
A Practical Scheduling Method for Multiclass Production Systems with Setups
Author(s): Tava Lennon Olsen
Reviewed work(s):
Source: Management Science, Vol. 45, No. 1 (Jan., 1999), pp. 116-130
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/2634926 .
Accessed: 08/11/2011 18:59

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Management Science.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=informs
http://www.jstor.org/stable/2634926?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp

A Practical Scheduling Method for

Multiclass Production Systems with Setups

Tava Lennon Olsen
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109-2117

C onsider a multiclass production system where many job classes share a single server and
a setup time is incurred whenever the server changes class. This paper presents a simple

method for scheduling these systems that performs well, not only with respect to mean
waiting time, but also with respect to waiting-time variance and the outer percentiles of
waiting time. The scheduling method is dynamic and uses the ages of items in each queue, as
well as the queue statistics, to decide which queue to service next.
(Heuristics; Changeovers; Queueing; Polling; Manufacturing)

Manufacturing systems where machines process a
number of different products and require time to set
up (or change over) between products are extremely
common in industry. For example, most automakers
run stamping plants where the setup time between
parts involves changing heavy dies and is necessarily
large. This paper presents a practical method for
dynamically scheduling products in such environ-
ments.

The specific environment considered here is a man-
ufacturing work center where a single machine (or
server) processes a variety of different types (or
classes) of items. If the item to be produced on the
machine is of the same type as the item previously
produced, then no machine setup is required. On the
other hand, if the item is of a different type, then a
(possibly lengthy) machine setup is required before it
can be processed. We assume that the length of the
setup time does not depend on the sequence of
product types produced (i.e., the setup times are
"sequence independent"). The canonical example for
this type of setup is a die change operation where the
setup time does not depend on which die was previ-
ously in place.

There are two main bodies of literature where

scheduling multiple products requiring setups is fairly
well understood. The first seeks to optimally schedule
a fixed set of jobs or customer orders, all of which are
present at time zero (see, for example, Pinedo 1995 or
Webster and Baker 1995). The second is an inventory
setting where inventory is depleted at a fixed rate (see,
for example, Nahmias 1993). However, in a typical
manufacturing environment, orders continue to arrive
in an unpredictable pattern over time, which is highly
relevant in deciding which product class to process
next, how to sequence orders within a class, and so
forth. We are interested in studying such dynamic
systems.

Unfortunately, there appear to be few effective tools
available for dynamically scheduling stochastic man-
ufacturing systems with significant setup times. For
example, Buzacott and Shanthikumar's (1993) seminal
book, Stochastic Models of Manufacturing Systems, says
effectively nothing about systems with setups. The
goal of this paper is to present an easily implement-
able dynamic scheduling method that works well for
systems with parameters that are realistic for a man-
ufacturing environment.

Much of the relevant literature for dynamic sched-
uling of multiclass production systems with setups

0025-1909/99/4501/0116$05.00
Copyright ? 1999, Institute for Operations Research

116 MANAGEMENT SCIENCE/VOl. 45, No. 1, January 1999 and the Management Sciences

OLSEN
Scheduling Method for Multiclass Production Systems

can be found in the literature for what are known as
"polling models" (see Takagi 1990 for a survey). A
polling model is a queueing system with multiple
customer classes requiring setups. A number of stan-
dard scheduling methods have been proposed for
polling models. Perhaps the most studied are cyclic
serve-to-exhaustion (CSTE) and cyclic gated service
(CGS). Under both these methods the queues are
visited in a fixed cyclical manner (see Takagi 1990 for
further details). However, there has also been signifi-
cant study of models where the queues are visited in
a fixed noncyclic manner. The order in which queues
are visited is determined by what is known as a
"polling table." Queues with high priority are placed
several times on the table. There has been significant
work done on finding optimal sequences for polling
tables based on objectives such as minimizing ex-
pected waiting cost where costs are assumed to be
linear (see, for example, Boxma et al.). However, these
types of systems still require that a strict pattern for
visiting queues is followed and that a setup is incurred
even if the queue is empty. While this might be
realistic in a telecommunications setting, it is probably
highly unrealistic in a manufacturing setting. Al-
though Cooper et al. (1997) recently have shown that
in CSTE models it is sometimes optimal to set up at a
queue even if it is empty, our intuition is that this less
likely to be the case under dynamic policies.

Very little has been done on policies that are neither
fixed nor cyclical. The two-station model has been
analyzed by Hofri and Ross (1987) and Reiman and
Wein (1994). For the case where there are more than
two stations, Liu et al. (1992) and Markowitz (1996)
provide some optimality results that are described in
?2. Browne and Yechiali (1989) derive quasi-dynamic
index policies where each queue is visited exactly once
per cycle but the order in which queues are visited
within a cycle changes dynamically. Duenyas and Van
Oyen (1996) provide a heuristic for scheduling sys-
tems with setups that is based on a dynamic program-
ming formulation. Section 3 compares our heuristic to
those of both Browne and Yechiali (1989) and Duenyas
and Van Oyen (1996).

We study what is a "good" way to dynamically
schedule multiclass production systems with signif-

icant setup times. The question, of course, is what is
meant by a "good" scheduling method? The tradi-
tional performance measures used for such environ-
ments have been mean waiting time, or a weighted
average of mean wait. However, this is probably
due more to tractability issues rather than motiva-
tion from actual manufacturing environments.
Other than Liu et al. (1992), all of the above work
seeks to minimize various types of means. Nothing
is known about the relative performance of different
policies with respect to the variance or outer per-
centiles of waiting time. Furthermore, little is
known even on minimum variance policies for
systems without setups. When setups are zero and
all queues are identical, it is well known that
First-In-First-Out (FIFO) service stochastically min-
imizes waiting time. For asymmetric systems with
zero setups, it is known that choosing the job with
the shortest processing time minimizes mean wait;
however, it does not stochastically minimize wait-
ing time. Ayhan and Olsen (1997) have presented a
heuristic for reducing the variance in systems with-
out setup times which will be discussed in ?2.1.

In our experience, mean waiting time may not be as
relevant to a manufacturer as the outer percentiles of
waiting time (e.g., 95th percentile) or the variance of
waiting time. We therefore seek a scheduling heuristic
that performs well, not only with respect to mean
waiting time, but also with respect to the variance and
95th percentile of waiting time. In other words, we
seek a scheduling method that produces a waiting
time distribution with a moderate mean and a light
tail. This paper does not seek an optimal policy for
either of the previous two objectives. Rather, it uses
the dual objective of moderate mean and light tail to
present a policy that is designed to be the "best
available" practical policy for manufacturing systems
with multiple classes and significant setup times.

This paper is organized as follows. Section 1 pre-
sents the problem formulation and introduces nota-
tion. Section 2 describes our heuristic policy. Using
simulation, ?3 tests our heuristic against previously
suggested policies from the literature. Lastly, ?4 con-
cludes the paper and describes possible extensions to
our work.

MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999 117

OLSEN
Scheduling Method for Multiclass Production Systems

1. Problem Formulation and
Notation

This section describes the model further, outlines the
notation used, and presents the assumptions made.
We will consider an environment where production is
make-to-order and the server has knowledge of how
many customers are present in each class and when
each customer arrived. We seek a scheduling method
that produces a waiting time distribution with a
moderate mean and a light tail.

