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A Practical Scheduling Method for 

Multiclass Production Systems with Setups 

Tava Lennon Olsen 
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109-2117 

C onsider a multiclass production system where many job classes share a single server and 
a setup time is incurred whenever the server changes class. This paper presents a simple 

method for scheduling these systems that performs well, not only with respect to mean 
waiting time, but also with respect to waiting-time variance and the outer percentiles of 
waiting time. The scheduling method is dynamic and uses the ages of items in each queue, as 
well as the queue statistics, to decide which queue to service next. 
(Heuristics; Changeovers; Queueing; Polling; Manufacturing) 

Manufacturing systems where machines process a 
number of different products and require time to set 
up (or change over) between products are extremely 
common in industry. For example, most automakers 
run stamping plants where the setup time between 
parts involves changing heavy dies and is necessarily 
large. This paper presents a practical method for 
dynamically scheduling products in such environ- 
ments. 

The specific environment considered here is a man- 
ufacturing work center where a single machine (or 
server) processes a variety of different types (or 
classes) of items. If the item to be produced on the 
machine is of the same type as the item previously 
produced, then no machine setup is required. On the 
other hand, if the item is of a different type, then a 
(possibly lengthy) machine setup is required before it 
can be processed. We assume that the length of the 
setup time does not depend on the sequence of 
product types produced (i.e., the setup times are 
"sequence independent"). The canonical example for 
this type of setup is a die change operation where the 
setup time does not depend on which die was previ- 
ously in place. 

There are two main bodies of literature where 

scheduling multiple products requiring setups is fairly 
well understood. The first seeks to optimally schedule 
a fixed set of jobs or customer orders, all of which are 
present at time zero (see, for example, Pinedo 1995 or 
Webster and Baker 1995). The second is an inventory 
setting where inventory is depleted at a fixed rate (see, 
for example, Nahmias 1993). However, in a typical 
manufacturing environment, orders continue to arrive 
in an unpredictable pattern over time, which is highly 
relevant in deciding which product class to process 
next, how to sequence orders within a class, and so 
forth. We are interested in studying such dynamic 
systems. 

Unfortunately, there appear to be few effective tools 
available for dynamically scheduling stochastic man- 
ufacturing systems with significant setup times. For 
example, Buzacott and Shanthikumar's (1993) seminal 
book, Stochastic Models of Manufacturing Systems, says 
effectively nothing about systems with setups. The 
goal of this paper is to present an easily implement- 
able dynamic scheduling method that works well for 
systems with parameters that are realistic for a man- 
ufacturing environment. 

Much of the relevant literature for dynamic sched- 
uling of multiclass production systems with setups 
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can be found in the literature for what are known as 
"polling models" (see Takagi 1990 for a survey). A 
polling model is a queueing system with multiple 
customer classes requiring setups. A number of stan- 
dard scheduling methods have been proposed for 
polling models. Perhaps the most studied are cyclic 
serve-to-exhaustion (CSTE) and cyclic gated service 
(CGS). Under both these methods the queues are 
visited in a fixed cyclical manner (see Takagi 1990 for 
further details). However, there has also been signifi- 
cant study of models where the queues are visited in 
a fixed noncyclic manner. The order in which queues 
are visited is determined by what is known as a 
"polling table." Queues with high priority are placed 
several times on the table. There has been significant 
work done on finding optimal sequences for polling 
tables based on objectives such as minimizing ex- 
pected waiting cost where costs are assumed to be 
linear (see, for example, Boxma et al.). However, these 
types of systems still require that a strict pattern for 
visiting queues is followed and that a setup is incurred 
even if the queue is empty. While this might be 
realistic in a telecommunications setting, it is probably 
highly unrealistic in a manufacturing setting. Al- 
though Cooper et al. (1997) recently have shown that 
in CSTE models it is sometimes optimal to set up at a 
queue even if it is empty, our intuition is that this less 
likely to be the case under dynamic policies. 

Very little has been done on policies that are neither 
fixed nor cyclical. The two-station model has been 
analyzed by Hofri and Ross (1987) and Reiman and 
Wein (1994). For the case where there are more than 
two stations, Liu et al. (1992) and Markowitz (1996) 
provide some optimality results that are described in 
?2. Browne and Yechiali (1989) derive quasi-dynamic 
index policies where each queue is visited exactly once 
per cycle but the order in which queues are visited 
within a cycle changes dynamically. Duenyas and Van 
Oyen (1996) provide a heuristic for scheduling sys- 
tems with setups that is based on a dynamic program- 
ming formulation. Section 3 compares our heuristic to 
those of both Browne and Yechiali (1989) and Duenyas 
and Van Oyen (1996). 

We study what is a "good" way to dynamically 
schedule multiclass production systems with signif- 

icant setup times. The question, of course, is what is 
meant by a "good" scheduling method? The tradi- 
tional performance measures used for such environ- 
ments have been mean waiting time, or a weighted 
average of mean wait. However, this is probably 
due more to tractability issues rather than motiva- 
tion from actual manufacturing environments. 
Other than Liu et al. (1992), all of the above work 
seeks to minimize various types of means. Nothing 
is known about the relative performance of different 
policies with respect to the variance or outer per- 
centiles of waiting time. Furthermore, little is 
known even on minimum variance policies for 
systems without setups. When setups are zero and 
all queues are identical, it is well known that 
First-In-First-Out (FIFO) service stochastically min- 
imizes waiting time. For asymmetric systems with 
zero setups, it is known that choosing the job with 
the shortest processing time minimizes mean wait; 
however, it does not stochastically minimize wait- 
ing time. Ayhan and Olsen (1997) have presented a 
heuristic for reducing the variance in systems with- 
out setup times which will be discussed in ?2.1. 

In our experience, mean waiting time may not be as 
relevant to a manufacturer as the outer percentiles of 
waiting time (e.g., 95th percentile) or the variance of 
waiting time. We therefore seek a scheduling heuristic 
that performs well, not only with respect to mean 
waiting time, but also with respect to the variance and 
95th percentile of waiting time. In other words, we 
seek a scheduling method that produces a waiting 
time distribution with a moderate mean and a light 
tail. This paper does not seek an optimal policy for 
either of the previous two objectives. Rather, it uses 
the dual objective of moderate mean and light tail to 
present a policy that is designed to be the "best 
available" practical policy for manufacturing systems 
with multiple classes and significant setup times. 

This paper is organized as follows. Section 1 pre- 
sents the problem formulation and introduces nota- 
tion. Section 2 describes our heuristic policy. Using 
simulation, ?3 tests our heuristic against previously 
suggested policies from the literature. Lastly, ?4 con- 
cludes the paper and describes possible extensions to 
our work. 
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1. Problem Formulation and 
Notation 

This section describes the model further, outlines the 
notation used, and presents the assumptions made. 
We will consider an environment where production is 
make-to-order and the server has knowledge of how 
many customers are present in each class and when 
each customer arrived. We seek a scheduling method 
that produces a waiting time distribution with a 
moderate mean and a light tail. 

