal strains and axes were

arbitrarily ranked in order of strain magnitude). Interestingly, for the inner three-quarters of

the wall the predicted in-plane angle to the second principal strain (φ2) compared favourably
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with the reported φ1 measurements. This was not the case at the midwall, however, where

the magnitudes of E1 and E2 were again very similar and the principal axes seemed to switch

orientations.

During diastole, the ventricular mechanics model was inflated to a LVEDP of 1 kPa

(7:5 mmHg) to reflect normal physiological conditions (see Section 7.2.1 for details).

However, end-diastolic pressures for the above experimental studies were slightly depressed,

which may have been due to a variety of reasons (open-chest, non-intact pericardium

and/or anaesthesia). On the other hand, the predicted peak systolic LV pressure from the

ventricular mechanics model (at the end of the isovolumic contraction phase) was 9:2 kPa

(69 mmHg) and clearly underestimated the reported peak pressures. These differences

confounded the comparison between the experimental and predicted end-systolic principal

strain distributions.

7.3.5 End-systolic strains referred to cardiac coordinates

Many experimental studies have reported end-systolic strains referred to cardiac coordinates

(see Section 7.2.5 for axis definitions). The majority of these studies have referred strains

to the end-diastolic configuration. Four studies have been selected to compare to ventricular

mechanics model predictions of end-systolic cardiac coordinate strain distributions.

From bead studies for the anterior equatorial LV free wall of seven open-chest dogs, Waldman

et al. (1988, Tables 1 and 2) computed end-systolic three-dimensional cardiac coordinate

strains with respect to the end-diastolic reference state. Observations from this study are

represented by crosses (�) in Figure 7.22.

Villarreal et al. (1991, Table 1) reported transmural distributions of end-systolic cardiac

coordinate strains with respect to the end-diastolic reference state, for the anterior LV wall in

seven open-chest dogs. Results from this study are represented by triangles (4) in Figure 7.22.

From the bead studies of Waldman et al. (1985), McCulloch and Omens (1991, Fig. 3)

computed end-systolic cardiac coordinate strains with respect to the end-diastolic reference

state, for the anterior LV free wall of six open-chest dogs. Observations from this study are

represented by plus symbols (+) in Figure 7.22.

Le Grice, Takayama and Covell (1995, Table 1) reported end-systolic cardiac coordinate

strains referred to the end-diastolic state for the anterior LV free wall of eight open-chest dog

hearts. Observed strains are represented by box symbols (�) in Figure 7.22. For this study, the
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peak systolic LV and RV pressures were 14:7� 1:1 kPa (110 � 8 mmHg) and 4:4� 0:8 kPa

(33 � 6 mmHg), respectively, and the LVEDP was 0:9 � 0:1 kPa (7 � 2 mmHg).

Ventricular mechanics model predictions of the end-systolic cardiac coordinate strains

(represented by diamonds [�] in Figure 7.22) were computed for the anterior equatorial

LV wall18 and were referred to the predicted end-diastolic configuration. Although

the longitudinal strain Ell was reasonably realistic, Figure 7.22 illustrates fundamental

differences between experimental and predicted strain distributions. Midwall predictions for

end-systolic strain components associated with the circumferential and radial coordinates

(particularly Ecc, Err, Ecl and Ecr) were unrealistic and compromised the accuracy of

their transmural variations. Moreover, there was a clear oscillatory nature to the radial

strain distributions, and the large subendocardial wall thickening strain Err was possibly

unrealistic. It is likely that these discrepancies were due to the homogeneous myocardial

material property distributions used for this analysis. Undoubtedly, spatially heterogeneous

material property estimates based on experimental tests of myocardial tissue would improve

the accuracy of ventricular mechanics model predictions.

7.3.6 End-systolic fibre strains

LeWinter, Kent, Kroener, Carew and Covell (1975, Tables 1 and 2) used pairs of ultrasonic

crystals to estimate fibre shortening in the anterior LV of open-chest dogs relative to their

end-diastolic lengths. Crystal pairs were implanted into the anterior LV midwall of six hearts

and oriented circumferentially to be parallel to the midwall fibre direction. For these studies,

the peak systolic LV pressure was 14:9� 0:6 kPa (112� 4:7 mmHg [SEM]) and LVEDP was

0:6 � 0:1 kPa (4:8 � 1:1 mmHg). Additional pairs of crystals were sewn to the anterior LV

epicardium of four hearts and oriented 70� clockwise from the circumferential direction to

approximate the fibre direction reported by Streeter et al. (1969). For these epicardial studies,

the peak systolic LV pressure was 16:4 � 1:3 kPa (123 � 9:8 mmHg [SEM]). Observations

from this study are represented by triangles (4) in Figure 7.23.

From bead studies for the anterior equatorial LV free wall of seven open-chest dogs, Waldman

et al. (1988, Tables 1 and 2) computed end-systolic fibre strains with respect to the end-

diastolic reference state. They found that in the outer portions of the wall, greatest shortening

occurred in fibre direction. In contrast, cross-fibre shortening was greatest for the inner wall

region. Observations from this study are represented by crosses (�) in Figure 7.23.

18See footnote (8) on page 159 for the finite element mesh location of the anterior equatorial wall.
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In ten closed-chest dogs, Rademakers et al. (1994, Table 1) used MRI tissue tagging to

compute fibre strains with respect to the end-diastolic configuration. In the plane of the wall,

the average fibre angles with respect to the circumferential axis (anticlockwise positive),

determined by pathological analysis, were �68:6 � 12:7�, 10:5 � 3:6� and 74:5 � 3:2�

for the epicardial, midwall and endocardial regions, respectively. The peak systolic blood

pressures was 19:1 � 0:9 kPa (143 � 7 mmHg). The in-plane fibre strain reported for the

equatorial region of the anterior free wall (referred to as location 4 in the study) is represented

by box symbols (�) in Figure 7.23.

The ventricular mechanics model was used to predict end-systolic fibre strains referred

to the predicted end-diastolic configuration (represented by diamonds [�] in Figure 7.23)

for the anterior equatorial LV wall.19 In comparison to the experimental studies, the

predicted transmural fibre strain distribution was realistic. However, unrealistic oscillations

were predicted for the axial sheet and fibre-sheet shear strain components (Ess and E f s,

respectively) and it is likely that the large subendocardial magnitudes of Enn and Esn were

also inaccurate.

Rodriguez et al. (1992, Fig.5) reconstructed dynamic SL changes as a function of LV

volume in a single isolated dog heart using radiopaque markers at epicardial, midwall

and subendocardial sites in the lateral free wall of the LV. At each depth, SL decreased

approximately linearly with volume during ejection. Results from this study are represented

by the dashed lines in Figure 7.24.

Guccione et al. (1997, Table 1) performed a similar study using six isolated dog hearts

and found that anterior and posterior SL changes at epicardial and midwall sites were

similar during ejection. Observations from this study are represented by the dotted lines

in Figure 7.24.

The ventricular mechanics model (represented by diamonds [�] in Figure 7.24) predicted

realistic SL changes during ejection for the epicardial and subendocardial regions, although

SL predictions showed a more rapid decrease with LV volume than was reported in the

experimental studies. Midwall SL predictions were greater during the ejection phase than the

diastolic phase, but this was not seen experimentally.

19See footnote (8) on page 159 for the finite element mesh location of the anterior equatorial wall.
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FIGURE 7.24: Systolic sarcomere length (SL) changes at three locations within the
lateral equatorial LV wall. Ventricular mechanics model predictions (�)
are compared to the experimental observations for the ejection phase
from two studies (see text for details).

7.3.7 Systolic fibre stress distributions

The ability of the ventricular mechanics model to reproduce realistic distributions of systolic

fibre strain, suggested that the predicted systolic stress distributions were also physiologically

reasonable. Figures 7.25 and 7.26 illustrate anterior and posterior views of the predicted

epicardial and endocardial fibre stress distributions superimposed on the deformed ventricles

at the end of isovolumic contraction and ejection phases of systole, respectively.

At the end of isovolumic contraction, small compressive stresses were predicted for the most

of the LV endocardium. However, it is likely that the large tensile stresses predicted for

regions near the apex and septal base are misleading. RV endocardial and epicardial fibre
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(a) Anterior epicardium. (b) Anterior endocardium.

(c) Posterior epicardium. (d) Posterior endocardium.
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FIGURE 7.25: Predicted fibre stress distributions superimposed on the deformed
ventricles at the end of isovolumic contraction. Stresses are referred
to the unloaded residually stressed state. Lines represent element
boundaries of the FE mesh.
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stresses were typically tensile.

At end-systole, small compressive stresses were also predicted for the majority of the LV

endocardium. However, it was likely that the large predicted tensile fibre stress near the

basal portions of the LV septal endocardium was due to the stiff basal constraints and may

be misleading. Interestingly, the large tensile stress near the endocardial apex at the end of

isovolumic contraction was not so pronounced by this stage. Large tensile fibre stresses were

predicted throughout most of the epicardial regions.

7.4 Ventricular mechanics simulation summary

The ventricular mechanics for three of the four main phases of the heart cycle were analysed.

In the absence of detailed and accurate models describing ventricular activation, myocardial

fibre force generation and cavity fluid mechanics, simple criteria were used to simulate the

diastolic filling, isovolumic contraction and ejection phases of the cycle. The isovolumic

relaxation (passive recoil) phase of diastole was not considered.