Jobs arrive to each of n job classes according to
independent Poisson processes of rate Ai at class i,
1 ? i ? n. The service times for customers in class i,
1 ? i ? n, are independent and distributed according
to the random variable Bi with mean bi and second
moment b (2). Let i i = 1/b., 1 < i < n. As mentioned
previously, we assume that the duration of each setup
depends only on the class being switched to and not
on which class was served previously. The setup times
for class i, 1 ' i ? n, are independent and distributed
according to the random variable Si with mean s . The
only assumptions made regarding the distribution of
the service and setup times are that the means and
variances are finite and that all distributions are inde-
pendent. We also assume that all steady-state limits
exist and are well-defined. Simulation results verify
that such assumptions are valid for the parameter
values of interest to us.

Let pi = Aibi be the utilization at queue i, 1 ? i ? n,
and let p be the system utilization excluding setups
(i.e., p = i Pi). We assume that p < 1. This assures
that the system is stable under CSTE and CGS sched-
uling disciplines (see Takagi 1986). Takagi (1986) also
shows that for a stable system, a CSTE system is
regenerative, and hence steady-state limiting distribu-
tions exist.

In all models, we define a cycle at queue i, 1 ? i ? n,
as the time between two successive arrivals of the
server to queue i. Let Ci be the random variable that
has steady-state cycle time distribution for queue i,
1 ? i ' n. It is also useful to define intervisit time at
queue i, 1 < i ? n, as the time that elapses from the
server leaving queue i to its next commencement of
service at queue i. Thus the intervisit time for queue i
equals the cycle time for queue i minus the time spent

serving queue i. Steady-state intervisit time for queue
i, 1 < i c n, is represented by Ii. Letfij be the expected
number of visits to queue j for every visit to queue i,
1 c i, i c n, where fii = 1. We refer to the fij as the
relative queue visit frequencies. Clearly, fij = E[Ci]/
E[CJ], 1 c i, j c n.

Steady-state waiting time at queue i, Wi, is defined as
the time from a job's arrival to queue i to when it
commences service in steady-state, 1 c i c n. Total
waiting time W is the waiting time experienced by an
arbitrary customer. Thus E[W] = SIn AiE[Wi]/A. The
pth percentile for the total waiting time distribution is
defined as the number P(p) such that Prob(W ' P(p))
= p / 100. In our experience, it is usually the total wait
W that is of interest to a manufacturer. However, ?4
discusses the case where different queues have differ-
ent priorities.

Lastly, we define a symmetric system as one where
all queues have identical arrival rates, setup time
distributions, and service time distributions. Con-
versely, an asymmetric system allows for differences
among the queues.

2. Heuristic Procedure
This section presents our heuristic procedure for dy-
namically scheduling multiclass production systems
with setups. The novelty of the procedure is in using
customer ages multiplied by a "scale factor" to deter-
mine which queue to serve next. Section 2.1 describes
this procedure in detail and provides motivation for
using customer ages to select queues. Section 2.2
describes the selection of scale factors. These scale
factors rely on desired queue visit frequencies that are
derived in ?2.3.

Our heuristic procedure is completely defined by
the following policies:

Queue Greedy: The server never idles at a queue
while there is still work present at that queue.

System Greedy: The server never idles while there is
any work in the system.

Exhaustive: The server never switches from a queue
that still contains work.

Patient: If the system is empty then the server idles
at the most recently served queue.

118 MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999

OLSEN
Scheduling Method for Multiclass Production Systems

FIFO Service: Service within a class is in the same
order in which the jobs arrived (i.e., First-In-First-Out
service).

Greatest Scaled Age: The next queue to service will
be chosen as that with the most scaled age (defined
in ?2.1).
As described in detail below, these policy types are
chosen both because of previously derived optimality

results/and because of general system intuition. In ?3
we test our heuristic against six heuristic procedures
that we found in the literature. Of these, all use FIFO
service within a class and are queue greedy. All but
one are system greedy and patient. All but two are
exhaustive. However, the Duenyas and Van Oyen
(1996) heuristic relies only upon FIFO and queue
greedy service, and therefore, in ?3, it will serve as a
test of the above policies.

Queue and System Greedy Policies. If a policy is
system greedy then it is also queue greedy, but not
vice versa. Liu et al. (1992) show that (under the given
independence assumptions) queue greedy policies
stochastically minimize the unfinished work and the
number of customers in the system at any time. Hence,
for symmetric systems, queue greedy policies also
minimize the expected waiting time. These results do
not carry over to system greedy policies. While system
greedy policies are not generally optimal, we choose
to concentrate on them for the following three main
reasons:

1. We believe it would be hard to persuade most
manufacturers that they shouldn't be working
even though there is work in the system.

2. Idling with work in the system could add an-
other source of variability to the system.

3. It seems to work well in practice.
Exhaustive Service. Liu et al. (1992) also show

that, under the given independence assumptions, ex-
haustive policies stochastically minimize the unfin-
ished work and the number of customers in the
system at any time. Hence, for symmetric systems,
exhaustive policies also minimize the expected wait-
ing time. However, this is not necessarily true for
asymmetric systems. For example, in systems with no
setup times it is well known (see, for example, Wolff
1989) that serving the queue with the smallest ex-

pected service time ("largest cla'") minimizes the total
expected wait. In systems with setup times, Duenyas
and Van Oyen (1996) show that in order to minimize
total expected wait it is optimal to serve exhaustively
at the queue with the smallest service time. Markowitz
(1996) has shown that under heavy-traffic, in order to
asymptotically (as p t 1) minimize the expected
waiting time in cyclic service systems, all but the
queue with the smallest c,u should be served to
exhaustion. (This result was previously shown in
Reiman and Wein (1994) for the two queue case.) If all
queues have identical costs (as in our case) Markowitz
(1996) also shows that even the lowest priority queue
should be served exhaustively. While exhaustive ser-
vice might not be generally optimal, we choose to
concentrate on it due to the above observations and
for the following five additional reasons:

1. It conserves time spent in setups (as compared to
other system greedy policies), which could be
important if there is cost as well as time associ-
ated with setups.

2. Exhaustive service is self compensating, in that if
the system is busy then less time is spent in
setups than when the system is not busy.

3. Most reasonable exhaustive service policies are
stable when p < 1. This cannot be said for policies
that place a fixed limit on the number served at
each visit.

4. Not serving exhaustively would seem to lead to
another source of variability. An arrival is no
longer guaranteed to wait at most a single cycle
before receiving service.

5. It seems to work well in practice.
Patient and FIFO Service. Liu et al. (1992) have

shown that patient service minimizes mean waiting
time in a symmetric system. Switching to the queue
with the highest arrival rate when the whole system is
empty may slightly reduce waiting time. However, if
either the number of queues or the setup times are
relatively large then the difference between this strat-
egy and patient service is not likely to be big because
the percentage of idle time will be very small. In our
simulation study we consider only patient service but
leave the implementation of what to do when idle up
to individual plant managers. In systems where setups

MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999 119

OLSEN
Scheduling Method for Multiclass Production Systems

require considerable labor it is likely that they will
adopt a patient system.

Lastly, because jobs within a class are stochastically
identical, serving other than FIFO service would seem
to only increase the variance of the waiting time.
Therefore, only a FIFO queue discipline is considered.

