Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.

- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.

- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form
Choice behaviour: Short- and long-term effects of reinforcers

Jason Landon

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Psychology

The University of Auckland

2002
ABSTRACT

Behaviour was analysed at a number of levels in two series of concurrent-schedule experiments. In the first, six or seven concurrent-schedule components, each of which could have a different reinforcer ratio in it, were arranged in each session. In the canonical arrangement these components were separated by 10-s blackouts. Across conditions, the reinforcer ratios arranged in components were varied. The overall rate of reinforcement was constant throughout, and each condition was in effect for 50 sessions. The second series of experiments used a conventional switching-key concurrent-schedule procedure in which a single reinforcer (or reinforcer-magnitude) ratio was in effect for 65 sessions.

Experiment 1 showed that behaviour adjusted very quickly to the rapidly changing contingencies. Sensitivity to reinforcement reached higher levels when the range of reinforcer ratios arranged was greater. More detailed analyses suggested that the variables controlling behaviour operated at a number of levels. First, each individual reinforcer had an effect on subsequent behaviour. Second, successive reinforcers obtained at the same alternative ("confirmations") had cumulative effects that were evident when behaviour was examined as a function of time since reinforcement (i.e., the change in behaviour after the third successive confirmation at the left alternative was greater than that after the second). Third, when these sequences of confirmations occurred more frequently, their behavioural effects were again increased. Finally, "disconfirmations" (a reinforcer obtained from the other alternative following a sequence of confirmations) had comparatively very large effects, and returned preference to levels controlled by the molar or sessional reinforcer ratio.
Experiment 2 showed that the local effects of reinforcers evident in Experiment 1 were also present in steady-state data. Effects of individual reinforcers on behaviour were evident, as were longer-term effects of aggregations of reinforcers. Preferences were again more extreme in response to sequences of confirmations when those sequences occurred more frequently. Similarly, disconfirmations had comparatively very large effects, and returned behaviour to levels controlled by the molar reinforcer ratio. Moreover, these local effects of reinforcers were similar when either the reinforcer-frequency ratio or the reinforcer-magnitude ratios were varied.

The present data question the commonly held assumption that behaviour is controlled by large aggregations of reinforcers. Control was evident at a number of levels, and attempts to model concurrent-schedule data are likely to require processes operating at multiple levels. The present data also suggest that the frequency with which sequences of confirming reinforcers occurred was central, and longer-term processes might be updated with the delivery of a disconfirmation. Moreover, different concurrent-schedule arrangements might result in these frequencies differing substantially with the same reinforcer ratio arranged. An increased focus on detailed data collection using relatively standard manipulations of reinforcer frequency, magnitude, and other independent variables that are known to affect choice, is recommended.
ACKNOWLEDGEMENTS

I am greatly indebted to my supervisor Professor Michael Davison for his expertise, support, generous advice, and the use of his research facilities, without all of which this thesis would not have been completed. I am also very grateful to my co-supervisor, Dr Douglas Elliffe, whose clarity of thinking, and knowledge of cricket, continue to astound me. Thanks also to Dr Max Jones, who has always been very supportive during my time as a graduate student. It is a privilege to have been able to work with, and learn from, people of such outstanding quality.

I must also thank the other students who were involved in conducting the experiments, and Mr Mick Sibley who looked after the subjects.

Last but not least, my family – Sharon, Nicole, and Liam – for helping me to get through this, and being a part of my life for which I will always be grateful. Again, without you this would not have been possible. Finally, thanks to my parents for their ongoing support.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER I</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Concurrent-schedule procedures</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Quantification – The generalized matching law</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1 Changeover delays</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2 Deprivation</td>
<td>7</td>
</tr>
<tr>
<td>1.2.3 Poor discrimination between alternatives</td>
<td>7</td>
</tr>
<tr>
<td>1.2.4 Asymmetrical pausing</td>
<td>8</td>
</tr>
<tr>
<td>1.2.5 Overall rate of reinforcement</td>
<td>9</td>
</tr>
<tr>
<td>1.2.6 Amount of training</td>
<td>9</td>
</tr>
<tr>
<td>1.2.7 Summary</td>
<td>10</td>
</tr>
<tr>
<td>1.3 Quantification – The contingency discriminability model</td>
<td>11</td>
</tr>
<tr>
<td>1.3.1 Summary</td>
<td>13</td>
</tr>
<tr>
<td>1.4 Overall Summary</td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER II</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Between-session changes in reinforcer ratios</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Single within-session changes in reinforcer ratios</td>
<td>17</td>
</tr>
<tr>
<td>2.3 Multiple within-session changes in reinforcer ratios</td>
<td>20</td>
</tr>
</tbody>
</table>
2.4 Local models of performance 24
2.5 Summary 33