Jobs arrive to each of n job classes according to 
independent Poisson processes of rate Ai at class i, 
1 ? i ? n. The service times for customers in class i, 
1 ? i ? n, are independent and distributed according 
to the random variable Bi with mean bi and second 
moment b (2). Let i i = 1/b., 1 < i < n. As mentioned 
previously, we assume that the duration of each setup 
depends only on the class being switched to and not 
on which class was served previously. The setup times 
for class i, 1 ' i ? n, are independent and distributed 
according to the random variable Si with mean s . The 
only assumptions made regarding the distribution of 
the service and setup times are that the means and 
variances are finite and that all distributions are inde- 
pendent. We also assume that all steady-state limits 
exist and are well-defined. Simulation results verify 
that such assumptions are valid for the parameter 
values of interest to us. 

Let pi = Aibi be the utilization at queue i, 1 ? i ? n, 
and let p be the system utilization excluding setups 
(i.e., p = i Pi). We assume that p < 1. This assures 
that the system is stable under CSTE and CGS sched- 
uling disciplines (see Takagi 1986). Takagi (1986) also 
shows that for a stable system, a CSTE system is 
regenerative, and hence steady-state limiting distribu- 
tions exist. 

In all models, we define a cycle at queue i, 1 ? i ? n, 
as the time between two successive arrivals of the 
server to queue i. Let Ci be the random variable that 
has steady-state cycle time distribution for queue i, 
1 ? i ' n. It is also useful to define intervisit time at 
queue i, 1 < i ? n, as the time that elapses from the 
server leaving queue i to its next commencement of 
service at queue i. Thus the intervisit time for queue i 
equals the cycle time for queue i minus the time spent 

serving queue i. Steady-state intervisit time for queue 
i, 1 < i c n, is represented by Ii. Letfij be the expected 
number of visits to queue j for every visit to queue i, 
1 c i, i c n, where fii = 1. We refer to the fij as the 
relative queue visit frequencies. Clearly, fij = E[Ci]/ 
E[CJ], 1 c i, j c n. 

Steady-state waiting time at queue i, Wi, is defined as 
the time from a job's arrival to queue i to when it 
commences service in steady-state, 1 c i c n. Total 
waiting time W is the waiting time experienced by an 
arbitrary customer. Thus E[W] = SIn AiE[Wi]/A. The 
pth percentile for the total waiting time distribution is 
defined as the number P(p) such that Prob(W ' P(p)) 
= p / 100. In our experience, it is usually the total wait 
W that is of interest to a manufacturer. However, ?4 
discusses the case where different queues have differ- 
ent priorities. 

Lastly, we define a symmetric system as one where 
all queues have identical arrival rates, setup time 
distributions, and service time distributions. Con- 
versely, an asymmetric system allows for differences 
among the queues. 

2. Heuristic Procedure 
This section presents our heuristic procedure for dy- 
namically scheduling multiclass production systems 
with setups. The novelty of the procedure is in using 
customer ages multiplied by a "scale factor" to deter- 
mine which queue to serve next. Section 2.1 describes 
this procedure in detail and provides motivation for 
using customer ages to select queues. Section 2.2 
describes the selection of scale factors. These scale 
factors rely on desired queue visit frequencies that are 
derived in ?2.3. 

Our heuristic procedure is completely defined by 
the following policies: 

Queue Greedy: The server never idles at a queue 
while there is still work present at that queue. 

System Greedy: The server never idles while there is 
any work in the system. 

Exhaustive: The server never switches from a queue 
that still contains work. 

Patient: If the system is empty then the server idles 
at the most recently served queue. 
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FIFO Service: Service within a class is in the same 
order in which the jobs arrived (i.e., First-In-First-Out 
service). 

Greatest Scaled Age: The next queue to service will 
be chosen as that with the most scaled age (defined 
in ?2.1). 
As described in detail below, these policy types are 
chosen both because of previously derived optimality 

results/and because of general system intuition. In ?3 
we test our heuristic against six heuristic procedures 
that we found in the literature. Of these, all use FIFO 
service within a class and are queue greedy. All but 
one are system greedy and patient. All but two are 
exhaustive. However, the Duenyas and Van Oyen 
(1996) heuristic relies only upon FIFO and queue 
greedy service, and therefore, in ?3, it will serve as a 
test of the above policies. 

Queue and System Greedy Policies. If a policy is 
system greedy then it is also queue greedy, but not 
vice versa. Liu et al. (1992) show that (under the given 
independence assumptions) queue greedy policies 
stochastically minimize the unfinished work and the 
number of customers in the system at any time. Hence, 
for symmetric systems, queue greedy policies also 
minimize the expected waiting time. These results do 
not carry over to system greedy policies. While system 
greedy policies are not generally optimal, we choose 
to concentrate on them for the following three main 
reasons: 

1. We believe it would be hard to persuade most 
manufacturers that they shouldn't be working 
even though there is work in the system. 

2. Idling with work in the system could add an- 
other source of variability to the system. 

3. It seems to work well in practice. 
Exhaustive Service. Liu et al. (1992) also show 

that, under the given independence assumptions, ex- 
haustive policies stochastically minimize the unfin- 
ished work and the number of customers in the 
system at any time. Hence, for symmetric systems, 
exhaustive policies also minimize the expected wait- 
ing time. However, this is not necessarily true for 
asymmetric systems. For example, in systems with no 
setup times it is well known (see, for example, Wolff 
1989) that serving the queue with the smallest ex- 

pected service time ("largest cla'") minimizes the total 
expected wait. In systems with setup times, Duenyas 
and Van Oyen (1996) show that in order to minimize 
total expected wait it is optimal to serve exhaustively 
at the queue with the smallest service time. Markowitz 
(1996) has shown that under heavy-traffic, in order to 
asymptotically (as p t 1) minimize the expected 
waiting time in cyclic service systems, all but the 
queue with the smallest c,u should be served to 
exhaustion. (This result was previously shown in 
Reiman and Wein (1994) for the two queue case.) If all 
queues have identical costs (as in our case) Markowitz 
(1996) also shows that even the lowest priority queue 
should be served exhaustively. While exhaustive ser- 
vice might not be generally optimal, we choose to 
concentrate on it due to the above observations and 
for the following five additional reasons: 

1. It conserves time spent in setups (as compared to 
other system greedy policies), which could be 
important if there is cost as well as time associ- 
ated with setups. 

2. Exhaustive service is self compensating, in that if 
the system is busy then less time is spent in 
setups than when the system is not busy. 

3. Most reasonable exhaustive service policies are 
stable when p < 1. This cannot be said for policies 
that place a fixed limit on the number served at 
each visit. 

4. Not serving exhaustively would seem to lead to 
another source of variability. An arrival is no 
longer guaranteed to wait at most a single cycle 
before receiving service. 