2.1. Greatest Scaled Age Queue Selection
Procedure

We wish to find a scheduling method that performs
well not only with respect to mean waiting time but
also with respect to the variance and outer percentiles
of waiting time. As shown in this section, such a policy
must take into account the age of current items when
selecting a queue. This section describes the greatest
scaled age procedure for choosing the next queue.

Let Ti be the total age currently present in queue i
(sum over the time each customer present has been
waiting) upon completing service at some other
queue, 1 c i c n. Then, after setting up for queue i,
the expected total age is

Ai = AiS 2/2 + siNi + Ti,

where Ni is the number of customers present in queue
i prior to the setup. The greatest scaled age procedure
chooses the next queue as the one with the most
expected age Ai multiplied by a scale factor wi,
1 ' i ' n. Under extremely light traffic each queue
will typically contain only one customer and therefore
wi = 1 Vi is almost equivalent to FIFO service.
However, it is easy to see that this could produce very
long waits, particularly if the system is highly asym-
metric. In particular, a successful scheduling method
should assign a low priority to those queues with very
long setup times. How these weights are assigned is
discussed further in ?2.2. We first motivate this pro-
cedure.

For most systems, in order to minimize mean wait-
ing time, the age of the items present is not relevant.
However, when considering higher moments of wait-
ing time a scheduling method must take the age of the
items into account. For example, FIFO service mini-
mizes all moments of waiting time in GI/ G / 1 queues
and chooses the next customer as that with the great-
est age. Ayhan and Olsen (1997) propose a heuristic
with the same objectives as this paper for multiprod-

uct systems with no setups. This heuristic is based on
heavy-traffic theory of Van Mieghem (1995) and as-
ymptotically (as p t 1) minimizes the second moment
of waiting time. The heuristic chooses the next job as
that with the greatest value of age divided by expected
service time. The idea of multiplying total age by a
scale factor is clearly similar to this idea. However,
instead of considering only the ages of individual
items, the procedure here adds up the ages of all
customers in a queue.

In order to motivate the use of total age in our
heuristic we present the following example and
lemma, which show why age is important for mini-
mizing higher moments (in particular the second
moment) of waiting time.

EXAMPLE 1. Consider a two-queue' system where
there are no arrivals. At time zero queue 1 has n1

customers with ages all, a12, . .. , ain, and queue 2 has
n2 customers with ages a2l, a22, . .. , a2n2. Let T1 = t21

ali and T2 = =21 a2i be the total ages in each queue.
Suppose both queues have identically distributed ser-
vice times with mean b and second moment b (2). Setup
times at both queues are deterministic with mean s.
Furthermore, suppose that neither queue is set up for
at time 0. We will serve each queue exhaustively. Let
W)k be the waiting time of the kth customer at queue j
when queue i is the first queue to be served, 1 c i,
j c 2 and 1 ? k c nj. Let w12 be the difference in total
wait between serving queue 1 first and serving queue
2 first. Then

nl n2 nl n2

W12
= EWl{k + E EWlk - E EW2

k=1 k=1 k=1 k=1

nl n2

= E (s + alk+ kb)+ E (2s + a2k + (n1 + k)b)
k=1 k=1

nli n2

- E (2s + alk + (n2 + k)b) - E (s + a2k + kb)
k=1 k=1

= (n2- nl)s.

As expected, to minimize the mean waiting time the
first queue to be served should be the longest queue.
Furthermore, if setup times are zero then the system is

120 MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999

OLSEN
Scheduling Method for Multiclass Production Systems

work conserving and serving either queue results in
the same total expected wait.

Let w () be the difference in the sum of the second
moments of waiting time between serving queue 1 first
and serving queue 2 first. Then it is easy to show that

1(2) = 2T2(s + n1b) - 2T1(s + n2b)

+ 3(n2 - n1)s2 + [n2(n2 + 1) - n1(n, + l)]bs.

Notice that age enters into this equation only as the
sum over all customers in a queue. If n 1 = n2 then the
policy that minimizes the second moment of waiting
time chooses the first queue as that with the most total
age. However, if n1 0 n2 then in order to minimize
second moment, the optimal queue choice depends
both on the total ages and on the number of customers
present in each queue.

LEMMA 1. Let w be a stationary exhaustive service
policy where the decision at each time instant depends on
the queue lengths and the ages of the customers in each
queue. Let y be an identical policy to XT except that if two
queues are of identical length with identical distributional
properties then the queue with the most total age is
preferred. Let Ai(t) be the number of arrivals to queue i by
time t, 1 ? i ? n. Let W' (W'Ik) be the waiting time for
the kth departing customerfrom queue i, 1 ? i ? n, under
policy 7T (y). Then for fixed T > 0

n Ai(T) n Ai(T)

(i) E W iT E W 7y
[k

ik
i=1 k=1 i=1 k=1

and

n A (T) n A (T)

(ii) E (
Wai)

2 E (
Wy

2k

Li=1 k=1l i=1 k=1l

PROOF. Part (i) is immediate from the definition of
the policies. For (ii), let

n Ai(T)

Vw(T)= E(W)2
i=1 k=1

and

n Ai(T)

VY(T) = 2 (W7y)2.
i=1 k=1

Let n 7(t) be the number of customers in queue i at
time t under policy 7T, 1 c i c n. Also, let A 7(t) be the
total age in queue i at time t under policy 7T,

1 ' i ' n. Consider X on some sample path w. We will
consider y along a new sample path w' where w' has
the same law as w.

Suppose that some queues i and j have identical
distributional properties, 1 ? i, j ? n. Suppose at
time t1 queue i begins a setup under 'T, n7(t1)
= n7(t1), and A 7(t) < A7(t). Let w' follow w up to
time t1. Then under y queue j commences a setup at
time t1. Let t2 be the first time after time t1 that
queue j is setup for under XT and let t3 be the first
time that queue j is exhausted after time t2 under iT.

Without loss of generality we may take T = t3

(because the following argument can be repeated as
many times as necessary). Let the arrival epochs,
setup times, and service time sequences under w' be
the same as w for all queues other than queues i and
j. Interchange the arrival, service, and setup pro-
cesses for queues i and j between times t1 and t3. For
example, the arrival times seen at queue i (j)
between t1 and t3 under w are those seen at queue j
(i) under w'. The interchange of arrival processes is
allowable since the interarrival times are i.i.d. expo-
nential (memoryless) random variables. The inter-
change of service and setup time processes is allow-
able since the service and setup times are i.i.d. and
no service or setup is in progress at times t1 or t3.
Because of this interchange, the time to exhaust
queue i under XT is the same as the time to exhaust
queue j under y. Therefore, the waiting time for all
customers in these two systems, except those
present in queues i and j at time ti, is identical (the
new arrivals to queue i (j) under XT experience the
same wait as the new arrivals to queue j (i) under
-y). Let aik (ajk) be the age of the kth customer at
queue i (j) at time t1, 1 ? k ? n7(t1) (n7(t1)). Let s7
(s 7) be the first setup time after time t1 at queue i
under policy XT (-y). Define s and s Y similarly. Then
s7 = sY and s = s 7. Let brl (b'I) be the Ith service
time after time t1 at queue i under policy XT (-y), 1
? 1 ? n7(t1) (n7(t1)). Similarly define brl and b1Y so
that b7[= b1 , 1 c< I c n(t1), and b = b'I, 1
? I ? n7(t1). Therefore, we have that

MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999 121

OLSEN
Scheduling Method for Multiclass Production Systems

V- Ti) - ak + s bT-)

n kk

T
- taik + s b I+il

k=1 1=1 /

k
2

+ t2- t +s + ajk+ E b')T

(k~~ j k
2

_t2 -t + s -+ aik + b -Yl

- s,. + ajk + E bfj

-=Ii 2 2(aik- ajk)(tl - t2)
k=1

+2(aik- ajk) s i - s?T+ E(bil bjl)

n (ti) k

> 2, 2(aik- ajk)(s i-s + E (bJi - b 7))
k=1 1=1

The right-hand side has expectation equal to zero.
Therefore taking expectations (i.e., unconditioning on
w and w'), we have proved the desired result.