The diastolic filling phase inflated the unloaded, residually stressed ventricles (the most

appropriate reference state) to typical physiological end-diastolic LV and RV cavity pressures

of 1 kPa (7:5 mmHg) and 0:2 kPa (1:5 mmHg), respectively. During diastolic filling, the LV

volume increased from 32ml to 52ml, while the RV volume decreased from 28ml to 22ml,

since the LV dominated the disatolic mechanics. This was accompanied by an increase in the

LV long axis dimension from 73mm to 76mm.

Following end-diastole, the level of activation was increased consistently throughout the

myocardium from zero to 0:24 to simulate myofibre contraction, while the ventricular cavities

were held at their end-diastolic volumes. By the end of this isovolumic contraction phase the

LV and RV cavity pressures had increased to 9:2 kPa (69 mmHg) and 3:9 kPa (29 mmHg),

respectively, and the LV long axis dimension had decreased to 75mm.

Ventricular ejection was simulated by decreasing the afterload impedances imposed on each

of the cavities. End-systole occurred when the LV ejection fraction had reached 44%. By this

stage, the LV and RV cavity volumes had decreased to 29ml and 20ml, respectively, and the

LV and RV cavity pressures had decreased to 5:5 kPa (41 mmHg) and 1:6 kPa (12 mmHg),

respectively. During ejection the LV long axis dimension decreased by approximately 8% to

69mm.
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(a) Anterior epicardium. (b) Anterior endocardium.

(c) Posterior epicardium. (d) Posterior endocardium.
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FIGURE 7.26: Predicted fibre stress distributions superimposed on the deformed
ventricles at the end of ejection. Stresses are referred to the unloaded
residually stressed state. Lines represent element boundaries of the FE
mesh.
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Although the criteria to simulate the various cardiac phases were somewhat simplistic, several

different measures of deformation showed good overall agreement between ventricular

mechanics model predictions and experimental observations. However, these comparisons

highlight the need to introduce apical fibre imbrications and spatially varying material

property distributions to further reduce the localised inaccuracies in ventricular mechanics

model predictions.



Chapter 8

Limitations and applications of the

ventricular mechanics model

An anatomically accurate mathematical model of the ventricles was developed to predict

regional distributions of myocardial deformation and stress throughout the heart cycle.

The ventricular mechanics model was based on the nonlinear FEM for finite deformation

elasticity (see Chapters 2 and 3) and incorporated the biophysically based pole-zero material

law (see Section 5.1.1), with passive material properties based on biaxial tension tests

and microstructural observations of ventricular myocardium. Ventricular contraction was

incorporated into the model using a steady-state
�
Ca2+

�
–tension relation (see Section 5.2.1)

to approximate the active forces generated by the myofibres during systole.

Mechanical indices of heart performance and regional distributions of ventricular deforma-

tion were reproduced for the various phases of the heart cycle using the ventricular mechanics

model (see Chapters 6 and 7). Moreover the nature of the model made it possible to predict

regional myocardial stress distributions during the cycle.

When using a mathematical model as a means to predict the outcomes to various scenarios

in a physical system, careful consideration must be given to the assumptions and limitations

of the model. A number of criticisms of the ventricular mechanics model are suggested here.

1. Anatomical model: The model did not account for myocardial fibres that lie oblique to

the ventricular wall surfaces, since the imbrication angle was assumed to be zero at all

locations. The computational framework was developed to incorporate an imbrication

angle into the anatomical description (see Section 4.3.3), but the ventricular mechanics

model awaits further experimental work to characterise the spatial distribution of

imbrication angles. This places doubt on model predictions at locations near the apex,

190
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where imbrication angles have been reported to descend steeply into the ventricular

wall (Streeter et al. 1969).

2. Finite element model: The chosen combination of high order interpolation functions

and FE mesh resolution produced sufficiently accurate strain distributions at all

locations, except those near the apex. Apical elements of the present ventricular

mechanics model must be refined in the longitudinal direction if these locations are

of particular interest (see Section 6.2.3).

3. Passive elastic material response: Several issues must be addressed regarding the

passive constitutive law for myocardium (see Section 5.1.1). The pole-zero law

was primarily based on in-vitro biaxial tension tests of thin sections of ventricular

myocardium. The pole-zero axial weighting coefficients kαα, derived from these

experiments, are clearly not appropriate for in-vivo mechanics of the ventricles.

These constitutive properties may be estimated using in-vivo recordings of ventricular

deformation and cavity pressures (see Appendix A).

Further research is required to characterise the shear material response of ventricular

myocardium. To reconcile the shear response in terms of tissue structure, Section 5.1.1

introduced a fibre distribution model for cardiac tissue. Further work is required

to interpret shear deformations using this model and to use it to estimate the shear

weighting coefficients of the pole-zero law. Biaxial tension experiments involving

shearing deformations could be used to validate the fibre distribution model.

Finally, the pole-zero law is clearly not appropriate for the compressive response of

cardiac tissue. For present purposes this was approximated using a shallow linear strain

energy function in terms of the compressive material strains. Further experimental

studies are required to more accurately model compressive myocardial response.

4. Regional variation of material properties: For present purposes, the model incor-

porated homogeneous material properties throughout the myocardium. Recent mi-

crostructural observations suggest that this is an oversimplification of ventricular wall

properties. For example, the extent of branching between myocardial sheets changes

across the ventricular wall (Le Grice, Smaill, Chai, Edgar, Gavin and Hunter 1995,

Fig. 5). This implies that the mechanical stiffness along the sheet-normal axis also

varies transmurally. Once quantified experimentally, such spatially varying mate-

rial properties could be straightforwardly incorporated into the ventricular mechanics

model using standard FEM interpolation techniques.

5. Three-dimensional distributions of residual strain: This research accounted for the
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transmural residual fibre strain distribution, but did not incorporate other components

of residual strain. Very recently Costa et al. (1997) quantified three-dimensional

distributions of residual strain with respect to the anatomical fibre coordinates. This

information could be readily incorporated into the ventricular mechanics model using

the growth tensor described on page 99.

6. Myocardial fluid shifts and viscoelasticity: The present study made no provision for

the viscoelastic or poroelastic nature of ventricular myocardium (Bache, McHale and

Greenfield 1977; Huyghe et al. 1992; Yang and Taber 1991). A simple model of

myocardial fluid shift is presented in Appendix B, but it remains to be validated

experimentally.

7. Boundary constraints: To approximate the external loads on the ventricles during

the heart cycle, several different boundary constraint scenarios were investigated in

Section 6.3. Of the alternatives, the so-called ‘pericardial constraint’ led to the most

physically realistic diastolic wall motion. This indicates the need to incorporate a

model of the pericardial sac into the ventricular mechanics model to restrict filling

(Takayama, Le Grice, Holmes and Covell 1994). Moreover, it is clear that the atria,

basal skeleton and chordae tendineae play important roles in restricting the motion

of the adjacent portions of ventricular myocardium. Incorporating models of these

structures into the ventricular mechanics model is potentially the best way to accurately

account for their effects on heart wall motion.

There are two further shortcomings regarding the pericardial constraint that were

brought to attention late in this research. Firstly, all of the spatial derivatives of λ
were constrained at the epicardium, when the transmural derivatives should not have

been fixed. This oversight is likely to have introduced very localised wall thickening

errors only at the epicardial portions of the ventricles. Secondly, model simulations

were compared to observations from isolated hearts or in-vivo preparations for which

the pericardium had been resected, which is well known to affect ventricular motion.

Clearly it would have been more appropriate to compare model simulations with non-

invasive measures of deformation such as MRI however for most of the comparisons

such detailed information was not available in the literature at the time of this research.

8. Active material response: For present purposes, a simple steady-state model of the

active material response of ventricular myocardium was sufficient to quasi-statically

simulate the systolic phase of the heart cycle (see Sections 5.2.1 and 6.4). To

account for the time-varying nature of ventricular activation on heart mechanics, a

dynamic model of the active myocardial material response must be incorporated.
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The computational framework has been formulated to use the time dependent fading

memory model for force generation of cardiac muscle fibres (Hunter and Smaill 1988;

Hunter et al. 1997). Experimental work is required to validate the fading memory

model for a full three-dimensional model of the ventricles.

Although there is much work to be done to validate the ventricular mechanics model, it has

a bright future in the bioengineering field. A few applications of the ventricular mechanics

model are outlined here.

1. A mathematical model of the cardiac electrical activation sequence, based on the

transmembrane ionic currents present in cardiac myocytes, has been coupled to the

ventricular mechanics model (Sands 1997). The intracellular calcium concentration

derived from this model of cardiac activation was used to update the parameters

of the steady-state
�
Ca2+

�
–tension relation. This influenced the force generated by

the myocytes during the mechanics phase of the computations. On the other hand,

the finite difference collocation grid was derived from the deforming ventricular

finite element mesh and the properties of myocardial conduction were updated

accordingly. In this way, ventricular mechanics influenced the spread of electrical

activation. This weak electromechanical coupling could be improved by including

descriptions of length dependent activation and stretch activated channels. This

coupled electromechanical model of the ventricles would be useful in the investigation

of arrhythmogenesis under different pathological conditions.

2. To reproduce the ventricular cavity pressure increase during the isovolumic contraction

phase of the cardiac cycle, a simple cavity model was introduced in Section 6.4.

Moreover, to simulate ventricular ejection the cavity impedance parameters were

varied. While providing a suitable means of applying a ventricular afterload, this

cavity model clearly does not account for the dynamics of the blood within the cavities.