5. It seems to work well in practice. 
Patient and FIFO Service. Liu et al. (1992) have 

shown that patient service minimizes mean waiting 
time in a symmetric system. Switching to the queue 
with the highest arrival rate when the whole system is 
empty may slightly reduce waiting time. However, if 
either the number of queues or the setup times are 
relatively large then the difference between this strat- 
egy and patient service is not likely to be big because 
the percentage of idle time will be very small. In our 
simulation study we consider only patient service but 
leave the implementation of what to do when idle up 
to individual plant managers. In systems where setups 
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require considerable labor it is likely that they will 
adopt a patient system. 

Lastly, because jobs within a class are stochastically 
identical, serving other than FIFO service would seem 
to only increase the variance of the waiting time. 
Therefore, only a FIFO queue discipline is considered. 

2.1. Greatest Scaled Age Queue Selection 
Procedure 

We wish to find a scheduling method that performs 
well not only with respect to mean waiting time but 
also with respect to the variance and outer percentiles 
of waiting time. As shown in this section, such a policy 
must take into account the age of current items when 
selecting a queue. This section describes the greatest 
scaled age procedure for choosing the next queue. 

Let Ti be the total age currently present in queue i 
(sum over the time each customer present has been 
waiting) upon completing service at some other 
queue, 1 c i c n. Then, after setting up for queue i, 
the expected total age is 

Ai = AiS 2/2 + siNi + Ti, 

where Ni is the number of customers present in queue 
i prior to the setup. The greatest scaled age procedure 
chooses the next queue as the one with the most 
expected age Ai multiplied by a scale factor wi, 
1 ' i ' n. Under extremely light traffic each queue 
will typically contain only one customer and therefore 
wi = 1 Vi is almost equivalent to FIFO service. 
However, it is easy to see that this could produce very 
long waits, particularly if the system is highly asym- 
metric. In particular, a successful scheduling method 
should assign a low priority to those queues with very 
long setup times. How these weights are assigned is 
discussed further in ?2.2. We first motivate this pro- 
cedure. 

For most systems, in order to minimize mean wait- 
ing time, the age of the items present is not relevant. 
However, when considering higher moments of wait- 
ing time a scheduling method must take the age of the 
items into account. For example, FIFO service mini- 
mizes all moments of waiting time in GI/ G / 1 queues 
and chooses the next customer as that with the great- 
est age. Ayhan and Olsen (1997) propose a heuristic 
with the same objectives as this paper for multiprod- 

uct systems with no setups. This heuristic is based on 
heavy-traffic theory of Van Mieghem (1995) and as- 
ymptotically (as p t 1) minimizes the second moment 
of waiting time. The heuristic chooses the next job as 
that with the greatest value of age divided by expected 
service time. The idea of multiplying total age by a 
scale factor is clearly similar to this idea. However, 
instead of considering only the ages of individual 
items, the procedure here adds up the ages of all 
customers in a queue. 

In order to motivate the use of total age in our 
heuristic we present the following example and 
lemma, which show why age is important for mini- 
mizing higher moments (in particular the second 
moment) of waiting time. 

EXAMPLE 1. Consider a two-queue' system where 
there are no arrivals. At time zero queue 1 has n1 

customers with ages all, a12, . .. , ain, and queue 2 has 
n2 customers with ages a2l, a22, . .. , a2n2. Let T1 = t21 

ali and T2 = =21 a2i be the total ages in each queue. 
Suppose both queues have identically distributed ser- 
vice times with mean b and second moment b (2). Setup 
times at both queues are deterministic with mean s. 
Furthermore, suppose that neither queue is set up for 
at time 0. We will serve each queue exhaustively. Let 
W)k be the waiting time of the kth customer at queue j 
when queue i is the first queue to be served, 1 c i, 
j c 2 and 1 ? k c nj. Let w12 be the difference in total 
wait between serving queue 1 first and serving queue 
2 first. Then 

nl n2 nl n2 

W12 
= EWl{k + E EWlk - E EW2 

k=1 k=1 k=1 k=1 

nl n2 

= E (s + alk+ kb)+ E (2s + a2k + (n1 + k)b) 
k=1 k=1 

nli n2 

- E (2s + alk + (n2 + k)b) - E (s + a2k + kb) 
k=1 k=1 

= (n2- nl)s. 

As expected, to minimize the mean waiting time the 
first queue to be served should be the longest queue. 
Furthermore, if setup times are zero then the system is 
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work conserving and serving either queue results in 
the same total expected wait. 

Let w () be the difference in the sum of the second 
moments of waiting time between serving queue 1 first 
and serving queue 2 first. Then it is easy to show that 

1(2) = 2T2(s + n1b) - 2T1(s + n2b) 

+ 3(n2 - n1)s2 + [n2(n2 + 1) - n1(n, + l)]bs. 

Notice that age enters into this equation only as the 
sum over all customers in a queue. If n 1 = n2 then the 
policy that minimizes the second moment of waiting 
time chooses the first queue as that with the most total 
age. However, if n1 0 n2 then in order to minimize 
second moment, the optimal queue choice depends 
both on the total ages and on the number of customers 
present in each queue. 

LEMMA 1. Let w be a stationary exhaustive service 
policy where the decision at each time instant depends on 
the queue lengths and the ages of the customers in each 
queue. Let y be an identical policy to XT except that if two 
queues are of identical length with identical distributional 
properties then the queue with the most total age is 
preferred. Let Ai(t) be the number of arrivals to queue i by 
time t, 1 ? i ? n. Let W' (W'Ik) be the waiting time for 
the kth departing customerfrom queue i, 1 ? i ? n, under 
policy 7T (y). Then for fixed T > 0 

n Ai(T) n Ai(T) 

(i) E W iT E W 7y 
[k 

ik 
i=1 k=1 i=1 k=1 

and 

n A (T) n A (T) 

(ii) E ( 
Wai) 

2 E ( 
Wy 

2k 

Li=1 k=1l i=1 k=1l 

PROOF. Part (i) is immediate from the definition of 
the policies. For (ii), let 

n Ai(T) 

Vw(T)= E(W )2 
i=1 k=1 

and 

n Ai(T) 

VY(T) = 2 (W7y)2. 
i=1 k=1 

Let n 7(t) be the number of customers in queue i at 
time t under policy 7T, 1 c i c n. Also, let A 7(t) be the 
total age in queue i at time t under policy 7T, 

1 ' i ' n. Consider X on some sample path w. We will 
consider y along a new sample path w' where w' has 
the same law as w. 

Suppose that some queues i and j have identical 
distributional properties, 1 ? i, j ? n. Suppose at 
time t1 queue i begins a setup under 'T, n7(t1) 
= n7(t1), and A 7(t) < A7(t). Let w' follow w up to 
time t1. Then under y queue j commences a setup at 
time t1. Let t2 be the first time after time t1 that 
queue j is setup for under XT and let t3 be the first 
time that queue j is exhausted after time t2 under iT. 

