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ABSTRACT 
 
 

Languages, like species, evolve. Just like biologists, historical linguists infer relationships 

between the lineages they study by analysing heritable features. For linguists, these 

features can be words, grammar and phonemes. This linguistic evidence of descent with 

modification plays an important role in our understanding of human prehistory. However, 

conventional methods in historical linguistics do not employ an explicit optimality 

criterion to evaluate evolutionary language trees. These methods cannot quantify 

uncertainty in the inferences nor provide an absolute chronology of divergence events. 

Previous attempts to estimate divergence times from lexical data using 

glottochronological methods have been heavily criticized, particularly for the assumption 

of constant rates of lexical replacement. Computational phylogenetic methods from 

biology can overcome these problems and allow divergence times to be estimated without 

the assumption of constant rates. Here these methods are applied to lexical data to test 

hypotheses about human prehistory. First, divergence time estimates for the age of the 

Indo-European language family are used to test between two competing theories of Indo-

European origin – the Kurgan hypothesis and the Anatolian farming hypothesis. The 

resulting age estimates are consistent with the age range implied by the Anatolian farming 

theory. Validation exercises using different models, data sets and coding procedures, as 

well as the analysis of synthetic data, indicate these results are highly robust. Second, the 

same methodology was applied to Mayan lexical data to infer historical relationships and 

divergence times within the Mayan language family. The results highlight interesting 

uncertainties in Mayan language relationships and suggest that the family may be older 

than previously thought. Finally, returning to biology, similar tree-building and model 

validation techniques are used to draw inferences about human origins and dispersal from 

human mitochondrial DNA sequence data. These analyses support a human origin 

150,000-250,000 years ago and reveal time dependency in rates of mitochondrial DNA 

evolution. Population size estimates generated using a coalescent approach suggest a two-

phase human population expansion from Africa. Potential correlations between human 

genetic and linguistic diversity are highlighted. I conclude that there is much to be gained 

by linguists and biologists using the same methods and speaking the same language. 
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