The previous example and lemma have motivated
(1) why we use total age as opposed to some other
metric involving age, and (2) why total age is impor-
tant when considering the second moment of waiting
time. We use this motivation and general system
intuition to hypothesize that a procedure using total
age in queue selection should have lighter tails than
one that ignores age.

2.2. Choosing Scale Factors for the Greatest Scaled
Age Procedure

Under the greatest scaled age procedure the next
queue to be served is selected as that with the greatest
expected total age multiplied by a scale factor. We will
choose the scale factors to reduce mean waiting time.
In particular, if fi;, 1 < i, j < n, are desired relative
queue visit frequencies, chosen so as to reduce mean

waiting time, then we seek to choose the scale factors
so that these visit frequencies are approximately
achieved. The selection of appropriate fi1 is discussed
in ?2.3.

Let wi be the scale factor for queue i, 1 ? i ? n.
Then using the following two approximations (to be
discussed in detail later), and given relative queue
visit frequenciesfij, 1 ? i, j ? n, the wi can be chosen
to approximately achieve these frequencies. Recall
that Ii represents the steady-state intervisit time for
queue i, 1 ? i ? n.

APPROXIMATION 1. The average scaled age upon com-
mencement of service at queue i is approximately
wiAiE[Ii]2/2, 1 < i ? n.

APPROXIMATION 2. The average scaled age any queue
when it commences service is approximately the samefor all
queues.

Under these two approximations, for 1 ? i, j ? n,

wiAiE[Ii] 2/2

wjAXE[Ij] 2/2 1.

Therefore, since E[Ii] = (1 - pi) E[Ci],

E[Cj] _ w1X1(1 -
j2

fi;= E[C1] VwAi(l -)2 (2.1)

which may be solved to find the wi (once the fij have
been defined), 1 ? i, j ? n.

Discussion of Approximation 1. If customers were
to arrive according to a deterministic flow (rather than
Poisson arrivals), then the approximation would be
exact. This approximation may therefore be viewed as
a "fluid" approximation.

The number of customers that arrived to queue i in
a given intervisit period Ii is Poisson(AiIi), 1 ? i ? n.
Suppose the distribution of the number of these cus-
tomers within Ii is independent of the magnitude of Ii.
Then there will be on average AiE[Ii] customers at
queue i upon commencement of service at queue i.
Also, each customer will have an average scaled age of
wiE[Ii]/2. This yields a total expected scaled age of
wi,iE[Ii]2/ 2 (as in Approximation 1). This is an
approximation because if no customers arrive at the
beginning of an intervisit period, then that would tend
to make the intervisit period longer than if many

122 MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999

OLSEN
Scheduling Method for Multiclass Production Systems

customers arrive at the beginning. Therefore, the dis-
tribution of the number of customers within an in-
tervisit time is not completely independent of the
length of that period.

In ?3.1 we present numerical results from simulat-
ing 18 different 10-queue systems. These systems were
designed to test the effect of different system param-
eters on the heuristic. In order to get a feel for this
approximation, for each test case, and for each queue
i, 1 < i ? n, we computed the simulated values for
wiAiE[Ii]2/2 (call this xi) and the average scaled age
upon commencement of queue i (call this yi). We then

computed i (Xi - Yi)2/(=i=1 Xi)2. Over all 18 test
cases this metric had an average value of 0.016, a
minimum value of 0.0002, and a maximum value of
0.215. The only trend we observed in this metric was
that as the system became less symmetric the value
increased. However, simulation is not good at accu-
rately estimating such small values, and hence this
trend might be more a result of the natural variability
caused by the added asymmetry rather than because
of a real trend. The real test of this approximation will
come in the performance of the heuristic.

Discussion of Approximation 2. If the system is
symmetric, then Approximation 2 is exact. It will
become less exact as the system becomes more unbal-
anced. If the system is made up of a large number of
moderately similar queues, then we would expect this
approximation to perform well. For each of the eigh-
teen test cases of ?3.1 and each queue i, 1 < i < n, we
let yi be average scaled age upon commencement of
queue i. We then computed i (y -Y

((in - 1)y2) where y = Sin- yi/n. Over all 18 test cases
this metric had an average value of 0.012, a minimum
value of 0.000002, and a maximum value of 0.053. As
expected, as the system became less symmetric this
metric increased. The one symmetric example in the
test cases (case 1) had the minimum value of 0.000002.
As the theoretical value for this case is zero, this serves
as an illustration of the accuracy of the simulation.
Again, the real test of this approximation will come in
the performance of the heuristic.

2.3. Queue Visit Frequencies
As described in the previous section, once we have
derived desired queue visit frequencies, the heuristic

policy is completely defined. This section discusses
the selection of queue visit frequencies that approxi-
mately minimize the expected waiting time. These
queue visit frequencies lead to the following scale
factors:

Wi s(p) i Pi)n. (2.2)

We do not assume any methodology for deciding
which queue to visit next but merely assume that such
a methodology results in the desired visit frequency at
each queue. The derived visit frequencies turn out to
be the same as those found by Boxma et al. (1991) for
the special case of queues that are visited in a fixed
order according to a polling table. In order to derive
these frequencies we make the following two assump-
tions that are discussed further below.

APPROXIMATION 3. Suppose that the squared coeffi-
cient of variation of the intervisit time at each queue is
approximately the samefor all queues and does not signif-
icantly change with different policy types.

APPROXIMATION 4. Suppose the system is never idle.

LEMMA 2. Under Approximations 3 and 4 the queue
visit frequencies that minimize mean waiting time for
dynamic exhaustive service policies are:

fi; = sA(l
- pi) 1'i, jcn. sfX(l Pj

PROOF. Let Xi be the waiting time in an M/G/1
queue with arrival rate Ai and service time B i,
1 ? i ? n. Then the decomposition property for M/ G / 1
queues with generalized vacations of Fuhrmann and
Cooper (1985) implies that

E[Wi] = 2E[I] + E[Xi] ' (2.3)

where Ii is the intervisit time for queue i, 1 < i < n.
Rearranging yields

E[Wi] = E[Ii](cC2+ 1)/2+E[Xi], (2.4)

where C2, is the squared coefficient of variation for the
intervisit time at queue i, 1 ? i ? n. Therefore, under
Approximation 3, choosing a scheduling policy which

MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999 123

OLSEN
Scheduling Method for Multiclass Production Systems

minimizes in X1E[Wi] is equivalent to choosing one
which minimizes in-l AiE[Ii] such that the E[Ii] are
feasible intervisit times for an exhaustive service sys-
tem. Under Approximation 4, work balancing argu-
ments (i.e., work flow into the system equals work
flow out of the system) imply that (in steady-state), for
1 ? i ? n,

n

E[C] = Efijs + pE[Ci],
j=1

and hence

17= fi1s1
E[CJ]= l= i -p

However,fij = E[Ci]/E[Cj], 1 < i, j c n, so that

n

Z sj/E[Cj] = 1 - p.
j=1

But E [I] = (1 - pi) E [Ci], 1 < i < n, and thus

n

E (1 - p1)sj/E[I] = 1 - p. (2.5)
j=1

Minimizing in iE[IJ] subject to (2.5) yields

fi; = s (1p) 1 < i, j < n.
s1Xi(i - pi)'

Notice that these visit frequencies imply that as
some s i increases the server is less likely to visit queue
i (relative to other queues). In other words, it switches
less often to queues with a high setup overhead. Also,
as some Aj increases (with pj constant), fij increases.
Therefore the server is more likely to go to a queue
where serving to exhaustion will cause a large number
of customers to be served.