The next logical step is to incorporate a model of the fluid dynamics within the

ventricular cavities. Ventricular deformation would alter the external boundaries (and

hence dynamics) of the fluid mass and the fluid mechanics model would provide the

endocardial surface pressures experienced by the ventricular walls during the cycle.

A coupled ventricular fluid-wall mechanics model would be well suited for studying

the performance of prosthetic devices such as replacement valves or ventricular assist

devices.

3. To account for fluid shifts within the cardiac walls and the energetics of myocardial

tissue, a coronary vessel tree has been grown into the ventricular model. Coupling
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between the ventricular mechanics and coronary tree models is achieved through

various means. Fluid flow within the coronary vessels is constrained in part by the

ventricular wall stresses. In particular, stresses transverse to the coronary axis act to

counter the distension of the coronary walls due to coronary blood pressure. On the

other hand, regional wall volumes may change due to coronary blood flow, causing a

compressible behaviour for the ventricular wall. Moreover, a reduction in the coronary

blood flow and oxygen supply to a particular region may affect the passive and force

generating mechanical properties of the local tissue. Through use of myocardial

energetics to couple coronary flow to ventricular mechanics, the effects of ischaemia

on cardiac performance could be investigated.

Much of this work is currently in progress at the University of Auckland.1. Throughout the

duration of this study, the computational framework of the ventricular mechanics model was

developed to take advantage of these on-going heart modelling studies. Such broad scale

integration of mathematical models is potentially the most promising way to interpret the

ever-expanding database of cardiac knowledge in a systematic and objective manner.

1Bioengineering Research Group, Departments of Engineering Science and Physiology, University of
Auckland, New Zealand. For further information refer to:
URL: http://www.esc.auckland.ac.nz/Groups/Bioengineering/



Appendix A

Myocardial material property estimation

using magnetic resonance imaging

The pole-zero constitutive law was developed in Chapter 5 for the passive material

properties of cardiac muscle. Pole-zero constitutive parameters have been estimated from

microstructural observations and in-vitro biaxial tension tests on thin sections of myocardium.

Using these techniques, reasonable estimates were obtained for the axial pole (aαα) and

curvature (bαα) parameters. Section 5.1.1 also describes a fibre distribution model, developed

to determine shear parameters of the pole-zero constitutive law from the axial fibre families.

While in-vitro estimates of the axial weighting coefficients (kαα) were used for this research,

it would clearly be more appropriate to estimate these parameters from non-invasive in-vivo

studies.

Currently the most promising non-invasive technology used to characterise myocardial

deformation patterns during the heart cycle is MRI tissue tagging, briefly described in

Section A.1. The experimentally recorded myocardial kinematics and boundary loads

(namely the left and right ventricular cavity pressures) may be incorporated into the

anatomically accurate ventricular mechanics model developed in this thesis to provide a

means to estimate in-vivo myocardial constitutive parameters. Section A.2 describes an

appropriate parameter optimisation algorithm.
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A.1 Tissue tagging using Spatial Modulation of

Magnetisation

Axel and coworkers (Axel and Dougherty 1989a; Axel and Dougherty 1989b; Clark

et al. 1991; Axel, Goncalves and Bloomgarden 1992) have developed a MRI technique to

tag and dynamically track portions of myocardial tissue during the heart cycle. The so-called

SPAMM technique used a gradient magnetic field to create planes of magnetic saturation

throughout the heart (and torso). Two sets of parallel saturation planes were oriented

orthogonally and the grid-like pattern of saturation was detected using MRI in the third

orthogonal direction. Saturation planes appeared as dark stripes in the imaging plane and

stripe intersection points provided a set of material tags spread throughout the myocardium.

The three-dimensional spatial positions of the myocardial material tags were dynamically

tracked by recording images at several instances during the cardiac cycle. Simultaneous

recordings of the cavity pressures characterised the ventricular function. Images during

systole were taken at specific times after the QRS complex of the ECG and were averaged

over several beats. Diastolic timing was generally triggered from the left ventricular pressure

wave, but tag position repeatability was limited by the inter-beat variability of cardiac

deformations and developed pressures. Breathhold imaging improved the quality of the

reconstructed images by reducing the image artifact due to chest movement.

A major disadvantage of SPAMM is the current lack of image resolution. Generally, inter-

stripe spacing provides between two and five material tags across the ventricular walls. This

is not sufficient to resolve the complex transmural deformation patterns that occur during the

cycle. The main advantage of this technology is that it is completely non-invasive, thus the

resulting deformation patterns are truly in-vivo.

Young and Axel (1992) developed a FE fitting technique to interpret the SPAMM

measurements and analyse in-vivo myocardial material deformations during the cycle.

At each time instant, the averaged tag positions were fitted to a FE mesh using least

squares techniques. In this manner, the cardiac kinematics was completely characterised

at several instances during the cycle. Moreover, the ventricular cavity pressures provided

the endocardial surface boundary constraints. By incorporating this information into the

ventricular mechanics model, in-vivo myocardial constitutive parameters may be estimated

using the algorithm described in Section A.2.

Before constitutive parameter can proceed, the ventricular mechanics model reference state

must be identified. For the model simulations described in Chapters 6 and 7, the most
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appropriate reference state was considered to be the ventricular shape at the end of isovolumic

relaxation, since ventricular pressures are effectively zero at this stage of the cycle. The three-

dimensional myocardial strain field is obtained from the fitted reference and deformed FE

meshes (Young and Axel 1992) for the particular set of applied loads (ventricular pressures).

A.2 The constitutive parameter estimation algorithm

There are several possible approaches to estimate constitutive law parameters from the

myocardial strain field and loads. One method is to minimise the discrepancy between

the predicted and measured strain fields by repeatedly solving a boundary value problem,

subject to the measured loads. A second technique minimises the nodal force residuals,

which includes both the boundary nodes, where the measured tractions are matched by those

predicted by the model, and the internal nodes, where a non-zero residual implies that a non-

existent external force is required to hold the given deformed shape. The second scheme is

considerably faster than the first, since it does not require the solution of a boundary value

problem, and was therefore considered to be more practical. It does, however, require that

the fitting procedure be performed with a constraint on incompressibility.

The estimation process is based on the nonlinear Galerkin FEM for finite deformation

elasticity (see Chapters 2 and 3) and proceeds as follows:

1. Select an initial set of constitutive parameter estimates. This choice could be based on

the parameters estimated from the biaxial tension tests.

2. Substitute the current constitutive parameter estimates and predetermined strain field

into the constitutive equations and use the ventricular mechanics model to compute the

internal stress field and external loads (nodal forces) required to maintain equilibrium.

3. Compute a set of error residuals, based on the differences between the experimentally

measured external loads and the nodal forces computed using the model.

4. Minimise these error residuals with respect to the unknown material parameters using

a suitable nonlinear optimisation technique, such as sequential quadratic programming

(see the E04UPF routine of the NAG library (NAG Ltd 1993)).

This algorithm could be applied for each deformed state arising from the model based

SPAMM approach, resulting in several sets of estimated constitutive parameters with
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associated sets of error residuals. Overall parameter estimates could be based on simple

averages of the individual parameter estimates across the different states of deformation. A

better approach may be to combine the sets of error residuals from the various deformed states

and minimise this global set of residuals with respect to the unknown constitutive parameters.

A.3 Constitutive parameter estimation issues

There are several problematic issues that must be addressed before the estimation procedure

can be performed with confidence. Some of the more important issues are briefly discussed

here.

� The intramyocardial hydrostatic pressure distribution must be specified before the

constitutive parameters can be estimated. It may be sufficient to approximate the

hydrostatic pressure parameters from the external pressure loads, but assumptions of

the spatial pressure variation must be made. Alternatively, the hydrostatic pressure

parameters could be included in the estimation process, but this may compromise the

accuracy of the estimated constitutive parameters. Errors in the hydrostatic pressure

parameters will contribute to errors in constitutive parameter estimates.

� The choice of the ventricular mechanics reference state is crucial to the accuracy of the

parameter estimation process. The most appropriate reference state was considered

to be the configuration at the end of isovolumic relaxation, but the accuracy of the

SPAMM images and fitted FE model for this state is questionable, due to the timing of

the imaging process and the inter-beat variability. Inaccuracies in the fitted reference

configuration will introduce significant errors in constitutive parameter estimates.

� Clearly, any chosen reference configuration will not be completely stress free, but if

the residual stresses have not been adequately accounted for then parameter estimates

will be inaccurate. The best way to incorporate residual stresses into the parameter

estimation process remains to be determined.

� It is not unreasonable to expect material properties to vary throughout the myocardium,

however the best way to quantify these heterogeneities remains to be elucidated.

� Interdependence of constitutive parameters compromises the accuracy of estimates.

Interdependencies can be quantified using the covariance matrix, which can be
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computed from the Hessian matrix (Bard 1974), available using the sequential

quadratic programming algorithm (NAG Ltd 1993).

� An investigation into the sensitivity of parameter estimates to the various assumptions

of the model remains to be carried out. The incompressibility constraint, choice

of hydrostatic pressure variation and the choice of reference state are just a few of

the assumptions that affect parameter estimates, as do errors in the experimental

observations. It would be of particular interest to quantify the difference that small

perturbations in the SPAMM fitted FE meshes (especially the endocardial surface)

makes to the set of estimated parameters. Moreover, many other factors affect

parameter estimates, including perturbations in the boundary loads and myocardial

fibre and sheet angle distributions. The relative importance of all of these factors is to

be determined.

To date, these issues remain unaddressed and so the model based SPAMM approach has not

yet been used to estimate constitutive parameters using the ventricular mechanics model.