Without loss of generality we may take T = t3 

(because the following argument can be repeated as 
many times as necessary). Let the arrival epochs, 
setup times, and service time sequences under w' be 
the same as w for all queues other than queues i and 
j. Interchange the arrival, service, and setup pro- 
cesses for queues i and j between times t1 and t3. For 
example, the arrival times seen at queue i (j) 
between t1 and t3 under w are those seen at queue j 
(i) under w'. The interchange of arrival processes is 
allowable since the interarrival times are i.i.d. expo- 
nential (memoryless) random variables. The inter- 
change of service and setup time processes is allow- 
able since the service and setup times are i.i.d. and 
no service or setup is in progress at times t1 or t3. 
Because of this interchange, the time to exhaust 
queue i under XT is the same as the time to exhaust 
queue j under y. Therefore, the waiting time for all 
customers in these two systems, except those 
present in queues i and j at time ti, is identical (the 
new arrivals to queue i (j) under XT experience the 
same wait as the new arrivals to queue j (i) under 
-y). Let aik (ajk) be the age of the kth customer at 
queue i (j) at time t1, 1 ? k ? n7(t1) (n7(t1)). Let s7 
(s 7) be the first setup time after time t1 at queue i 
under policy XT (-y). Define s and s Y similarly. Then 
s7 = sY and s = s 7. Let brl (b'I) be the Ith service 
time after time t1 at queue i under policy XT (-y), 1 
? 1 ? n7(t1) (n7(t1)). Similarly define brl and b1Y so 
that b7[ = b1 , 1 c< I c n(t1), and b = b'I, 1 
? I ? n7(t1). Therefore, we have that 

MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999 121 



OLSEN 
Scheduling Method for Multiclass Production Systems 

V- Ti) - ak + s bT-) 

n kk 

T 
- taik + s b I+il 

k=1 1=1 / 

k 
2 

+ t2- t +s + ajk+ E b')T 

( k~~ j k 
2 

_t2 -t + s -+ aik + b -Yl 

- s,. + ajk + E bfj 

-=Ii 2 2(aik- ajk)(tl - t2) 
k=1 

+2(aik- ajk) s i - s?T+ E(bil bjl) 

n (ti) k 

> 2, 2(aik- ajk)(s i-s + E (bJi - b 7)) 
k=1 1=1 

The right-hand side has expectation equal to zero. 
Therefore taking expectations (i.e., unconditioning on 
w and w'), we have proved the desired result. 

The previous example and lemma have motivated 
(1) why we use total age as opposed to some other 
metric involving age, and (2) why total age is impor- 
tant when considering the second moment of waiting 
time. We use this motivation and general system 
intuition to hypothesize that a procedure using total 
age in queue selection should have lighter tails than 
one that ignores age. 

2.2. Choosing Scale Factors for the Greatest Scaled 
Age Procedure 

Under the greatest scaled age procedure the next 
queue to be served is selected as that with the greatest 
expected total age multiplied by a scale factor. We will 
choose the scale factors to reduce mean waiting time. 
In particular, if fi;, 1 < i, j < n, are desired relative 
queue visit frequencies, chosen so as to reduce mean 

waiting time, then we seek to choose the scale factors 
so that these visit frequencies are approximately 
achieved. The selection of appropriate fi1 is discussed 
in ?2.3. 

Let wi be the scale factor for queue i, 1 ? i ? n. 
Then using the following two approximations (to be 
discussed in detail later), and given relative queue 
visit frequenciesfij, 1 ? i, j ? n, the wi can be chosen 
to approximately achieve these frequencies. Recall 
that Ii represents the steady-state intervisit time for 
queue i, 1 ? i ? n. 

APPROXIMATION 1. The average scaled age upon com- 
mencement of service at queue i is approximately 
wiAiE[Ii]2/2, 1 < i ? n. 

APPROXIMATION 2. The average scaled age any queue 
when it commences service is approximately the samefor all 
queues. 

Under these two approximations, for 1 ? i, j ? n, 

wiAiE[Ii] 2/2 

wjAXE[Ij] 2/2 1. 

Therefore, since E[Ii] = (1 - pi) E[Ci], 

E[Cj] _ w1X1(1 - 
j2 

fi;= E[C1] VwAi(l - )2 (2.1) 

which may be solved to find the wi (once the fij have 
been defined), 1 ? i, j ? n. 

Discussion of Approximation 1. If customers were 
to arrive according to a deterministic flow (rather than 
Poisson arrivals), then the approximation would be 
exact. This approximation may therefore be viewed as 
a "fluid" approximation. 

The number of customers that arrived to queue i in 
a given intervisit period Ii is Poisson(AiIi), 1 ? i ? n. 
Suppose the distribution of the number of these cus- 
tomers within Ii is independent of the magnitude of Ii. 
Then there will be on average AiE[Ii] customers at 
queue i upon commencement of service at queue i. 
Also, each customer will have an average scaled age of 
wiE[Ii]/2. This yields a total expected scaled age of 
wi,iE[Ii]2/ 2 (as in Approximation 1). This is an 
approximation because if no customers arrive at the 
beginning of an intervisit period, then that would tend 
to make the intervisit period longer than if many 
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customers arrive at the beginning. Therefore, the dis- 
tribution of the number of customers within an in- 
tervisit time is not completely independent of the 
length of that period. 

In ?3.1 we present numerical results from simulat- 
ing 18 different 10-queue systems. These systems were 
designed to test the effect of different system param- 
eters on the heuristic. In order to get a feel for this 
approximation, for each test case, and for each queue 
i, 1 < i ? n, we computed the simulated values for 
wiAiE[Ii]2/2 (call this xi) and the average scaled age 
upon commencement of queue i (call this yi). We then 

computed i (Xi - Yi)2/(=i=1 Xi)2. Over all 18 test 
cases this metric had an average value of 0.016, a 
minimum value of 0.0002, and a maximum value of 
0.215. The only trend we observed in this metric was 
that as the system became less symmetric the value 
increased. However, simulation is not good at accu- 
rately estimating such small values, and hence this 
trend might be more a result of the natural variability 
caused by the added asymmetry rather than because 
of a real trend. The real test of this approximation will 
come in the performance of the heuristic. 

Discussion of Approximation 2. If the system is 
symmetric, then Approximation 2 is exact. It will 
become less exact as the system becomes more unbal- 
anced. If the system is made up of a large number of 
moderately similar queues, then we would expect this 
approximation to perform well. For each of the eigh- 
teen test cases of ?3.1 and each queue i, 1 < i < n, we 
let yi be average scaled age upon commencement of 
queue i. We then computed i (y -Y 

((in - 1)y2) where y = Sin- yi/n. Over all 18 test cases 
this metric had an average value of 0.012, a minimum 
value of 0.000002, and a maximum value of 0.053. As 
expected, as the system became less symmetric this 
metric increased. The one symmetric example in the 
test cases (case 1) had the minimum value of 0.000002. 
As the theoretical value for this case is zero, this serves 
as an illustration of the accuracy of the simulation. 
Again, the real test of this approximation will come in 
the performance of the heuristic. 