Solving (2.1) with the above visit frequencies yields
the scale factors given in (2.2).

Discussion of Approximation 3. Approximation 3
is similar to ones made by previous authors. Browne
and Yechiali (1989) replace the objective of minimiz-
ing in-l AiE[Wi] (which is "computationally hard")
by that of minimizing i=1 E[Ci] ("a greedy objec-
tive"). Also Boxma et al. (1991) show that waiting

time is minimized when c' is taken to be zero,
1 ? i < n, and perform their heuristic analysis
assuming that this is the case. In simulation tests we
found that c' is significantly less than one, and
hence most of the magnitude of E[W,] arises from

E[Ij], 1 < i < n. Olsen (1996) shows that c' in CSTE
queues converges to zero for all queues i, 1 c i c n,
as both p t 1 and s t oo, where s is total mean setup
in a cycle. This is a result of a strong law of large
numbers effect where the intervisit time is a sum of
a large number of service times. In simulation tests
we found that this effect appears to carry over to
these more dynamic system. For example, in Table 2
in ?3.1 cases 12, 13, and 14 have increasing setup
time magnitude. The simulated values for j cIi/n

for these three cases (under our heuristic) are 0.19,
0.11, and 0.07. Similarly, for cases 4, 5, and 6 in Table
2, where system load is increased, the simulated
values of In 1 cf /n for the three cases are 0.37, 0.29,
and 0.26, which can be seen to be decreasing. For
each of the 18 test cases in ?3.1 we computed the
average value of In-1 ct /n for each of the 7 given
heuristics. For each test case, the mean and standard
deviation for j cIi/n were computed over the 7
heuristics. The averages of these values were 0.295
and 0.079, respectively, for the mean and standard
deviation. The maximum difference in j 4Iil/n

among the 7 heuristics across any one test example
was 0.33.

Discussion of Approximation 4. Approximation 4
is equivalent to approximating the system by one
where, if the system is empty, the server randomly
selects the next queue to visit as that where the visit
frequencies for individual queues remain in propor-
tion to the original system. Notice that if setups are
significant, then this approximation is unlikely to
make a large difference as percentage idle time will be
very small. The average idleness seen across the
eighteen test cases simulated in ?3.1 was 0.5%. The
maximum idleness seen was 5%, and the minimum
idleness seen was 0%.

3. Testing
In order to evaluate the assumptions made in ?2, this
section compares our suggested heuristic with other

124 MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999

OLSEN
Scheduling Method for Multiclass Production Systems

known heuristic scheduling methods. The heuristics
are compared using a very general simulation pro-
gram that was written in the C programming lan-
guage. The simulation run length was at least
5,000,000 times the average (over all queues) expected
service time. The system is originally started empty.
To avoid statistical problems due to "initial tran-
sience" (i.e., the system is not in steady-state when it is
started), the first 10% of data is deleted. The statistics
are collected using the method of "batch-means" (see,
for example, Law and Kelton 1991) with 10 batches.
The confidence intervals for the percentile statistics
are calculated using the batch-mean related method
developed in Mfunoz (1991). Because of space consid-
erations we do not quote confidence intervals. How-
ever, in general, they were less than 5% of the esti-
mated value. We also use common random numbers
across the simulations so that the estimates are posi-
tively correlated. Our simulation was validated using
the numerical examples provided in the cited papers.'

Our scheduling policy (denoted by HEUR) will be
compared to the following alternative policies:

CSTE: Cyclic-Serve-To-Exhaustion (e.g., Takagi
1990)

CGS: Cyclic Gated Service (e.g., Takagi 1990)
MW: Most Work
BLW: Boxma et al.'s (1991) exhaustive service heu-

ristic
BY: The exhaustive service heuristic of Browne and

Yechiali (1989).
DVO: The heuristic suggested in Duenyas and Van

Oyen (1996).
The MW scheduling method chooses the next queue

to be served as that with the most expected work and
serves exhaustively. This was shown by Liu et al.
(1992) to minimize mean waiting time in symmetric
systems. When setup times are zero the Duenyas and
Van Oyen (1996) heuristic reduces to the c,u rule. Also,
when all queues are symmetric, apart from its idling
procedure, it is identical to MW.

After validating these heuristics, we then altered
them in a couple of ways to make them more compa-

'This testing revealed a small typographical error on page 148 of
Boxma et al. (1991), where ci = 1.0 should read ci = 0.02.

rable to our heuristic HEUR. First, we are assuming
that the server has knowledge of the system state,
therefore it seems reasonable to modify traditionally
static heuristics as follows:

1. No setups are done at empty queues;
2. If the system is empty, then the server idles at the

most recently served queue (patient service); and
3. An arrival to an empty system causes the server

to immediately jump to the new arrival's queue
and begin a setup (if necessary).

Second, in MW, BY, and DVO, where there might be
queues with ties, the ties are broken by choosing the
queue with the most scaled age (i.e., according to the
same rule as our heuristic).

In this study, all products are assumed to have
equal priority. Extensions to systems with different
priorities among the classes are discussed in ?4. The
main statistics we choose to compare are total mean
wait, standard deviation of the total wait, and the 95th
percentile of waiting time. The variance statistic is of
only limited value as it is computed across all items.
Therefore, even if all items had deterministic waiting
times, if the waiting times for different items differ
then variance will be nonzero. Although percentiles
further out than the 95th (e.g., 99th) could be of even
greater value to a manufacturer, we found that simu-
lating such values to within a reasonable confidence
interval was sometimes beyond the memory capacity
of the workstation we were using.

3.1. Designed Problems
We begin by considering a symmetric 10-queue sys-
tem with exponential service and deterministic setup
times, both with mean 1 and system load, p, equal to
0.8. These parameters seem to be reasonable for the
manufacturing systems of interest to us. This base
model will be modified to test the effect of differing
system parameters on the performance of our heuris-
tic relative to the other heuristics. In particular, Table
1 gives the parameters used in the 18 test cases that we
designed. A polling table of size 50 was used for the
BLW heuristic except for cases 7 and 8 (which have
more than 10 queues) where polling tables of size 100
and 200 were used, respectively.

Table 2 shows the percentage difference between
our heuristic and the six other heuristics listed above

MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999 125

OLSEN
Scheduling Method for Multiclass Production Systems

Table 1 Parameters Used for Testing

Odd Queues Even Queues

n p A,A bi B,distn. S, S,distn. A,A bi B,distn. S, S,distn.