Nevertheless, it is potentially the most promising technique for obtaining in-vivo material

properties.



Appendix B

A model for intramyocardial fluid shift

Ventricular myocardium comprises several components. The solid matrix, which includes

branching muscle cells and intramyocardial coronary vessels embedded in a weave of

collagen fibres, is saturated with intravascular blood and interstitial fluids. In the relaxed state,

Morgenstern, Hoeltes, Arnold and Lochner (1973) estimated the intramyocardial coronary

blood volume (porosity) to be 14%.

Temporal and spatial variations of tissue stress and coronary blood pressure cause the

intramyocardial fluids to flow throughout the ventricular walls during the heart cycle. For

example, in the unloaded canine LV, May-Newman et al. (1994) measured a uniform 5%

increase in wall volume from unperfused state to 6:7 kPa (50 mmHg) coronary perfusion

pressure. Moreover, Edwards, Rankin, McHale, Ling and Anderson (1981) found that

the diastatic wall mass decreased by approximately 5% during total coronary occlusion in

conscious dogs.

During the normal heart cycle, intramyocardial fluid flow is not uniform. At a coronary

perfusion pressure of 14:7 kPa (110 mmHg), May-Newman et al. (1994) reported 7% and

15% increases in the local wall volumes of the subepicardium and subendocardium, respec-

tively, compared to the unperfused state. Preferential blood flow into the subendocardium

during diastole is normally due to the transmural gradient of vascular resistance (Moir 1972).

However, this gradient reverses during systole (Hess and Bache 1976).

Changes in the biphasic properties of myocardium have been shown to affect mechanical

response of the heart (May-Newman et al. 1994; Olsen, Attarian, Jones, Hill, Sink, Lee and

Wechsler 1981). To account for intramyocardial fluid movement in ventricular mechanics

modelling, Section B.1 introduces a simple model, based on Darcy’s law. To incorporate this

fluid shift model into the FE framework, Section B.2 describes an appropriate approximation
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of the intramural hydrostatic pressure field. Finally, Section B.3 presents some preliminary

results for the passive diastolic inflation of a simplified model of the LV, based on the fluid

shift model.

B.1 Intramyocardial fluid flow based on Darcy’s law

Consider a two phase incompressible material, in which a fluid (for example blood) flows

through a porous solid matrix (ventricular myocardium). For continuity, the amount of fluid

leaving a control volume at any instant must be equal and opposite to the change in volume

of the solid matrix, as expressed in Equation (B.1).

∆Vfluid+∆Vsolid = 0 (B.1)

From divergence considerations, the normalised volume flux of fluid leaving the control

volume is related to its velocity, v f in Equation (B.2). Note that the minus sign indicates that

fluid is leaving the control volume if the divergence of the velocity is positive.

�

Vfluid=�∇ �v f �
∆Vfluid

∆t
or ∆Vfluid =�∆t∇ �v f (B.2)

In simple terms, Darcy’s law states that fluid flows down its pressure gradient. This is

expressed mathematically in Equation (B.3).

v f =�k∇p (B.3)

where k is the permeability of the solid matrix (with units mm2

kPa�s ) and p is the fluid pressure.

Note that the minus sign indicates that fluid flows in the direction of decreasing pressure.

Substituting Equation (B.3) into Equation (B.2) yields the expression for the volume of fluid

leaving the control volume in Equation (B.4).

∆Vfluid = k∆t∇2p (B.4)

where ∇2 is computed with respect to the deforming frame of reference and, for current

purposes, the permeability k is assumed to be spatially constant.
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The normalised change in volume of the solid matrix is calculated using Equation (B.5).

∆Vsolid =
vs�Vs

Vs
=

�
vs

Vs

�
�1 =

p
I3�1 (B.5)

where Vs and vs are the undeformed and deformed solid volumes, respectively, and I3 is the

third invariant (determinant) of Green’s strain tensor, defined in Equation (2.42).

Substituting Equations (B.4) and (B.5) into Equation (B.1) yields the fluid shift relation,

defined in Equation (B.6). Localised changes in fluid and solid volumes are expressed in

terms of the hydrostatic pressure distribution and third strain invariant at a point, respectively.

Note that if there is no fluid movement, the pressure distribution is constant or linear�
∇2 p = 0

�
, Equation (B.6) reduces to I3 = 1 and the deformation is locally incompressible

in nature. Conversely, large localised volume changes are associated with equivalent fluid

movements, as determined by Equation (B.6).

k∆t∇2p+
p

I3�1 = 0 (B.6)

To incorporate fluid movements into the FE model for finite elasticity, described in Chapter 3,

the incompressibility constraints (Equation (3.42) defined in Section 3.4.2) are modified to

include the fluid shift relation defined in Equation (B.7).

ZZZ

Ve

�
k∆t∇2p+

p
I3�1

�
Ψp
p

G(ξ) dξ3dξ2dξ1 = 0 (B.7)

To be consistent with the Galerkin formulation, the FE weighting functions of Equation (B.7),

Ψp, are chosen to be the basis functions used to interpolate the hydrostatic pressure field. A

convenient choice of hydrostatic pressure interpolation functions is described in the next

section.

B.2 Intramural hydrostatic pressure variation

To approximate the hydrostatic pressure variation through the ventricular wall two

simplifying assumptions have been made. The first and main assumption is that the

hydrostatic pressure varies only in the transmural or through wall direction (ξ3 for this model).

This seems reasonable since the applied transmural pressure gradient (the difference between

the ventricular cavity pressure and the external pressure) is likely to far exceed gradients in



B.2 INTRAMURAL HYDROSTATIC PRESSURE VARIATION 203

the longitudinal and circumferential directions. Spatial hydrostatic pressure variation in the

plane of the wall could be achieved by mesh discretisation, in which case pressure continuity

could not be guaranteed at the new element boundaries.

The second assumption relates to restrictions on the spatial variation of the hydrostatic

pressure field. For each element, up to three separate constraints must be satisfied. One

pressure boundary constraint of the form in Equation (3.45) is required for each external

ξ3 face. To incorporate intramyocardial fluid movements, at least one fluid shift constraint

(Equation (B.7)) is required. Thus for a mesh with a single transmural element, there is one

pressure boundary constraint for the ξ3 = 0 face, one for the ξ3 = 1 face, and one fluid

movement constraint.

To satisfy these constraints in a deterministic sense (with the same number of undetermined

variables as constraints), three free variables are required for each element. To adhere to the

Galerkin approach, three parameters are chosen to describe the hydrostatic pressure field.

Three one-dimensional hydrostatic pressure interpolation functions (that vary only with ξ3)

are chosen to multiply the pressure variables, as in Equation (B.8).

pe(ξ3) =
2

∑
i=0

pe
i Ψp

i (ξ3) (B.8)

where the Ψp
i are the one-dimensional hydrostatic pressure interpolation functions.

It is at this stage that the assumption on the spatial variation of the hydrostatic pressure

field is necessary. The hydrostatic pressure basis functions are chosen to satisfy two

requirements. Firstly, the applied pressures on the internal (endocardial) and external

(epicardial) ξ3-normal faces are generally different. Thus at least one basis function must

satisfy Ψp jξ3 = 0 6= Ψpjξ3 = 1. The second requirement is that the hydrostatic pressure

gradient at each of the external ξ3-normal faces must be zero to prevent any fluid movement

across the wall surfaces (since fluid flows down its pressure gradient). An appropriate choice

of basis functions is given Equation (B.9) and illustrated in Figure B.1.

Ψp
0(ξ3) = 1 Ψp

1(ξ3) = 1�3ξ2
3 +2ξ3

3 Ψp
2(ξ3) = ξ2

3 (ξ3�1)2 (B.9)

Note that if fluid movement was permitted across either of the two ξ3-normal faces, the “hat”

basis function Ψp
2(ξ3) may be replaced with a one-dimensional cubic Hermite basis function

that has a non-zero derivative at the corresponding end. For example, to allow fluid movement

across the ξ3 = 0 face (say, to simulate thebesian drainage of blood from the coronary system
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FIGURE B.1: Hydrostatic pressure basis functions for the fluid shift model.

into the ventricles), an appropriate basis function would be Ψp
2(ξ3) = ξ3 (ξ3�1)2, which is

zero for ξ3 = 0;1 and has derivatives of unity for ξ3 = 0 and zero for ξ3 = 1.

B.3 Transmural fluid movement using a simple

ventricular model

To test the effects of the fluid shift relation on global ventricular mechanics, a simple

model of the LV was formulated. This model consisted of a single axisymmetric trilinear

element, with a linear endocardial to epicardial in-plane fibre angle variation from 65� to

�55�, respectively, and corresponding sheet orientations which varied linearly from �45� to

45�, respectively. Passive material response was described by the pole-zero constitutive law,

defined in Section 5.1.1 (material parameters listed in Table 5.1), and residual strains were

not incorporated into this model. Volume integrals were computed using 27-point Gaussian

quadrature (three Gauss points along each ξi-coordinate) and the standard (not isochoric)

radial interpolation was incorporated into the isoparametric formulation.