2.3. Queue Visit Frequencies 
As described in the previous section, once we have 
derived desired queue visit frequencies, the heuristic 

policy is completely defined. This section discusses 
the selection of queue visit frequencies that approxi- 
mately minimize the expected waiting time. These 
queue visit frequencies lead to the following scale 
factors: 

Wi s(p) i Pi)n. (2.2) 

We do not assume any methodology for deciding 
which queue to visit next but merely assume that such 
a methodology results in the desired visit frequency at 
each queue. The derived visit frequencies turn out to 
be the same as those found by Boxma et al. (1991) for 
the special case of queues that are visited in a fixed 
order according to a polling table. In order to derive 
these frequencies we make the following two assump- 
tions that are discussed further below. 

APPROXIMATION 3. Suppose that the squared coeffi- 
cient of variation of the intervisit time at each queue is 
approximately the samefor all queues and does not signif- 
icantly change with different policy types. 

APPROXIMATION 4. Suppose the system is never idle. 

LEMMA 2. Under Approximations 3 and 4 the queue 
visit frequencies that minimize mean waiting time for 
dynamic exhaustive service policies are: 

fi; = sA(l 
- pi) 1'i, jcn. sfX(l Pj 

PROOF. Let Xi be the waiting time in an M/G/1 
queue with arrival rate Ai and service time B i, 
1 ? i ? n. Then the decomposition property for M/ G / 1 
queues with generalized vacations of Fuhrmann and 
Cooper (1985) implies that 

E[Wi] = 2E[I] + E[Xi] ' (2.3) 

where Ii is the intervisit time for queue i, 1 < i < n. 
Rearranging yields 

E[Wi] = E[Ii](cC2+ 1)/2+E[Xi], (2.4) 

where C2, is the squared coefficient of variation for the 
intervisit time at queue i, 1 ? i ? n. Therefore, under 
Approximation 3, choosing a scheduling policy which 
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minimizes in X1E[Wi] is equivalent to choosing one 
which minimizes in-l AiE[Ii] such that the E[Ii] are 
feasible intervisit times for an exhaustive service sys- 
tem. Under Approximation 4, work balancing argu- 
ments (i.e., work flow into the system equals work 
flow out of the system) imply that (in steady-state), for 
1 ? i ? n, 

n 

E[C] = Efijs + pE[Ci], 
j=1 

and hence 

17= fi1s1 
E[CJ]= l= i -p 

However,fij = E[Ci]/E[Cj], 1 < i, j c n, so that 

n 

Z sj/E[Cj] = 1 - p. 
j=1 

But E [I] = (1 - pi) E [Ci], 1 < i < n, and thus 

n 

E (1 - p1)sj/E[I] = 1 - p. (2.5) 
j=1 

Minimizing in iE[IJ] subject to (2.5) yields 

fi; = s (1p) 1 < i, j < n. 
s1Xi(i - pi)' 

Notice that these visit frequencies imply that as 
some s i increases the server is less likely to visit queue 
i (relative to other queues). In other words, it switches 
less often to queues with a high setup overhead. Also, 
as some Aj increases (with pj constant), fij increases. 
Therefore the server is more likely to go to a queue 
where serving to exhaustion will cause a large number 
of customers to be served. 

Solving (2.1) with the above visit frequencies yields 
the scale factors given in (2.2). 

Discussion of Approximation 3. Approximation 3 
is similar to ones made by previous authors. Browne 
and Yechiali (1989) replace the objective of minimiz- 
ing in-l AiE[Wi] (which is "computationally hard") 
by that of minimizing i=1 E[Ci] ("a greedy objec- 
tive"). Also Boxma et al. (1991) show that waiting 

time is minimized when c' is taken to be zero, 
1 ? i < n, and perform their heuristic analysis 
assuming that this is the case. In simulation tests we 
found that c' is significantly less than one, and 
hence most of the magnitude of E[W,] arises from 

E[Ij], 1 < i < n. Olsen (1996) shows that c' in CSTE 
queues converges to zero for all queues i, 1 c i c n, 
as both p t 1 and s t oo, where s is total mean setup 
in a cycle. This is a result of a strong law of large 
numbers effect where the intervisit time is a sum of 
a large number of service times. In simulation tests 
we found that this effect appears to carry over to 
these more dynamic system. For example, in Table 2 
in ?3.1 cases 12, 13, and 14 have increasing setup 
time magnitude. The simulated values for j cIi/n 

for these three cases (under our heuristic) are 0.19, 
0.11, and 0.07. Similarly, for cases 4, 5, and 6 in Table 
2, where system load is increased, the simulated 
values of In 1 cf /n for the three cases are 0.37, 0.29, 
and 0.26, which can be seen to be decreasing. For 
each of the 18 test cases in ?3.1 we computed the 
average value of In-1 ct /n for each of the 7 given 
heuristics. For each test case, the mean and standard 
deviation for j cIi/n were computed over the 7 
heuristics. The averages of these values were 0.295 
and 0.079, respectively, for the mean and standard 
deviation. The maximum difference in j 4Iil/n 

among the 7 heuristics across any one test example 
was 0.33. 

Discussion of Approximation 4. Approximation 4 
is equivalent to approximating the system by one 
where, if the system is empty, the server randomly 
selects the next queue to visit as that where the visit 
frequencies for individual queues remain in propor- 
tion to the original system. Notice that if setups are 
significant, then this approximation is unlikely to 
make a large difference as percentage idle time will be 
very small. The average idleness seen across the 
eighteen test cases simulated in ?3.1 was 0.5%. The 
maximum idleness seen was 5%, and the minimum 
idleness seen was 0%. 

3. Testing 
In order to evaluate the assumptions made in ?2, this 
section compares our suggested heuristic with other 
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known heuristic scheduling methods. The heuristics 
are compared using a very general simulation pro- 
gram that was written in the C programming lan- 
guage. The simulation run length was at least 
5,000,000 times the average (over all queues) expected 
service time. The system is originally started empty. 
To avoid statistical problems due to "initial tran- 
sience" (i.e., the system is not in steady-state when it is 
started), the first 10% of data is deleted. The statistics 
are collected using the method of "batch-means" (see, 
for example, Law and Kelton 1991) with 10 batches. 
The confidence intervals for the percentile statistics 
are calculated using the batch-mean related method 
developed in Mfunoz (1991). Because of space consid- 
erations we do not quote confidence intervals. How- 
ever, in general, they were less than 5% of the esti- 
mated value. We also use common random numbers 
across the simulations so that the estimates are posi- 
tively correlated. Our simulation was validated using 
the numerical examples provided in the cited papers.' 