1 10 0.8 10 1 exp. 1 det. 10 1 exp. 1 det.
2 10 0.8 15 1 exp. 1 det. 5 1 exp. 1 det.
3 10 0.8 19 1 exp. 1 det. 1 1 exp. 1 det.
4 10 0.7 10 1 exp. 1 det. 10 2 exp. 2 det.
5 10 0.8 10 1 exp. 1 det. 10 2 exp. 2 det.
6 10 0.9 10 1 exp. 1 det. 10 2 exp. 2 det.
7 20 0.8 10 1 exp. 1 det. 10 2 exp. 2 det.
8 40 0.8 10 1 exp. 1 det. 10 2 exp. 2 det.
9 10 0.8 10 1 exp. 1 det. 10 2 exp. 1 det.

10 10 0.8 10 1 exp. 1 det. 10 3 exp. 1 det.
11 10 0.8 10 1 exp. 1 det. 10 4 exp. 1 det.
12 10 0.8 10 1 exp. 1 det. 10 1 exp. 2 det.
13 10 0.8 10 1 exp. 1 det. 10 1 exp. 5 det.
14 10 0.8 10 1 exp. 1 det. 10 1 exp. 10 det.
15 10 0.8 10 1 det. 1 det. 10 2 det. 2 det.
16 10 0.8 10 1 unif. 1 det. 10 2 unif. 2 det.
17 10 0.8 10 1 exp. 1 unif. 10 2 exp. 2 unif.
18 10 0.8 10 1 exp. 1 exp. 10 2 exp. 2 exp.

for the test cases give in Table 1. For each heuristic,
both the mean waiting time (E[W]) and the 95th
percentile of waiting time (P(95)) are compared. If y is
the value that is being compared (e.g., 95th percentile
of throughput time for CSTE) and x is HEUR's value
then the percentage difference is computed as
lOO(y - x)/x. Where numbers are negative this
illustrates that the given heuristic is outperforming
HEUR. The actual values for HEUR in case 1 are E [W]
= 23.9 and P(95) = 61.7. This should give the reader
some indication of the magnitude of the differences
between the heuristics.

Case 1 (the base case) is a completely symmetric
model. MW is known to be optimal in this case, and
therefore HEUR's value for E [W] can be seen to be
about 4% suboptimal. However, as the system be-
comes more asymmetric, HEUR can be seen to out-
perform both MW and DVO even in terms of mean
wait. Cases 4, 5, and 6 show that as load increases, the
different heuristics become more comparable. The
relative performance of the DVO heuristic probably
worsens because it is the only heuristic with forced
idleness. As load increases this idleness becomes less
effective. Cases 5, 7, and 8 show that as the number of

queues increase, HEUR improves its performance in
terms of mean wait over all heuristics except for DVO.
Furthermore, HEUR's performance in terms of 95th
percentile also improves over all heuristics except for
CSTE and CGS. Both CSTE and CGS are very "fair"
heuristics and will tend to lead to even performance
over all queues.

Cases 12, 13, and 14 show that as the setup times
become more asymmetric (and increase) the perfor-
mance of HEUR in terms of mean wait improves with
respect to all the other different heuristics except for
BEA. Mean waiting time becomes closer to that of BEA
and hence Approximations 1 and 2 must have tight-
ened. As Approximations 3 and 4 become more accu-
rate as setups increase (see ?2.3), mean waiting time
performance improvement over policies other than
BEA can be expected. The "fair" policies of CSTE,
CGS, and BY appear to do better with respect to the
95th percentile as the setups become more asymmetric
and increase. The service and setup time distributions
appear to have little effect on system performance.
This robustness to changes in distribution was noted
in Boxma et al. (1990) for systems with polling tables.

The last row of Table 2 computes the average of all

126 MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999

OLSEN
Scheduling Method for Multiclass Production Systems

Table 2 Percentage Differences to HEUR

CSTE CGS MW BEA BY DVO

E[W] P(95) E[W] P(95) E[W] P(95) E[W] P(95) E[W] P(95) E[W] P(95)

1 9.58 3.70 26.92 10.80 -3.99 7.32 9.58 3.70 0.63 4.90 -3.98 7.32
2 11.14 3.40 33.26 12.33 -2.61 12.12 17.93 21.71 6.63 5.92 0.76 24.99
3 5.95 5.55 33.96 16.51 2.64 1.04 11.87 13.63 2.72 9.90 12.30 6.48
4 14.50 9.56 31.78 16.34 10.45 32.42 14.25 18.60 4.51 9.78 -4.56 13.21
5 13.07 6.30 30.36 12.55 13.64 32.78 16.10 19.28 4.12 7.68 -1.59 11.93
6 8.36 3.83 25.62 9.63 17.77 32.16 13.66 18.45 3.39 5.86 3.61 7.79
7 17.11 6.01 26.62 9.88 14.62 41.11 21.33 25.59 4.49 8.59 -2.14 18.52
8 19.55 4.96 24.40 6.95 14.97 46.63 24.50 29.86 4.71 9.05 -3.66 21.78
9 8.89 4.55 24.93 10.01 2.05 19.93 8.89 4.55 0.79 5.75 -3.11 9.20

10 7.10 4.61 19.57 6.97 14.93 39.24 7.10 4.61 0.45 5.61 -3.32 7.52
11 5.68 4.08 14.63 3.61 28.87 58.15 5.68 4.08 -0.10 4.78 3.56 13.78
12 10.66 2.12 28.30 9.60 -1.56 7.13 17.51 24.21 2.95 4.83 -2.85 11.85
13 18.10 -1.99 37.51 5.84 9.67 3.29 11.05 16.68 13.84 0.44 1.60 24.46
14 27.79 -3.59 49.32 4.60 22.33 0.59 8.46 21.56 25.40 -1.40 3.26 23.17
15 14.33 5.69 33.41 13.31 13.26 37.63 17.97 23.45 4.20 8.39 -1.34 16.21
16 13.73 5.95 32.21 13.21 13.36 35.85 17.30 21.93 4.13 8.19 -1.47 14.51
17 13.06 6.31 30.07 12.34 13.57 32.33 15.64 18.77 4.01 7.47 -1.90 11.16
18 12.41 5.97 29.51 12.11 13.65 32.26 15.33 18.53 3.97 7.43 -2.07 10.98

avg. 12.87 4.57 29.69 10.68 11.36 27.16 14.40 17.48 4.92 6.48 -0.56 13.84

18 rows. It can be seen that, on average, HEUR
outperforms all other tested heuristics in all categories
except for DVO. DVO has a slight advantage over
HEUR in terms of mean wait but performs very poorly
with respect to the 95th percentile of wait. We were
somewhat surprised by the excellent performance of
HEUR with respect to mean waiting time. Clearly, the
approximations have served to improve performance
rather than to degrade it.

3.2. Comparisons Using Industry Data Sets
Thus far the examples presented have been deliber-
ately designed. However, we have been fortunate
enough to obtain three data sets from actual industrial
batch manufacturing environments. While the actual
situations are not exact matches for our model (for
differing reasons), these data sets provide a better set
of test cases than is possible from designed problems.

The first data set is from a fence-making operation.
A setup time corresponds to the rethreading of the
machine with differing widths between the wires. The
actual operation was a make-to-stock system, and
setups were sequence dependent. In order to use these

data for our nonsequence dependent environment, we
ran a traveling salesman routine and found the mini-
mum sequence of setups over all 19 products. These
setup times were then assigned to each product as
their fixed (nonsequence dependent) mean setup time.
This data set is the most interesting of the three data
sets because the setup and service times are different
at different queues.