The ventricle was passively inflated to 1 kPa, while preventing rigid rotations by fixing

the θ-coordinate of the epicardial node at the base. In this section, results from the

inflation simulation subject to the fluid shift relation are compared with those from a

corresponding simulation, which incorporated the Galerkin incompressibility constraint,
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(a) Incompressible model (b) Fluid shift model

FIGURE B.2: Deformed profiles (solid lines) for the passive inflation (to 1 kPa) of
a single prolate element. Deformation from the fluid shift model is
compared to that for the incompressible formulation. Dotted lines show
the undeformed configurations.

defined in Section 3.4.2. For the incompressible model, the hydrostatic pressure field was

approximated transmurally using a quadratic interpolation scheme (see Section 3.4.3 for

details), whereas for the fluid model simulation, the intramural hydrostatic pressure field

was approximated using the specialised scheme defined in Equations (B.8) and (B.9). The

myocardial permeability was set at k = 2 mm2

kPa�s , which was estimated from time constants of

the coronary circulation (Huyghe et al. 1991, Table 2). For comparison purposes, the time

step was arbitrarily chosen to be ∆t = 0:1s.

Deformed element profiles for the two simulations are represented by the solid lines in

Figure B.2. The fluid shift model permitted a small wall volume increase from 101.0ml

for the undeformed state (dotted lines) to 103.0ml for the inflated state. During inflation,

the cavity volume increased from 39.5ml to 64.6ml. In contrast, the incompressibility model

indeed kept tissue volume changes to a minimum, with a wall volume of 100.6ml for the

inflated state, by which stage the cavity volume had increased to 65.2ml.

Deformed wall volumes were computed by spatially integrating the third strain invariant, I3,

throughout the element. Figure B.3 illustrates that the incompressibility condition (I3 = 1)

was only slightly compromised with the incompressible model (�). This was likely to be

due to the FE approximations and numerical integration schemes utilised during the solution
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procedure. In contrast, the fluid shift model (�) produced a similar transmural I3 distribution.

The individual normalised local solid and fluid volume changes for the fluid shift model have

been identified in Figure B.4. In this figure, ∆Vsolid is compared to �∆Vfluid, so that equal

bar graph components represent locations for which the fluid shift relation was identically

satisfied. Clearly, the volume changes were markedly different at the various transmural

locations. These pointwise discrepancies were likely to be due to the Galerkin weighted

averaging process associated with the FEM for finite elasticity.

To overcome the large errors, the fluid shift constraint could have been minimised using a

more appropriate residual equation. For example, minimising the square of the fluid shift

residual may have reduced the volume discrepancies illustrated in Figure B.4. However, this

formulation is non-Galerkin, and may have compromised the convergence properties of the

solution process.

Alternatively, refining the FE mesh may have resulted in more realistic diastolic deforma-

tions. However, the element based hydrostatic pressure interpolation scheme does not guar-

antee spatial continuity of the intramural hydrostatic pressure field. Extra constraints would

have been required to enforce continuous distributions of hydrostatic pressure, and hence

intramyocardial stress.

For these reasons, the fluid shift model was not incorporated into the ventricular mechanics

model described in Chapter 6. Instead, to adhere to the Galerkin formulation of the FEM

for finite elasticity and to provide for spatially continuous stress distributions, the hydrostatic

pressure field was approximated using a trilinear interpolation of nodal variables, which were

determined using standard incompressibility residuals.

Although there are clear limitations with the fluid shift model presented here, the solid

theoretical framework warrants further investigation into problems associated with the FE

implementation. Once this has been addressed, predictions using the fluid shift model remain

to be validated experimentally.
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FIGURE B.3: Transmural distributions of the third strain invariant, I3, and the hydro-
static pressure field for a single prolate element. Results using the fluid
shift model are compared to those from the incompressible model.



B.3 TRANSMURAL FLUID MOVEMENT USING A SIMPLE VENTRICULAR MODEL 208

Transmural Location Epi

�∆Vfluid

N
or

m
al

is
ed

V
ol

um
e

C
ha

ng
e

∆Vsolid

0

-0.4

-0.2

0.2

0.4

Endo

FIGURE B.4: Mean normalised solid and fluid volume changes at the three transmural
Gauss point locations using the fluid shift model. Volume averages were
computed across all Gauss points at the same transmural depth.



Appendix C

Maximum extension for the fibre

distribution model

The kinematics of a typical fibre during simple shear are considered in Section 5.1.1 on

page 95. Figure 5.4 shows a fibre with initial length L = secη and deformed length

l =
p

1+(tanη+ tanφ)2. The extension ratio for this fibre is expressed in terms of the

initial angle η and shear angle φ in Equation (C.2).

λ2
η =

l2

L2 =
1+(tanη+ tanφ)2

sec2 η
=

1+(tanη+ tanφ)2

1+ tan2 η
(C.1)

= cos2 η+ tan2 φcos2 η+ sin2 η+2sinηcosη tanφ

) λη =
q

1+ tan2 φcos2 η+ tanφsin2η (C.2)

For a given shear angle φ, the fibre that experiences the maximum stretch is positioned at

angle η�, where η� is determined by solving ∂λη
∂η = 0 as detailed in Equation (C.4).
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∂λη

∂η
=

tanφ(cos2η� tanφsinηcosη)p
1+ tan2 φcos2 η+ tanφsin2η

= 0 (for maximum)

)cos2η�� tanφsinη� cosη� = 0

)cos2η� =
1
2

tanφsin2η�

) tan2η� = 2cotφ (C.3)

)η� =
1
2

tan�1(2cotφ) (C.4)

The next step is to calculate the maximum extension ratio experienced by this fibre. Firstly,

the identity for tan2η� is substituted into Equation (C.3).

tan2η� =
2tanη�

1� tan2 η� = 2cotφ

)2cotφ tan2 η�+2tanη��2cotφ = 0

) tan2 η�+ tanφ tanη��1 = 0

) tanη� =
tanφ�

p
tan2 φ+4

2
(C.5)

) tanη� =
�κ+

p
4+κ2

2
(C.6)

where κ = tanφ and the positive root in Equation (C.5) is taken to ensure η� is positive.

The maximum fibre extension ratio is then determined by substituting Equation (C.6) into

Equation (C.1) as detailed in Equation (C.7).
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λ2
max = 1+

κ
�

κ�κ+
p

4+κ2
�

1+ 1
4

�
�κ+

p
4+κ2

�2

= 1+
4κ
p

4+κ2

2(4+κ2)�2κ
p

4+κ2

= 1+
2κ
p

4+κ2
�
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p

4+κ2
�
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Appendix D

Mesh configuration for the ventricular

mechanics model

The anatomically accurate ventricular mechanics model is summarised in Section 6.5 and

used in Chapter 7 to analyse of deformation and stress in the beating heart. The FE model was

comprised of three regions — namely the ventricular walls and the left and right ventricular

cavities. Figures D.1–D.4 illustrate the FE node and element configurations for the various

regions using polar projections1.

The ventricular wall region consisted of 120 elements arranged into ten elements in the

circumferential direction, six levels of elements longitudinally and two transmurally adjacent

shells of elements. The outer shell described the RV free wall and the epicardial portions of

the LV free wall and apex (Figure D.1), while the inner shell described the septum and

endocardial portions of the LV free wall and apex (Figure D.2). Figure D.3 illustrates the LV

midwall and RV endocardial surface configurations.

To be compatible with the surrounding wall region, the LV cavity region consisted of

ten elements in the circumferential direction and six levels of elements longitudinally, as

illustrated in Figure D.4(a). Figure D.4(b) illustrates the RV cavity region configuration. The

18 RV elements were arranged so that they were compatible with elements in the wall region

that bordered the RV cavity.

1The polar projection is defined in footnote (2) on page 70.
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(a) Epicardial wall node numbering.
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(b) Epicardial wall element configuration.

FIGURE D.1: Polar projections of the epicardial mesh configuration (viewed from the
apex toward the base) for the ventricular mechanics model. θ increases in
the anticlockwise direction and µ increases radially from the apex (at the
centre). The posterior and anterior walls are located at the top and bottom
of each diagram, respectively, and the RV free wall is shaded.
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(b) LV endocardial wall element configuration.

FIGURE D.2: Polar projections of the LV endocardial mesh configuration (viewed from
the apex toward the base) for the ventricular mechanics model. θ increases
in the anticlockwise direction and µ increases radially from the apex (at
the centre). The posterior and anterior walls are located at the top and
bottom of each diagram, respectively, and the interventricular septum is
shaded.
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(a) LV midwall.
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(b) RV septal wall endocardium.
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(c) RV free wall endocardium.

FIGURE D.3: Polar projections of the midwall node numbering (viewed from the apex
toward the base) for the ventricular mechanics model. θ increases in
the anticlockwise direction and µ increases radially from the apex (at the
centre). The posterior and anterior walls are located at the top and bottom
of each diagram, respectively.
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(b) RV cavity element configuration.

FIGURE D.4: Polar projections of the ventricular cavity mesh configurations (viewed
from the apex toward the base) for the ventricular mechanics model. θ
increases in the anticlockwise direction and µ increases radially from the
apex (at the centre of the LV cavity). The posterior and anterior walls
are located at the top and bottom of each diagram, respectively. The
LV cavity node configuration is similar to that for the LV endocardial
surface (see Figure D.2(a)), with seven extra internal nodes (numbers
196–202), which are located on the longitudinal axis. The RV cavity
node configuration is similar to that for the RV endocardial surfaces (see
Figures D.3(b) and D.3(c)), with one extra internal node (number 203),
which is located in the centre of the RV cavity and at the base.