Our scheduling policy (denoted by HEUR) will be 
compared to the following alternative policies: 

CSTE: Cyclic-Serve-To-Exhaustion (e.g., Takagi 
1990) 

CGS: Cyclic Gated Service (e.g., Takagi 1990) 
MW: Most Work 
BLW: Boxma et al.'s (1991) exhaustive service heu- 

ristic 
BY: The exhaustive service heuristic of Browne and 

Yechiali (1989). 
DVO: The heuristic suggested in Duenyas and Van 

Oyen (1996). 
The MW scheduling method chooses the next queue 

to be served as that with the most expected work and 
serves exhaustively. This was shown by Liu et al. 
(1992) to minimize mean waiting time in symmetric 
systems. When setup times are zero the Duenyas and 
Van Oyen (1996) heuristic reduces to the c,u rule. Also, 
when all queues are symmetric, apart from its idling 
procedure, it is identical to MW. 

After validating these heuristics, we then altered 
them in a couple of ways to make them more compa- 

'This testing revealed a small typographical error on page 148 of 
Boxma et al. (1991), where ci = 1.0 should read ci = 0.02. 

rable to our heuristic HEUR. First, we are assuming 
that the server has knowledge of the system state, 
therefore it seems reasonable to modify traditionally 
static heuristics as follows: 

1. No setups are done at empty queues; 
2. If the system is empty, then the server idles at the 

most recently served queue (patient service); and 
3. An arrival to an empty system causes the server 

to immediately jump to the new arrival's queue 
and begin a setup (if necessary). 

Second, in MW, BY, and DVO, where there might be 
queues with ties, the ties are broken by choosing the 
queue with the most scaled age (i.e., according to the 
same rule as our heuristic). 

In this study, all products are assumed to have 
equal priority. Extensions to systems with different 
priorities among the classes are discussed in ?4. The 
main statistics we choose to compare are total mean 
wait, standard deviation of the total wait, and the 95th 
percentile of waiting time. The variance statistic is of 
only limited value as it is computed across all items. 
Therefore, even if all items had deterministic waiting 
times, if the waiting times for different items differ 
then variance will be nonzero. Although percentiles 
further out than the 95th (e.g., 99th) could be of even 
greater value to a manufacturer, we found that simu- 
lating such values to within a reasonable confidence 
interval was sometimes beyond the memory capacity 
of the workstation we were using. 

3.1. Designed Problems 
We begin by considering a symmetric 10-queue sys- 
tem with exponential service and deterministic setup 
times, both with mean 1 and system load, p, equal to 
0.8. These parameters seem to be reasonable for the 
manufacturing systems of interest to us. This base 
model will be modified to test the effect of differing 
system parameters on the performance of our heuris- 
tic relative to the other heuristics. In particular, Table 
1 gives the parameters used in the 18 test cases that we 
designed. A polling table of size 50 was used for the 
BLW heuristic except for cases 7 and 8 (which have 
more than 10 queues) where polling tables of size 100 
and 200 were used, respectively. 

Table 2 shows the percentage difference between 
our heuristic and the six other heuristics listed above 
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Table 1 Parameters Used for Testing 

Odd Queues Even Queues 

n p A,A bi B,distn. S, S,distn. A,A bi B,distn. S, S,distn. 

1 10 0.8 10 1 exp. 1 det. 10 1 exp. 1 det. 
2 10 0.8 15 1 exp. 1 det. 5 1 exp. 1 det. 
3 10 0.8 19 1 exp. 1 det. 1 1 exp. 1 det. 
4 10 0.7 10 1 exp. 1 det. 10 2 exp. 2 det. 
5 10 0.8 10 1 exp. 1 det. 10 2 exp. 2 det. 
6 10 0.9 10 1 exp. 1 det. 10 2 exp. 2 det. 
7 20 0.8 10 1 exp. 1 det. 10 2 exp. 2 det. 
8 40 0.8 10 1 exp. 1 det. 10 2 exp. 2 det. 
9 10 0.8 10 1 exp. 1 det. 10 2 exp. 1 det. 

10 10 0.8 10 1 exp. 1 det. 10 3 exp. 1 det. 
11 10 0.8 10 1 exp. 1 det. 10 4 exp. 1 det. 
12 10 0.8 10 1 exp. 1 det. 10 1 exp. 2 det. 
13 10 0.8 10 1 exp. 1 det. 10 1 exp. 5 det. 
14 10 0.8 10 1 exp. 1 det. 10 1 exp. 10 det. 
15 10 0.8 10 1 det. 1 det. 10 2 det. 2 det. 
16 10 0.8 10 1 unif. 1 det. 10 2 unif. 2 det. 
17 10 0.8 10 1 exp. 1 unif. 10 2 exp. 2 unif. 
18 10 0.8 10 1 exp. 1 exp. 10 2 exp. 2 exp. 

for the test cases give in Table 1. For each heuristic, 
both the mean waiting time (E[W]) and the 95th 
percentile of waiting time (P(95)) are compared. If y is 
the value that is being compared (e.g., 95th percentile 
of throughput time for CSTE) and x is HEUR's value 
then the percentage difference is computed as 
lOO(y - x)/x. Where numbers are negative this 
illustrates that the given heuristic is outperforming 
HEUR. The actual values for HEUR in case 1 are E [W] 
= 23.9 and P(95) = 61.7. This should give the reader 
some indication of the magnitude of the differences 
between the heuristics. 

Case 1 (the base case) is a completely symmetric 
model. MW is known to be optimal in this case, and 
therefore HEUR's value for E [ W] can be seen to be 
about 4% suboptimal. However, as the system be- 
comes more asymmetric, HEUR can be seen to out- 
perform both MW and DVO even in terms of mean 
wait. Cases 4, 5, and 6 show that as load increases, the 
different heuristics become more comparable. The 
relative performance of the DVO heuristic probably 
worsens because it is the only heuristic with forced 
idleness. As load increases this idleness becomes less 
effective. Cases 5, 7, and 8 show that as the number of 

queues increase, HEUR improves its performance in 
terms of mean wait over all heuristics except for DVO. 
Furthermore, HEUR's performance in terms of 95th 
percentile also improves over all heuristics except for 
CSTE and CGS. Both CSTE and CGS are very "fair" 
heuristics and will tend to lead to even performance 
over all queues. 

Cases 12, 13, and 14 show that as the setup times 
become more asymmetric (and increase) the perfor- 
mance of HEUR in terms of mean wait improves with 
respect to all the other different heuristics except for 
BEA. Mean waiting time becomes closer to that of BEA 
and hence Approximations 1 and 2 must have tight- 
ened. As Approximations 3 and 4 become more accu- 
rate as setups increase (see ?2.3), mean waiting time 
performance improvement over policies other than 
BEA can be expected. The "fair" policies of CSTE, 
CGS, and BY appear to do better with respect to the 
95th percentile as the setups become more asymmetric 
and increase. The service and setup time distributions 
appear to have little effect on system performance. 
This robustness to changes in distribution was noted 
in Boxma et al. (1990) for systems with polling tables. 