The data set consists of 19 different products, with an
average mean service time of 0.1 hours and a range from
0.02 to 0.27. The average mean setup time over all
products is 2 hours with a range from 0.17 to 11.3. The
arrival rates at the different queues are very diverse and
range from 0.17% of arrivals to 29.9%. We have the
relative arrival rates along with the mean service and
setup times but not the system utilization or the actual
setup and service time distributions. We therefore run
this data set for differing utilizations. Our testing
showed that the results are robust to changes in service
or setup distribution. The following table uses exponen-
tial service and setup times. When testing the BLW
heuristic the polling table was taken to be of size 100.

MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999 127

OLSEN
Scheduling Method for Multiclass Production Systems

Table 3 considers utilizations of p = 0.5, 0.7, and 0.9.
The last row gives the actual values under HEUR and
all previous rows give percentage difference to HEUR.
HEUR is dominant both in terms of the mean and
P(95). The most competitive scheduling procedure is
BLW. As in the designed examples, there is an appar-
ent decrease in percentage differences as p increases.
In the designed problems CSTE, CGS, and BY were
frequently competitive. Here, where there is much
higher variability in the test data set and thus serving
each queue an equal number of times is not a good
idea, they perform very poorly.

The next data set arises from a stamping operation
of a major automobile manufacturer. This data set is
the least interesting of the three because both mean
service and mean setup times are identical at all
queues. This is because neither the time to stamp one
part nor the time to change a die depends noticeably
on the particular die being used. The mean service
time includes the average time spent servicing break-

downs and equals 0.24 minutes. Mean setup time is
one hour. Percentage arrival rates at the 12 different
queues range from 0.75% to 22.23% of all arrivals. The
system utilization p is 0.76. Because the data set did
not include distributions, we assume the setup times
are deterministic and the service times are exponen-
tial. The polling table for the BLW heuristic is taken to
be of size 51.

In the columns labeled "orig," Table 4 tests the
various scheduling policies using the stamping data.
The columns labeled "mod 1" and "mod 2" are
designed to test the effect of asymmetry of setup times
on the heuristic. For mod 1 we randomly generated
setup times between 30 and 90 and then scaled the
resulting setup times so that the mean setup was again
60. For mod 2 we subtracted 60 from the setup times in
mod 1, doubled them, and then added 60. Therefore
Table 4 shows the effect of increasing setup variability.
The last row gives the actual values under HEUR, and
all previous rows give percentage difference to HEUR.

Table 3 Effect of System Load in Fence-Making Data

E[W] __W P(95)

p= 0.5 p= 0.7 p= 0.9 p= 0.5 p= 0.7 p= 0.9 p= 0.5 p=0.7 p= 0.9

CSTE (%) 216.2 234.3 237.8 49.1 36.3 23.3 113.8 108.7 91.4
CGS (%) 249.5 290.8 314.7 46.9 37.4 23.8 122.7 125.1 113.0
MW (%) 61.9 68.0 67.9 37.7 40.5 37.3 43.2 43.9 36.5
BLW (/) 17.0 13.8 10.6 9.5 3.1 -2.4 29.3 27.5 24.8
BY (%) 226.5 236.3 233.2 52.7 39.2 21.6 120.1 111.6 88.5
DVO (/) 38.1 51.2 73.7 309.9 304.0 316.8 44.7 59.2 80.4

HEUR 12.0 18.7 52.7 17.8 29.7 87.8 40.6 64.2 187.4

Table 4 Effect of Asymmetric Setups on Stamping Data

E[W] __W P(95)

orig mod 1 mod 2 orig mod 1 mod 2 orig mod 1 mod 2

CSTE (%) 27.2 32.7 49.4 -15.7 -15.0 -13.3 -4.3 -2.9 2.3
CGS (%) 61.7 68.7 89.9 -15.6 -14.9 -13.2 8.9 10.7 16.5
MW (%) 17.8 16.0 22.7 142.2 130.2 121.9 35.1 30.5 28.6
BLW (%) 8.8 7.1 5.3 5.6 20.7 18.1 7.5 12.6 15.5
BY (%) 27.2 32.8 49.5 -15.6 -14.9 -13.2 -4.4 -2.8 2.2
DVO (%) 26.0 28.6 29.8 185.2 196.7 194.5 49.3 63.3 65.3

HEUR 17.3 16.6 14.8 15.2 15.1 14.8 44.0 43.3 41.1

128 MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999

OLSEN
Scheduling Method for Multiclass Production Systems

Table 5 Effect of Setup Time for Thermofit Data

E[W]

sj= 0.5 s,= 1 sj= 2 sj= 0.5

CSTE (%) 18.2 19.5 20.8 -1.5
CGS (%) 20.8 22.8 24.5 -3.5
MW (%) 118.4 135.2 151.4 336.2
BLW(%) 16.2 13.4 10.1 14.3
BY (%) 12.4 16.1 19.5 7.7
DVO (%) 66.5 72.4 73.4 241.6

HEUR 120.6 246.9 500.0 119.5

As would be expected, as setups become more vari-
able the performance of the "fair heuristics" (CSTE,
CGS, and BY) degrades. The trends with respect to the
other heuristics do not appear to be linear.

The last data set arises from Raychem Corporation's
Thermofit division and is given in Lennon (1994). Ther-
mofit produces a product known as heat-shrinkable
tubing. Product families in this setting correspond to
different diameters of tubing. The final step in the
Thermofit production process is executed by machines
called expanders and production is make-to-order. This
data set arises from a single workcenter consisting of
four identical expanders. We will conform this multi-
server environment to our single-server model by scal-
ing arrival rates down by 4. The workcenter processes 69
product families, and a setup time of mean 1 hour is
incurred each time an expander switches from process-
ing one product family to processing another. This setup
consists of a number of die changes, as well as re-
threading of the new diameter tubing. Although Ther-
mofit is always striving to reduce setup times, the setup,
by its very nature, must take a significant length of time.
Product variety is Thermofit's competitive advantage
and therefore this is a typical environment where we see
our heuristic being of value.

Thermofit determined that service time was effec-
tively deterministic for the first 55 queues and expo-
nential for the remaining 14. This is because the first 55
queues corresponded to fixed order sizes, whereas
order sizes for the remaining 14 queues was highly
variable. Mean service time across all products was
1.76 hours with a range from 0.062 to 37.95. The setup

_w_P_ 95)

si= 1 s,= 2 s,= 0.5 s,= 1 s,= 2

-7.6 -10.6 8.6 4.7 3.5
-8.6 -11.1 7.8 5.1 4.4
420.7 486.1 211.0 252.3 287.8

12.2 8.8 15.7 15.0 13.9
-0.3 -5.4 13.2 8.8 7.2
286.7 309.8 119.4 135.6 141.7

221.2 429.6 341.9 195.5 1234.6

time distribution was taken to be exponential at all
queues. The percentage of arrivals to each queue
ranged from 0.03% to 5.78%. System utilization was
0.89. For the BLW heuristic the polling table size was
taken to be 205.