Appendix E

Disk files used for the CMISS package

The CMISS package uses text based files to save information specific to a particular

numerical model. These files fall into two broad categories. To set up a model, several

general input files are required. Descriptions of the input files required to set up the 120

element ξ2-refined ventricular model (see Section 6.2.3 on page 123 for details) are listed in

Appendix E.2. Each time a particular model is to be set up or solved, a well defined sequence

of CMISS commands is required. To ensure the correct order is maintained between sessions

and to save time, command files may be used to automatically execute the desired sequence

of commands. The CMISS command files used to analyse ventricular diastole and systole

are listed in Appendix E.1.

E.1 CMISS command files

Two separate CMISS command files were used to analyse ventricular mechanics during

the diastolic and systolic phases of the cardiac cycle. These files are detailed below with

comments to explain the purpose of each command. Note that CMISS comment lines begin

with exclamation marks (!) and are not parsed for execution.

The CMISS command file for ventricular diastole

The 120 element ξ2-refined ventricular mechanics model described in Section 6.2.3 on

page 123 was used to analyse the mechanics of ventricular diastole in Section 7.2. The

model was set up and solved using the following CMISS command file.
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! ANALYSE DIASTOLE.COM: CMISS command file to analyse ventricular diastole

assign MYOCARD=1
assign LVCAV=2
assign RVCAV=3

Three separate solution regions exist – the myocardial
region, and a region for each ventricular cavity (the latter
two are used for contraction problems in the next
command file)

fem define parameters;r;full
fem reallocate

Allocate memory for arrays required to read and solve this
problem

! Define the ventricular wall geometry and fibre and sheet orientations. For further information regarding CMISS input

files, refer to Appendix E.2.

fem define coordinates;r;prolate region MYOCARD Selects the prolate spheroidal coordinate system (see
Section 3.2.2) for the ventricular wall region

fem define node;r;fullheart refmu region MYOCARD Reads the finite element nodes for the ventricular wall

fem define base;r;fullheart Defines the eleven different interpolation schemes (see
Appendix E.2 for details)

fem define element;r;fullheart refmu region
MYOCARD Defines the finite element mesh for the ventricular wall

fem define fibre;r;fullheart refmu region MYOCARD Reads the fitted fibre and sheet orientation fields
throughout the myocardium

fem define element;r;fullheart refmu fibre region
MYOCARD

Reads the element descriptions for the myocardial fibre
and sheet orientation fields

! Define ventricular wall element groups. These groups are useful for defining pressure boundary conditions

! Basal elements:
fem group element 63..68 as base lvfree epi region

MYOCARD Epicardial LV free wall

fem group element 93..98 as base lvfree endo region
MYOCARD Endocardial LV free wall

fem group element 91,92,99,100 as base septal
region MYOCARD Septum

fem group element 61,62,69,70 as base rv region
MYOCARD RV wall

fem group element base lvfree epi,base lvfree endo,
base septal,base rv as base region
MYOCARD

All elements adjacent to the basal ring
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! First level equatorial elements:
fem group element 3..8 as equatora lvfree epi region

MYOCARD Epicardial LV free wall

fem group element 33..38 as equatora lvfree endo
region MYOCARD Endocardial LV free wall

fem group element 31,32,39,40 as equatora septal
region MYOCARD Septum

fem group element 1,2,9,10 as equatora rv region
MYOCARD RV wall

fem group element
equatora lvfree epi,equatora lvfree endo,
equatora septal,equatora rv as equatora
region MYOCARD

All elements located in the first level equatorial region

! Second level equatorial elements:
fem group element 73..78 as equatorb lvfree epi

region MYOCARD Epicardial LV free wall

fem group element 103..108 as equatorb lvfree endo
region MYOCARD Endocardial LV free wall

fem group element 101,102,109,110 as
equatorb septal region MYOCARD Septum

fem group element 71,72,79,80 as equatorb rv
region MYOCARD RV wall

fem group element
equatorb lvfree epi,equatorb lvfree endo
as equatorb lvfree region MYOCARD

LV free wall

fem group element equatorb lvfree,equatorb septal,
equatorb rv as equatorb region
MYOCARD

All elements located in the second level equatorial region

! Third level equatorial elements:
fem group element 13..18 as equatorc lvfree epi

region MYOCARD Epicardial LV free wall

fem group element 43..48 as equatorc lvfree endo
region MYOCARD Endocardial LV free wall

fem group element 41,42,49,50 as equatorc septal
region MYOCARD Septum

fem group element 11,12,19,20 as equatorc rv region
MYOCARD RV wall

fem group element
equatorc lvfree epi,equatorc lvfree endo
as equatorc lvfree region MYOCARD

LV free wall

fem group element equatorc lvfree,equatorc septal,
equatorc rv as equatorc region
MYOCARD

All elements located in the third level equatorial region

! Level of elements adjacent to the apical elements:
fem group element 81..90 as apexa epi region

MYOCARD Epicardium

fem group element 111..120 as apexa endo region
MYOCARD Endocardium

fem group element apexa epi,apexa endo as apexa
region MYOCARD All elements in the level adjacent to the apical elements

! Apical elements:
fem group element 21..30 as apexb epi region

MYOCARD Epicardium

fem group element 51..60 as apexb endo region
MYOCARD Endocardium
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fem group element apexb epi,apexb endo as apexb
region MYOCARD All elements at the apex

fem group element apexa epi,apexb epi as
apex epi elems region MYOCARD All epicardial apical elements

fem group element apexa endo,apexb endo as
apex endo elems region MYOCARD All endocardial apical elements

fem group element apex endo elems,apex epi elems
as apex elems region MYOCARD All elements adjacent to the apex

! Other useful element groupings:
fem group element

equatora lvfree epi,equatorb lvfree epi,
equatorc lvfree epi as equator lvfree epi
region MYOCARD

Epicardial LV free wall elements in the equatorial regions

fem group element equatora lvfree endo, equa-
torb lvfree endo,equatorc lvfree endo as
equator lvfree endo region MYOCARD

Endocardial LV free wall elements in the equatorial
regions

fem group element equatora septal,equatorb septal,
equatorc septal as equator septal region
MYOCARD

Septal elements in the equatorial regions

fem group element
equatora rv,equatorb rv,equatorc rv as
equator rv region MYOCARD

RV wall elements in the equatorial regions

fem group element
equator lvfree epi,equator lvfree endo,
equator septal,equator rv as equator
region MYOCARD

All elements in the equatorial regions

fem group element base lvfree epi,equator lvfree epi
as lvfree epi elems region MYOCARD All epicardial LV free wall elements

fem group element
base lvfree endo,equator lvfree endo as
lvfree endo elems region MYOCARD

All endocardial LV free wall elements

fem group element base septal,equator septal as
septal elems region MYOCARD All septal elements

fem group element base rv,equator rv as rv elems
region MYOCARD All RV elements

fem group element base,equator,apex elems as
all elems region MYOCARD All elements

! Define ventricular wall node groups. These groups are useful for defining boundary conditions and residual strains
fem group node xi2=1 xi3=1 external element

base lvfree epi,base rv as
base epi nodes region MYOCARD

Basal epicardial nodes

fem group node xi2=1 xi3=0 external element
base lvfree endo,base septal as
base lv endo nodes region MYOCARD

Basal LV endocardial nodes

fem group node xi2=1 xi3=0 external element
base rv as base rvfree endo nodes region
MYOCARD

Basal RV free wall endocardial nodes

fem group node xi2=1 xi3=1 external element
base septal as base rvsept endo nodes
region MYOCARD

Basal nodes on RV septal endocardium

fem group node base lv endo nodes,
base rvfree endo nodes,
base rvsept endo nodes as
base endo nodes region MYOCARD

All basal endocardial nodes

fem group node xi2=1 external element base as
base nodes region MYOCARD All basal nodes

! LV endocardial node groups by longitudinal level:
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fem group node xi2=1 xi3=0 external element
equatora lvfree endo,equatora septal as
eqa lv endo nodes region MYOCARD

First level equatorial nodes

fem group node xi2=1 xi3=0 external element
equatorb lvfree endo,equatorb septal as
eqb lv endo nodes region MYOCARD

Second level equatorial nodes

fem group node xi2=1 xi3=0 external element
equatorc lvfree endo,equatorc septal as
eqc lv endo nodes region MYOCARD

Third level equatorial nodes

fem group node xi2=1 xi3=0 external element
apexa endo as apexa lv endo nodes
region MYOCARD

Fourth level equatorial nodes

fem group node xi2=1 xi3=0 external element
apexb endo as apexb lv endo nodes
region MYOCARD

Nodes adjacent to the apex nodes

fem group node
eqa lv endo nodes,eqb lv endo nodes,
eqc lv endo nodes,apexa lv endo nodes
as equator lv endo nodes region
MYOCARD

All equatorial LV endocardial nodes

! Epicardial node groups by longitudinal level:
fem group node xi2=1 xi3=1 external element

equatora lvfree epi,equatora rv as
eqa epi nodes region MYOCARD

First level equatorial nodes

fem group node xi2=1 xi3=1 external element
equatorb lvfree epi,equatorb rv as
eqb epi nodes region MYOCARD

Second level equatorial nodes

fem group node xi2=1 xi3=1 external element
equatorc lvfree epi,equatorc rv as
eqc epi nodes region MYOCARD

Third level equatorial nodes

fem group node xi2=1 xi3=1 external element
apexa epi as apexa epi nodes region
MYOCARD

Fourth level equatorial nodes

fem group node xi2=1 xi3=1 external element
apexb epi as apexb epi nodes region
MYOCARD

Nodes adjacent to the apex nodes

fem group node eqa epi nodes,eqb epi nodes,
eqc epi nodes,apexa epi nodes as
equator epi nodes region MYOCARD