CHAPTER III 36
3.1 Experiment 1a 36
3.2 Method 37
3.3 Results 43
 3.3.1 Multiple linear regression analyses 46
 3.3.2 Reinforcer-by-reinforcer analyses 50
 3.3.3 Behaviour in inter-reinforcer intervals 55
 3.3.4 Reinforcer sequences and response rates 68
3.4 Discussion 76
3.5 Experiment 1b 79
3.6 Method 80
3.7 Results 84
 3.7.1 Reinforcer sequences 84
 3.7.2 Multiple linear regression analyses 86
 3.7.3 Reinforcer-by-reinforcer analyses 89
 3.7.4 Behaviour in inter-reinforcer intervals 91
 3.7.5 Response rates 103
3.8 Discussion 107
3.9 Experiment 1c 111
3.10 Method 112
3.11 Results 118
 3.11.1 Multiple linear regression analyses 118
3.11.2 Reinforcer-by-reinforcer analyses 120
3.11.3 Reinforcer sequences 125
3.11.4 Behaviour in inter-reinforcer intervals 127
3.12 Discussion 146
3.13 General discussion 151

CHAPTER IV 157
4.1 Experiment 2a 157
4.2 Method 158
4.3 Results 161
 4.3.1 Generalized matching 161
 4.3.2 Current preference and previous reinforcers 164
 4.3.3 Reinforcer-by-reinforcer analyses 171
 4.3.4 Behaviour in inter-reinforcer intervals 172
 4.3.5 Response rates 173
4.4 Discussion 178
4.5 Experiment 2b 183
4.6 Method 190
4.7 Results 192
 4.7.1 Generalized matching 192
 4.7.2 Current preference and previous reinforcers 194
 4.7.3 Reinforcer-by-reinforcer analyses 198
 4.7.4 Behaviour in inter-reinforcer intervals 200
 4.7.5 Response rates 202
4.8 Discussion 204
4.9 General discussion 210

CHAPTER V 215
5.1 Summary 215
5.2 Generalized matching 221
5.3 Local models of performance 222
5.4 Levels of analysis 225
5.5 General discussion 226
5.6 Conclusions 234

REFERENCES 238
LIST OF TABLES

CHAPTER III

Table 3.1 Sequence of experimental conditions for Experiment 1a 40
Table 3.2 Sequence of experimental conditions for Experiment 1b 81
Table 3.3 Sequence of experimental conditions for Experiment 1c 114

CHAPTER IV

Table 4.1 Sequence of experimental conditions for Experiment 2a 160
Table 4.2 Sequence of experimental conditions for Experiment 2b 191
LIST OF FIGURES

<table>
<thead>
<tr>
<th>CHAPTER III</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 3.1</td>
<td>Log response ratios by component for Condition 5</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>Log response ratios by component for Condition 6</td>
</tr>
<tr>
<td>Fig. 3.3</td>
<td>Sensitivity to the current- and previous-component reinforcer ratios for Experiment 1a</td>
</tr>
<tr>
<td>Fig. 3.4</td>
<td>Log response ratios emitted following sequences of confirmations, and sequences of confirmations that ended with a single disconfirmation, in Experiment 1a</td>
</tr>
<tr>
<td>Fig. 3.5</td>
<td>Log response ratios emitted following sequences of confirmations that began following a disconfirmation in Conditions 3, 6, and 8 of Experiment 1a</td>
</tr>
<tr>
<td>Fig. 3.6</td>
<td>Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 16 of Experiment 1a</td>
</tr>
<tr>
<td>Fig. 3.7</td>
<td>Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 4 of Experiment 1a</td>
</tr>
</tbody>
</table>
Fig. 3.8 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 3 of Experiment 1a

Fig. 3.9 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 7 of Experiment 1a

Fig. 3.10 Differences between log response ratios emitted following sequences of successive confirmations at the two alternatives in Conditions 16, 6, 4, 3, 5, and 7 of Experiment 1a

Fig. 3.11 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 16 of Experiment 1a

Fig. 3.12 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 4 of Experiment 1a

Fig. 3.13 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 3 of Experiment 1a

Fig. 3.14 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 7 of Experiment 1a

Fig. 3.15 Differences between log response ratios emitted following sequences of successive confirmations at the two alternatives that ended with a single disconfirmation in Conditions 16, 6, 4, 3, 5, and 7 of Experiment 1a
Fig. 3.16 The proportions of all one to six reinforcer sequences that were exclusively successive confirmations, or successive confirmations followed by a single disconfirmation in Experiment 1a

Fig. 3.17 The mean numbers of responses emitted in successive 2-s bins following sequences of confirmations or sequences of confirmations that ended with a single disconfirmation in Condition 16 of Experiment 1a

Fig. 3.18 The mean numbers of responses emitted in successive 2-s bins following sequences of confirmations or sequences of confirmations that ended with a single disconfirmation in Condition 4 of Experiment 1a

Fig. 3.19 The mean numbers of responses emitted in successive 2-s bins following sequences of confirmations or sequences of confirmations that ended with a single disconfirmation in Condition 3 of Experiment 1a