Table 5 tests the scheduling policies using the Ther-
mofit data set. To test the effect of setup time magni-
tude the setup time at each queue is taken as 0.5, 1 (the
actual value), and 2 hours. The last row gives the
actual values under HEUR and all previous rows give
percentage difference to HEUR. As for the designed
cases, and as predicted by the approximations, perfor-
mance in terms of mean wait decreases for all heuris-
tics other than BLW relative to HEUR as setup time
increases. Also, as previously noted, BLW becomes
closer to HEUR as setup times increase.

4. Conclusions and Extensions
In summary, we found our scaled age heuristic HEUR
to be extremely effective. Although some of the other
heuristics were occasionally competitive there was no
heuristic that was consistently competitive. We are
especially encouraged by HEUR's excellent perfor-
mance on the realistic data sets. Although the three
data sets do not come from systems that are exact
matches of our model, we feel that they are close
enough to provide considerable insight. They provide
significant evidence for our claim that HEUR is the
"best available" heuristic for dynamically scheduling
multi-product manufacturing systems with significant
setups. Notice that our heuristic cannot be expected to

MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999 129

OLSEN
Scheduling Method for Multiclass Production Systems

perform well when setups are not significant. In
particular, the scale factor wi is not defined for si = 0.

We are only considering environments where all
items are of similar priority (which was indeed the
case with the three companies we studied). However
one can imagine situations where different classes
have different priorities. In particular, many models
(e.g., Duenyas and Van Oyen 1996, Boxma et al. 1991,
etc.) have assigned a linear cost ci to waiting at queue
i, 1 c i c n, and then attempted to minimize the
expected cost per unit time. There is no reason why
these costs cannot be included in the minimization in
?2.3. If this is done, then the visit frequencies again
correspond to those suggested by Boxma et al. (1991).
This would lead to scale factors of

Ci
Wi S(l - Pi)

n

for our scaled age heuristic.
It is not clear, however, how priorities should be used

to weight waiting time percentiles. Such a study would
depend greatly on the application of interest. One im-
mediate way to alter priorities within the system is to
serve high priority queues exhaustively and low priority
queues with gated service. Again, the success of such a
scheme would depend greatly on the application and is
left until a suitable application is found.

The theory of ?2 uses the fact that arrivals are Poisson.
However, there is no reason the heuristic could not be
used for system with general arrival patterns. However,
since the theory behind it would no longer hold, it is not
clear how well it would perform. The testing of the
heuristic's robustness to changes in arrival distribution is
left as the subject for future research.

References
Ayhan, H., T. L. Olsen. 1997. Scheduling of multi-class single-server

queues under nontraditional performance measures. To appear
Oper. Res.

Boxma, O., H. Levy, J. Weststrate. 1990. Optimization of polling
systems. Performance '90. P. J. B. King, I. Mitrani, and R. J.
Pooley, eds. Elsevier Science Publishers B.V., North-Holland,
Amsterdam.

I ,~/ - . 1991. Efficient visit frequencies for polling tables:

minimization of waiting cost. Queueing Systems Theory Appl. 9
133-162.

Browne, S., U. Yechiali. 1989. Dynamic priority rules for cyclic type
queues. Adv. Appl. Probab. 21 432-450.

Buzacott, J. A., J. G. Shanthikumar. 1993. Stochastic Models of
Manufacturing Systems. Prentice-Hall, Englewood Cliffs, NJ.

Cooper, R. B., S. Niu, M. M. Srinivasan. 1997. Setups in polling
models: Does it make sense to set up if no work is waiting? To
appear in J. Appl. Probab.

Duenyas, I., M. Van Oyen. 1996. Heuristic scheduling of parallel
heterogeneous queues with set-ups. Management Sci. 42 814-829.

Fuhrmann, S. W., R. B. Cooper. 1985. Stochastic decompositions, in
the M C / 1 queue with generalized vacations. Oper. Res. 33
1117-1129.

Hofri, M., K. W. Ross. 1987. On the optimal control of two queues
with server set-up times and its analysis. SIAM J. Comput. 16
399-420.

Kekre, S., K. Srinivasan. 1990. Broader product line: A necessity to
achieve success? Management Sci. 36 1216-1231.

Law, A. M., W. D. Kelton. 1991. Simulation Modeling & Analysis.
McGraw-Hill, New York.

Lennon, T. M. 1994. Response-Time Approximations for Multi-
Server Polling Models, with Manufacturing Applications. PhD
Thesis, Stanford University, Stanford, CA.

Liu, Z., P. Nain, D. Towsley. 1992. On optimal polling policies.
Queueing Systems Theory and Appl. 11 59-84.

Mfinoz, D. 1991. Cancellation methods in the analysis of simulation
output. PhD Thesis, Stanford University, Stanford, CA.

Markowitz, D. M. 1996. A Unified Treatment of the Single Machine
Scheduling Problem in a Dynamic Stochastic Environment.
PhD Thesis. M.I.T., Cambridge, MA.

Nahmias, S. 1993. Production and Operations Analysis. 2nd ed. Irwin,
Homewood, IL.

Olsen, T. L. 1996. Asymptotics for polling models with increasing
setups. Under submission.

Pinedo, M. 1995. Scheduling Theory, Algorithms, and Systems. Pren-
tice-Hall, Englewood Cliffs, NJ.

Reiman, M. I., L. M. Wein. 1998. Dynamic scheduling of a two-class
queue with setups. Oper. Res. 4 532-547.

Takagi, H. 1986. Analysis of Polling Systems. MIT Press, Cambridge,
MA.

- Ed. 1990. Stochastic Analysis of Computer and Communication
Systems. Chapter 1. Elsevier Science Publishers B.V. North-
Holland, Amsterdam.

Van Mieghem, J. A. 1995. Dynamic scheduling with convex delay
costs: the generalized c-mu rule. Ann. Appl. Prob. 5 808-833.

Webster, S., K. R. Baker. 1995. Scheduling groups of jobs on a single
machine. Oper. Res. 43 692-703.

Wolff, R. W. 1989. Stochastic Modeling and the Theory of Queues.
Prentice-Hall, Englewood Cliffs, NJ.

Accepted by Hau L. Lee; received May 24, 1996. This paper has been with the author 6 months for 2 revisions.

130 MANAGEMENT SCIENCE/Vol. 45, No. 1, January 1999

	Article Contents
	p. 116
	p. 117
	p. 118
	p. 119
	p. 120
	p. 121
	p. 122
	p. 123
	p. 124
	p. 125
	p. 126
	p. 127
	p. 128
	p. 129
	p. 130

	Issue Table of Contents
	Management Science, Vol. 45, No. 1 (Jan., 1999), pp. 1-130
	Front Matter
	JIT Manufacturing: A Survey of Implementations in Small and Large U.S. Manufacturers [pp. 1 - 15]
	Value of Information in Capacitated Supply Chains [pp. 16 - 24]
	Are Tradeoffs Inherent in Diversification Moves? A Simultaneous Model for Type of Diversification and Mode of Expansion Decisions [pp. 25 - 41]
	Measures of Effectiveness for Governmental Organizations [pp. 42 - 58]
	On the Effects of Downstream Entry [pp. 59 - 73]
	Nonlinear Decision Weights in Choice under Uncertainty [pp. 74 - 85]
	Finding Optimal Material Release Times Using Simulation-Based Optimization [pp. 86 - 102]
	A Value Efficiency Approach to Incorporating Preference Information in Data Envelopment Analysis [pp. 103 - 115]
	A Practical Scheduling Method for Multiclass Production Systems with Setups [pp. 116 - 130]
	Back Matter