The last row of Table 2 computes the average of all 
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Table 2 Percentage Differences to HEUR 

CSTE CGS MW BEA BY DVO 

E[W] P(95) E[W] P(95) E[W] P(95) E[W] P(95) E[W] P(95) E[W] P(95) 

1 9.58 3.70 26.92 10.80 -3.99 7.32 9.58 3.70 0.63 4.90 -3.98 7.32 
2 11.14 3.40 33.26 12.33 -2.61 12.12 17.93 21.71 6.63 5.92 0.76 24.99 
3 5.95 5.55 33.96 16.51 2.64 1.04 11.87 13.63 2.72 9.90 12.30 6.48 
4 14.50 9.56 31.78 16.34 10.45 32.42 14.25 18.60 4.51 9.78 -4.56 13.21 
5 13.07 6.30 30.36 12.55 13.64 32.78 16.10 19.28 4.12 7.68 -1.59 11.93 
6 8.36 3.83 25.62 9.63 17.77 32.16 13.66 18.45 3.39 5.86 3.61 7.79 
7 17.11 6.01 26.62 9.88 14.62 41.11 21.33 25.59 4.49 8.59 -2.14 18.52 
8 19.55 4.96 24.40 6.95 14.97 46.63 24.50 29.86 4.71 9.05 -3.66 21.78 
9 8.89 4.55 24.93 10.01 2.05 19.93 8.89 4.55 0.79 5.75 -3.11 9.20 

10 7.10 4.61 19.57 6.97 14.93 39.24 7.10 4.61 0.45 5.61 -3.32 7.52 
11 5.68 4.08 14.63 3.61 28.87 58.15 5.68 4.08 -0.10 4.78 3.56 13.78 
12 10.66 2.12 28.30 9.60 -1.56 7.13 17.51 24.21 2.95 4.83 -2.85 11.85 
13 18.10 -1.99 37.51 5.84 9.67 3.29 11.05 16.68 13.84 0.44 1.60 24.46 
14 27.79 -3.59 49.32 4.60 22.33 0.59 8.46 21.56 25.40 -1.40 3.26 23.17 
15 14.33 5.69 33.41 13.31 13.26 37.63 17.97 23.45 4.20 8.39 -1.34 16.21 
16 13.73 5.95 32.21 13.21 13.36 35.85 17.30 21.93 4.13 8.19 -1.47 14.51 
17 13.06 6.31 30.07 12.34 13.57 32.33 15.64 18.77 4.01 7.47 -1.90 11.16 
18 12.41 5.97 29.51 12.11 13.65 32.26 15.33 18.53 3.97 7.43 -2.07 10.98 

avg. 12.87 4.57 29.69 10.68 11.36 27.16 14.40 17.48 4.92 6.48 -0.56 13.84 

18 rows. It can be seen that, on average, HEUR 
outperforms all other tested heuristics in all categories 
except for DVO. DVO has a slight advantage over 
HEUR in terms of mean wait but performs very poorly 
with respect to the 95th percentile of wait. We were 
somewhat surprised by the excellent performance of 
HEUR with respect to mean waiting time. Clearly, the 
approximations have served to improve performance 
rather than to degrade it. 

3.2. Comparisons Using Industry Data Sets 
Thus far the examples presented have been deliber- 
ately designed. However, we have been fortunate 
enough to obtain three data sets from actual industrial 
batch manufacturing environments. While the actual 
situations are not exact matches for our model (for 
differing reasons), these data sets provide a better set 
of test cases than is possible from designed problems. 

The first data set is from a fence-making operation. 
A setup time corresponds to the rethreading of the 
machine with differing widths between the wires. The 
actual operation was a make-to-stock system, and 
setups were sequence dependent. In order to use these 

data for our nonsequence dependent environment, we 
ran a traveling salesman routine and found the mini- 
mum sequence of setups over all 19 products. These 
setup times were then assigned to each product as 
their fixed (nonsequence dependent) mean setup time. 
This data set is the most interesting of the three data 
sets because the setup and service times are different 
at different queues. 

The data set consists of 19 different products, with an 
average mean service time of 0.1 hours and a range from 
0.02 to 0.27. The average mean setup time over all 
products is 2 hours with a range from 0.17 to 11.3. The 
arrival rates at the different queues are very diverse and 
range from 0.17% of arrivals to 29.9%. We have the 
relative arrival rates along with the mean service and 
setup times but not the system utilization or the actual 
setup and service time distributions. We therefore run 
this data set for differing utilizations. Our testing 
showed that the results are robust to changes in service 
or setup distribution. The following table uses exponen- 
tial service and setup times. When testing the BLW 
heuristic the polling table was taken to be of size 100. 

MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999 127 



OLSEN 
Scheduling Method for Multiclass Production Systems 

Table 3 considers utilizations of p = 0.5, 0.7, and 0.9. 
The last row gives the actual values under HEUR and 
all previous rows give percentage difference to HEUR. 
HEUR is dominant both in terms of the mean and 
P(95). The most competitive scheduling procedure is 
BLW. As in the designed examples, there is an appar- 
ent decrease in percentage differences as p increases. 
In the designed problems CSTE, CGS, and BY were 
frequently competitive. Here, where there is much 
higher variability in the test data set and thus serving 
each queue an equal number of times is not a good 
idea, they perform very poorly. 

The next data set arises from a stamping operation 
of a major automobile manufacturer. This data set is 
the least interesting of the three because both mean 
service and mean setup times are identical at all 
queues. This is because neither the time to stamp one 
part nor the time to change a die depends noticeably 
on the particular die being used. The mean service 
time includes the average time spent servicing break- 

downs and equals 0.24 minutes. Mean setup time is 
one hour. Percentage arrival rates at the 12 different 
queues range from 0.75% to 22.23% of all arrivals. The 
system utilization p is 0.76. Because the data set did 
not include distributions, we assume the setup times 
are deterministic and the service times are exponen- 
tial. The polling table for the BLW heuristic is taken to 
be of size 51. 

In the columns labeled "orig," Table 4 tests the 
various scheduling policies using the stamping data. 
The columns labeled "mod 1" and "mod 2" are 
designed to test the effect of asymmetry of setup times 
on the heuristic. For mod 1 we randomly generated 
setup times between 30 and 90 and then scaled the 
resulting setup times so that the mean setup was again 
60. For mod 2 we subtracted 60 from the setup times in 
mod 1, doubled them, and then added 60. Therefore 
Table 4 shows the effect of increasing setup variability. 
The last row gives the actual values under HEUR, and 
all previous rows give percentage difference to HEUR. 