All equatorial epicardial nodes

! RV node groups:
fem group node xi3=0 external element equator rv as

equator rvfree endo nodes region
MYOCARD

Equatorial RV free wall endocardial nodes

fem group node xi3=1 external element
equator septal as
equator rvsept endo nodes region
MYOCARD

Equatorial RV septal wall endocardial nodes

fem group node equator rvfree endo nodes,
equator rvsept endo nodes as
equator rv endo nodes region MYOCARD

All equatorial RV endocardial nodes

! Other useful node groups:
fem group node xi3=1 element

equator lvfree endo,apex endo elems as
equator lv mid nodes region MYOCARD

Equatorial LV midwall nodes

fem group node xi3=1 external element
lvfree epi elems,rv elems,apex epi elems
as epi nodes region MYOCARD

All epicardial nodes
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fem group node xi2=0 element apexb as apex nodes
region MYOCARD Apical nodes

fem group node xi2=0 xi3=0 external element
apexa endo as near apex endo nodes
region MYOCARD

Endocardial nodes adjacents to apical nodes

fem group node xi2=0 xi3=1 external element
apexa epi as near apex epi nodes region
MYOCARD

Epicardial nodes adjacents to apical nodes

fem group node equator lv mid nodes,
equator rv endo nodes,
near apex endo nodes,near apex epi nodes
as equator mid nodes region MYOCARD

Equatorial and apical midwall nodes in LV and RV walls
grouped with endocardial and epicardial nodes adjacent
to apical nodes

fem group node equator lv endo nodes,
equator epi nodes, equa-
tor mid nodes,base nodes,apex nodes as
all nodes region MYOCARD

All nodes

! Define dependent variable information, material properties and solution procedure information. For further information

regarding CMISS input files, refer to Appendix E.2.
fem define equation;r;finelas tch incomp region

MYOCARD lock
Selects the 3D, incompressible, finite elasticity equilibrium
equations to govern mechanical deformation

fem define material;r;orth incomp active residstrain
region MYOCARD

Myocardial mechanical properties are orthotropic and
governed by the pole-zero law. Constitutive parameters
are calculated from the properties of the fibre families.
Fibres can generate active tension and regional residual
strains are specified

fem define active;r;active0 00 region MYOCARD
Active fibre tension is governed by a steady state�
Ca2+

�
–tension relation. For passive inflation Caactn is

zero and no active fibre tension is generated

fem define initial;r;fullheart inflate pericard region
MYOCARD

Ventricular boundary conditions specify internal cavity
pressures of 1 kPa in the LV and 0:2 kPa in the RV. Apical
nodes are held fixed in µ, and all epicardial nodes are fixed
in λ (called the pericardial constraint)

fem define solve;r;newton region MYOCARD
The equilibrium equations are solved using the
Newton-Raphson method, with GMRES iterative solution
of the resulting linear equations
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! Solve for passive ventricular inflation

set output;steps inflate on Saves all subsequent output from the solution process to a
log file on disk called ’steps inflate.out’

assign NAME1=fullheart def 00
assign NAME2= active 0000 Defines naming variables for files on disk

DO ”PRESS”=0..10 Sets up the solution loop with 11 load steps

IF PRESS < 1
assign FILENAME=NAME1//0//PRESS//NAME2
assign INCREM=0.0

ELSEIF PRESS < 10
assign FILENAME=NAME1//0//PRESS//NAME2
assign INCREM=0.1

ELSE
assign FILENAME=NAME1//PRESS//NAME2
assign INCREM=0.1

ENDIF

Defines the name of file under which to save solutions and
assign the load step increment. Note the first step applies
no load and is used to determine the compatible unloaded,
residually stressed state. Cavity pressures are then applied
in 10% load steps.

fem solve increment INCREM iterate 20 error 0.001

Applies INCREM proportion of the cavity pressures for the
current load step and solves the mechanics equations. The
solution process continues until the error measure is below
10�3 or the iteration count exceeds 20.

fem define initial;w;FILENAME region MYOCARD Saves the current configuration to a file on disk

fem export node;FILENAME field offset 7500
region MYOCARD

Writes the current geometric configuration for the wall
region to a CMISS graphical front-end input file on disk

ENDDO End of solution loop

set output off Closes the output log file
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The CMISS command file for ventricular systole

The analysis of ventricular systole followed the diastolic analysis. The the CMISS command

file detailed here was designed to to be used directly after the above CMISS command file

for passive ventricular inflation.

This CMISS command file defines two new regions (one for each ventricular cavity), to

provide impedance constraints for the analysis of ventricular wall mechanics. Note that in

the process of defining adjacent cavity elements to the ventricular wall elements, the average

arc-length scale factors for the wall region changed, rendering the end-diastolic configuration

to be non-converged. To overcome this, the element scale factors for the wall region were

saved before the cavity models were defined and were subsequently reentered just prior to

the systolic solution procedure.

! ANALYSE SYSTOLE.COM: CMISS command file to analyse ventricular systole. Precede this file with the command

file ANALYSE DIASTOLE.COM and then either solve for or read in the end-diastolic configuration.

! Save the scale factors for the ventricular wall elements

fem define base;r;fullheart readse Redefines the basis functions so that scale factors may be
read from or written to file

fem define line;w;fullheart refmu region MYOCARD Writes out the scale factors for the ventricular wall
elements

fem define base;r;fullheart Redefines the basis functions to calculate element scale
factors

! Define geometric information for the LV and RV cavities

fem define region;r;coupled In addition to the myocardial region, two extra regions are
defined for the LV and RV cavities

fem define coordinates;r;lvcavity region LVCAV
fem define coordinates;r;rvcavity region RVCAV

Selects the prolate spheroidal coordinate system for the LV
and RV cavities

fem define node;r;lvcavity refmu region LVCAV
fem define node;r;rvcavity refmu region RVCAV Read LV and RV cavity nodes
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fem define element;r;lvcavity refmu region LVCAV
fem define element;r;rvcavity refmu region RVCAV Reads LV and RV cavity elements

fem group element 121..180 as lv cavity elems
region LVCAV Element group for all LV cavity elements

fem group element 151..160 as lv cavity base elems
region LVCAV Element group for basal LV cavity elements

fem group nodes xi2=1 xi3=1 element
lv cavity base elems as
lv cavity base nodes region LVCAV

Node group for basal LV endocardial nodes

fem group element 181..198 as rv cavity elems
region RVCAV Element group for all RV cavity elements

! Define dependent variable information and material properties for the LV and RV cavity regions

fem define equation;r;coupled region
MYOCARD,LVCAV,RVCAV lock

Selects the 3D, incompressible, finite elasticity equilibrium
equations to govern wall deformation and the constant
volume cavity constraint for the LV and RV cavities

fem define material;r;cavity region LVCAV
fem define material;r;cavity region RVCAV

Reads the impedance parameter for the free interior basal
nodes of the LV and RV cavities

fem define initial;r;lvcavity refmu region LVCAV
fem define initial;r;rvcavity refmu region RVCAV

Defines boundary conditions for the LV and RV cavity
regions. The central basal LV and RV nodes are free to
vary in µ only. All other interior LV nodes are fixed in each
geometric coordinate. All LV and RV endocardial nodes
are free to vary in all coordinates, since their motion is
governed by the ventricular wall region

! Define ventricular wall–cavity coupling and solution process information

fem define coupling;r;coupled
Sets up the coupled ventricular wall/cavity problem.
Regions are coupled through cavity pressures on the
endocardial surfaces

fem define solve;r;coupled coupled region
MYOCARD,LVCAV,RVCAV

The coupled equations are solved using the
Newton-Raphson method, with GMRES iterative solution
of the resulting linear equations

fem update solution coupled source region
MYOCARD

Transfers myocardial wall solutions from the inflation
problem to internal geometric dependent variables for the
LV and RV cavity regions

fem update solution cavity reference average 196 in 1
node lv cavity base nodes region LVCAV

fem update solution cavity reference average 203 in
1 node 14,18 region RVCAV

Updates the reference state for the cavity regions with the
(end-diastolic) configuration from the ventricular problem.
The x-coordinate of central cavity nodes is averaged from
adjacent wall nodes and these inflated cavity volumes are
used as references for the isovolumic contraction phase

! Reread the original scale factors for the ventricular wall elements

fem define base;r;fullheart readse Redefines the basis functions so that scale factors may be
read from or written to file
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fem define line;r;fullheart region MYOCARD Reads in the scale factors for the ventricular wall elements

fem define base;r;fullheart Redefines the basis functions to calculate element scale
factors

! Solve for ventricular isovolumic contraction

set output;steps contract on Saves all subsequent output from the solution process to a
log file on disk called ’steps contract.out’

assign NAME1=active0
assign NAME2=fullheart def 0010 active 00 Defines naming variables for files on disk

DO ”CA”=1..24 Sets up the solution loop with 24 load steps

IF CA < 10
assign CANUM=0//CA

ELSE
assign CANUM=CA

ENDIF

Defines a variable for input and output files names

fem define active;r;NAME1//CANUM region
MYOCARD

Increments Caactn to increase the active fibre tension
developed during ventricular systole

fem solve increment 0.0 iterate 20 coupled error
0.001

Solves the coupled ventricular wall/cavity problem for the
new Caactn, but without changing the applied loads (cavity
pressures are determined through coupling equations).
The solution process continues until the error measure is
below 10�3 or the iteration count exceeds 20

fem define initial;w;NAME2//CANUM region
MYOCARD,LVCAV,RVCAV Saves the current configuration to a file on disk

fem export node;NAME2//CANUM field offset 7500
region MYOCARD

Writes the current geometric configuration for the wall
region to a CMISS graphical front-end input file on disk