Table 3 Effect of System Load in Fence-Making Data 

E[W] __W P(95) 

p= 0.5 p= 0.7 p= 0.9 p= 0.5 p= 0.7 p= 0.9 p= 0.5 p=0.7 p= 0.9 

CSTE (%) 216.2 234.3 237.8 49.1 36.3 23.3 113.8 108.7 91.4 
CGS (%) 249.5 290.8 314.7 46.9 37.4 23.8 122.7 125.1 113.0 
MW (%) 61.9 68.0 67.9 37.7 40.5 37.3 43.2 43.9 36.5 
BLW (/) 17.0 13.8 10.6 9.5 3.1 -2.4 29.3 27.5 24.8 
BY (%) 226.5 236.3 233.2 52.7 39.2 21.6 120.1 111.6 88.5 
DVO (/) 38.1 51.2 73.7 309.9 304.0 316.8 44.7 59.2 80.4 

HEUR 12.0 18.7 52.7 17.8 29.7 87.8 40.6 64.2 187.4 

Table 4 Effect of Asymmetric Setups on Stamping Data 

E[W] __W P(95) 

orig mod 1 mod 2 orig mod 1 mod 2 orig mod 1 mod 2 

CSTE (%) 27.2 32.7 49.4 -15.7 -15.0 -13.3 -4.3 -2.9 2.3 
CGS (%) 61.7 68.7 89.9 -15.6 -14.9 -13.2 8.9 10.7 16.5 
MW (%) 17.8 16.0 22.7 142.2 130.2 121.9 35.1 30.5 28.6 
BLW (%) 8.8 7.1 5.3 5.6 20.7 18.1 7.5 12.6 15.5 
BY (%) 27.2 32.8 49.5 -15.6 -14.9 -13.2 -4.4 -2.8 2.2 
DVO (%) 26.0 28.6 29.8 185.2 196.7 194.5 49.3 63.3 65.3 

HEUR 17.3 16.6 14.8 15.2 15.1 14.8 44.0 43.3 41.1 
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Table 5 Effect of Setup Time for Thermofit Data 

E[W] 

sj= 0.5 s,= 1 sj= 2 sj= 0.5 

CSTE (%) 18.2 19.5 20.8 -1.5 
CGS (%) 20.8 22.8 24.5 -3.5 
MW (%) 118.4 135.2 151.4 336.2 
BLW(%) 16.2 13.4 10.1 14.3 
BY (%) 12.4 16.1 19.5 7.7 
DVO (%) 66.5 72.4 73.4 241.6 

HEUR 120.6 246.9 500.0 119.5 

As would be expected, as setups become more vari- 
able the performance of the "fair heuristics" (CSTE, 
CGS, and BY) degrades. The trends with respect to the 
other heuristics do not appear to be linear. 

The last data set arises from Raychem Corporation's 
Thermofit division and is given in Lennon (1994). Ther- 
mofit produces a product known as heat-shrinkable 
tubing. Product families in this setting correspond to 
different diameters of tubing. The final step in the 
Thermofit production process is executed by machines 
called expanders and production is make-to-order. This 
data set arises from a single workcenter consisting of 
four identical expanders. We will conform this multi- 
server environment to our single-server model by scal- 
ing arrival rates down by 4. The workcenter processes 69 
product families, and a setup time of mean 1 hour is 
incurred each time an expander switches from process- 
ing one product family to processing another. This setup 
consists of a number of die changes, as well as re- 
threading of the new diameter tubing. Although Ther- 
mofit is always striving to reduce setup times, the setup, 
by its very nature, must take a significant length of time. 
Product variety is Thermofit's competitive advantage 
and therefore this is a typical environment where we see 
our heuristic being of value. 

Thermofit determined that service time was effec- 
tively deterministic for the first 55 queues and expo- 
nential for the remaining 14. This is because the first 55 
queues corresponded to fixed order sizes, whereas 
order sizes for the remaining 14 queues was highly 
variable. Mean service time across all products was 
1.76 hours with a range from 0.062 to 37.95. The setup 

_w_P_ 95) 

si= 1 s,= 2 s,= 0.5 s,= 1 s,= 2 

-7.6 -10.6 8.6 4.7 3.5 
-8.6 -11.1 7.8 5.1 4.4 
420.7 486.1 211.0 252.3 287.8 

12.2 8.8 15.7 15.0 13.9 
-0.3 -5.4 13.2 8.8 7.2 
286.7 309.8 119.4 135.6 141.7 

221.2 429.6 341.9 195.5 1234.6 

time distribution was taken to be exponential at all 
queues. The percentage of arrivals to each queue 
ranged from 0.03% to 5.78%. System utilization was 
0.89. For the BLW heuristic the polling table size was 
taken to be 205. 

Table 5 tests the scheduling policies using the Ther- 
mofit data set. To test the effect of setup time magni- 
tude the setup time at each queue is taken as 0.5, 1 (the 
actual value), and 2 hours. The last row gives the 
actual values under HEUR and all previous rows give 
percentage difference to HEUR. As for the designed 
cases, and as predicted by the approximations, perfor- 
mance in terms of mean wait decreases for all heuris- 
tics other than BLW relative to HEUR as setup time 
increases. Also, as previously noted, BLW becomes 
closer to HEUR as setup times increase. 

4. Conclusions and Extensions 
In summary, we found our scaled age heuristic HEUR 
to be extremely effective. Although some of the other 
heuristics were occasionally competitive there was no 
heuristic that was consistently competitive. We are 
especially encouraged by HEUR's excellent perfor- 
mance on the realistic data sets. Although the three 
data sets do not come from systems that are exact 
matches of our model, we feel that they are close 
enough to provide considerable insight. They provide 
significant evidence for our claim that HEUR is the 
"best available" heuristic for dynamically scheduling 
multi-product manufacturing systems with significant 
setups. Notice that our heuristic cannot be expected to 
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perform well when setups are not significant. In 
particular, the scale factor wi is not defined for si = 0. 

We are only considering environments where all 
items are of similar priority (which was indeed the 
case with the three companies we studied). However 
one can imagine situations where different classes 
have different priorities. In particular, many models 
(e.g., Duenyas and Van Oyen 1996, Boxma et al. 1991, 
etc.) have assigned a linear cost ci to waiting at queue 
i, 1 c i c n, and then attempted to minimize the 
expected cost per unit time. There is no reason why 
these costs cannot be included in the minimization in 
?2.3. If this is done, then the visit frequencies again 
correspond to those suggested by Boxma et al. (1991). 
This would lead to scale factors of 

Ci 
Wi S(l - Pi) 

n 

for our scaled age heuristic. 
It is not clear, however, how priorities should be used 

to weight waiting time percentiles. Such a study would 
depend greatly on the application of interest. One im- 
mediate way to alter priorities within the system is to 
serve high priority queues exhaustively and low priority 
queues with gated service. Again, the success of such a 
scheme would depend greatly on the application and is 
left until a suitable application is found. 

The theory of ?2 uses the fact that arrivals are Poisson. 
However, there is no reason the heuristic could not be 
used for system with general arrival patterns. However, 
since the theory behind it would no longer hold, it is not 
clear how well it would perform. The testing of the 
heuristic's robustness to changes in arrival distribution is 
left as the subject for future research. 
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