ENDDO End of solution loop

set output off Closes the output log file
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! Solve for ventricular ejection

set output;steps eject on Saves all subsequent output from the solution process to a
log file on disk called ’steps eject.out’

assign NAME1=cavity
assign NAME2=fullheart def 0010 active 0024 cavk Defines naming variables for files on disk

assign MAT=640 Sets the initial cavity impedance level

DO ”I”=1..26 Sets up the solution loop with 26 load steps

assign MAT2=‘MAT*1000‘ truncate
IF MAT2 < 10

assign MATNUM=0000000//MAT2
ELSEIF MAT2 < 100

assign MATNUM=000000//MAT2
ELSEIF MAT2 < 1000

assign MATNUM=00000//MAT2
ELSEIF MAT2 < 10000

assign MATNUM=0000//MAT2
ELSEIF MAT2 < 100000

assign MATNUM=000//MAT2
ELSEIF MAT2 < 1000000

assign MATNUM=00//MAT2
ELSE

assign MATNUM=0//MAT2
ENDIF

Defines a cavity impedance naming variable for input and
output files

fem define material;r;NAME1//MATNUM region
LVCAV

fem define material;r;NAME1//MATNUM region
RVCAV

Decrements ventricular cavity impedances according to
the cavity impedance naming variable for the current load
step

fem solve increment 0.0 iterate 20 coupled error
0.001

Solves the coupled ventricular wall/cavity problem for the
new cavity impedances, but without changing the applied
loads (cavity pressures are determined through coupling
equations). The solution process continues until the error
measure is below 10�3 or the iteration count exceeds 20

fem define initial;w;NAME2//MATNUM region
MYOCARD,LVCAV,RVCAV Saves the current configuration to a file on disk

fem export node;NAME2//MATNUM field offset
7500 region MYOCARD

Writes the current geometric configuration for the wall
region to a CMISS graphical front-end input file on disk

IF MAT > 10
assign MAT=‘MAT/2‘

ELSEIF MAT > 4
assign MAT=‘MAT-1.0‘

ELSE
assign MAT=‘MAT-0.3‘

ENDIF

Decrements the cavity impedance naming variable

ENDDO End of solution loop
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set output off Closes the output log file
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E.2 CMISS input files

Each CMISS command file requires several CMISS input files to set up the ventricular

mechanics analysis. Brief descriptions of the various CMISS input files are provided in the

following.

� coupled.ipregi: Sets up three regions for the ventricular wall and left and right

ventricular cavity models.

� prolate.ipcoor, lvcavity.ipcoor, rvcavity.ipcoor: Three-dimensional prolate

spheroidal (λ;µ;θ) coordinates (see Section 3.2.2) are defined for the geometric

and dependent variables in the ventricular wall region and left and right ventricular

cavity regions. Interpolation is in λ, the origin is at (0,0,0) and all mappings are

standard.

� fullheart refmu.ipnode: 195 nodes are defined for the ventricular wall region using

three-dimensional prolate spheroidal coordinates (focus: 35:25mm). There is just one

version for λ (nj=1) and µ (nj=2) and the number of versions for θ (nj=3) is prompted.

There are seven derivatives for λ (coordinate 1) and none for µ (coordinate 2) or θ
(coordinate 3).

� lvcavity refmu.ipnode, rvcavity refmu.ipnode: 68 and 38 nodes are defined for the

left and right ventricular cavity regions, respectively, using three-dimensional prolate

spheroidal coordinates (focus: 35:25mm). There is one version for λ (nj=1) and µ

(nj=2) and the number of versions for θ (nj=3) is prompted. There are seven derivatives

for λ (coordinate 1) and none for µ (coordinate 2) or θ (coordinate 3). Many of the

nodes in the cavity regions are also defined in the ventricular wall region.

� fullheart.ipbase, fullheart readse.ipbase: Eleven interpolation schemes are used for

the analysis (see Section 3.1). Scale factors are calculated from average arc-length for

basis functions involving cubic Hermite interpolation and unit scale factors are used for

linear Lagrange bases. All interpolation schemes use three point Gaussian Quadrature

(see Section 3.3) in each of the finite element coordinates. The second file is used to

write and reread ventricular wall element scale factors before and after setting up the

ventricular regions. The interpolation schemes are:

1. 3D tricubic Hermite
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2. 3D trilinear Lagrange

3. 3D bilinear Lagrange–cubic Hermite

4. 2D bicubic Hermite

5. 2D bilinear Lagrange

6. 2D cubic Hermite–linear Lagrange

7. 2D linear Lagrange–cubic Hermite

8. 3D linear Lagrange–bicubic Hermite

9. 3D trilinear Lagrange with two auxiliary pressure parameters for (ξ1;ξ2) surface

pressure boundary constraints

10. 3D bicubic Hermite–linear Lagrange

11. 3D constant basis with one auxiliary pressure parameter

� fullheart refmu.ipelem, lvcavity refmu.ipelem, rvcavity refmu.ipelem: 120, 60

and 18 three-dimensional elements are defined for the wall, left and right ventricular

cavity regions, respectively. λ is interpolated using tricubic Hermite interpolation for

the wall elements and bicubic Hermite–linear Lagrange interpolation for the cavity

elements. In all three regions, µ and θ are approximated using trilinear Lagrange

interpolation.

� fullheart refmu.ipfibr: Three fibre orientation fields are defined for the ventricular

wall region. The fibre angle measured relative to the ξ1 coordinate and angles are

entered in degrees. Numbers of versions are prompted for he fibre angle, but not the

imbrication or sheet angles. The fibre and sheet angles have one and three derivative

defined, respectively, whilst the imbrication has no derivatives.

� fullheart refmu.ipelfb: The three-dimensional elements used for the geometry are

also used to define fibre orientation fields. In all elements, the fibre, imbrication

and sheet angles are interpolated using bilinear Lagrange–cubic Hermite, trilinear

Lagrange and linear Lagrange–bicubic Hermite basis functions, respectively.

� finelas tch incomp.ipequa: Ventricular wall mechanics are analysed using a static

3D technique based on finite deformation elasticity (see Chapter 2). Finite element

geometric coordinates are determined using a Galerkin analysis of the nonlinear

equations that govern the behaviour of incompressible ventricular myocardium (see

Chapter 3). For this isoparametric formulation, the spatial dependent variables are

approximated using the same interpolation schemes as the geometric variables. The

intramural hydrostatic pressure field (dependent variable 4) is approximated using 3D

trilinear Lagrange interpolation and global matrices are stored sparsely.
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� coupled.ipequa: Defines the governing equations for ventricular wall region (as for

’finelas tch incomp.ipequa’ above) and constant volume constraints (see Section 6.4)

for the ventricular cavity regions. For the cavities, λ is approximated using bicubic

Hermite–linear Lagrange interpolation, while µ and θ are interpolated using trilinear

Lagrange basis functions. Ventricular cavity pressures are approximated using

constant interpolation within the incompressible cavity elements.

� orth incomp active residstrain.ipmate: Stresses in constitutive law are referred

to body (fibre) coordinates with active fibre stress. The hyperelastic constitutive

law is expressed in pole-zero form as a function of the fibre and transverse strains

(see Section 5.1.1). The 16 constitutive law parameters consist of the three linear

coefficients, three limiting strains (poles), three axial curvatures and four standard

deviations, that define the variations directions within the three fibre families. To

incorporate residual strains (see Section 5.1.2), the initial fibre extension ratios for

the equatorial nodes were set to 105% and 95% (relative to the resting length) for the

epicardial and LV endocardial surfaces, respectively.

� cavity.ipmate: Defines the initial left and right ventricular cavity impedance parameter

as 1000, which corresponds to no movement of the free basal cavity nodes and hence

isovolumic contraction. For the ejection phase, the solution procedure decrements the

impedance parameter to allow blood to exit the ventricular cavities.

� active0 00.ipacti: The active myofibre contraction model is based on a steady state�
Ca2+

�
–tension relation (see Section 5.2.1), and the level of activation Caactn is

initially zero so that no active fibre tension is generated. For the isovolumic contraction

phase, the solution procedure increments Caactn in equal load steps.

� fullheart inflate pericard.ipinit: Boundary pressure increments entered for the

endocardial cavities (LV: 1 kPa and RV: 0:2 kPa) and epicardial surfaces (zero).

Pericardial constraint boundary conditions (see Section 6.3.2) fix λ and all of its spatial

derivatives for the epicardial nodes, and /mu is fixed for the apex nodes. To prevent

rigid rotations, θ is fixed for the central RV epicardial node on the basal ring.

� lvcavity refmu.ipinit, rvcavity refmu.ipinit: Internal cavity nodes that are not part of

the ventricular endocardial surface are fixed in all coordinates, except for the top node

in each cavity, which is free in the µ coordinate to allow movement during ejection.

� coupled.ipcoup: Ventricular cavity regions are coupled to the wall region using

mappings that match the ventricular cavity pressures to the applied pressure variables

for the endocardial surface.

� newton.ipsolv, coupled.ipsolv: The nonlinear equations are solved using Newton-



E.2 CMISS INPUT FILES 232

Raphson iterations with no line search and finite difference approximation to residual

derivatives (see Section 3.5). The resulting linear equations are solved using the

iterative generalised minimum residual procedure with sparse storage and diagonal

preconditioning.
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