Fig. 3.20 The mean numbers of responses emitted in successive 2-s bins following sequences of confirmations or sequences of confirmations that ended with a single disconfirmation in Condition 7 of Experiment 1a

Fig. 3.21 The proportions of all one to six reinforcer sequences that were exclusively successive confirmations, or successive confirmations followed by a single disconfirmation in Experiment 1a

Fig. 3.22 Sensitivity to the current- and previous-component reinforcer ratios for Experiment 1b
Fig. 3.23 Log response ratios emitted following sequences of confirmations and sequences of confirmations that ended with a single disconfirmation in Experiment 1b

Fig. 3.24 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 9 of Experiment 1b

Fig. 3.25 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 10 of Experiment 1b

Fig. 3.26 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 11 of Experiment 1b

Fig. 3.27 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 12 of Experiment 1b

Fig. 3.28 Differences between log response ratios emitted following sequences of successive confirmations at the two alternatives in Experiment 1b

Fig. 3.29 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 9 of Experiment 1b

Fig. 3.30 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 10 of Experiment 1b

Fig. 3.31 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 11 of Experiment 1b

xiii
Fig. 3.32 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 12 of Experiment 1b

Fig. 3.33 Differences between log response ratios emitted following sequences of successive confirmations at the two alternatives that ended with a single disconfirmation in Experiment 1b

Fig. 3.34 The mean numbers of responses emitted in successive 2-s bins following sequences of confirmations or sequences of confirmations ending with a single disconfirmation in Condition 9 of Experiment 1b

Fig. 3.35 The mean numbers of responses emitted in successive 2-s bins following sequences of confirmations or sequences of confirmations ending with a single disconfirmation in Condition 10 of Experiment 1b

Fig. 3.36 The mean numbers of responses emitted in successive 2-s bins following sequences of confirmations or sequences of confirmations ending with a single disconfirmation in Condition 11 of Experiment 1b

Fig. 3.37 The mean numbers of responses emitted in successive 2-s bins following sequences of confirmations or sequences of confirmations ending with a single disconfirmation in Condition 12 of Experiment 1b

Fig. 3.38 Sensitivity to the current- and previous-component reinforcer ratios for Experiment 1c
Fig. 3.39 Log response ratios emitted following sequences of confirmations and sequences of confirmations ending with a single disconfirmation in Conditions 17 to 20 of Experiment 1b
Fig. 3.40 Log response ratios emitted following sequences of confirmations and sequences of confirmations ending with a single disconfirmation in Conditions 21 to 24 of Experiment 1b
Fig. 3.41 Log response ratios emitted following sequences of confirmations and sequences of confirmations ending with a single disconfirmation in Conditions 25 to 28 of Experiment 1b
Fig. 3.42 The proportions of all one to six reinforcer sequences that were exclusively successive confirmations, or successive confirmations followed by a single disconfirmation in Experiment 1c
Fig. 3.43 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 18 of Experiment 1c
Fig. 3.44 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 19 of Experiment 1c
Fig. 3.45 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 20 of Experiment 1c
Fig. 3.46 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 21 of Experiment 1c
Fig. 3.47 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 22 of Experiment 1c
Fig. 3.48 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 24 of Experiment 1c
Fig. 3.49 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 25 of Experiment 1c

Fig. 3.50 Log response ratios emitted in successive 2-s bins following sequences of confirmations in Condition 27 of Experiment 1c

Fig. 3.51 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 18 of Experiment 1c

Fig. 3.52 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 21 of Experiment 1c

Fig. 3.53 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 22 of Experiment 1c

Fig. 3.54 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 23 of Experiment 1c

Fig. 3.55 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 26 of Experiment 1c

Fig. 3.56 Log response ratios emitted in successive 2-s bins following sequences of confirmations that ended with a single disconfirmation in Condition 28 of Experiment 1c
CHAPTER IV

Fig. 4.1 Log time- and response-allocation ratios as a function of log obtained reinforcer ratios for each subject in Experiment 2a 163

Fig. 4.2 Log reinforcer effect and log k as a function of reinforcer lag for each subject in each condition of Experiment 2a 166

Fig. 4.3 Log reinforcer effect as a function of reinforcer lag and the log obtained reinforcer ratio (upper panel), and log reinforcer effect for Lag 0 and the mean of Lags 1 to 7 as a function of the log obtained reinforcer ratio (lower panel) 169

Fig. 4.4 Log k as a function of the size of the moving window used in the analyses 170

Fig. 4.5 Log response ratios emitted following sequences of confirmations and sequences of confirmations ending with a single disconfirmation in Experiment 2a 175

Fig. 4.6 The log response ratios emitted in successive 2-s bins following each of the four possible two-reinforcer sequences in Experiment 2a 176

Fig. 4.7 The mean numbers of responses emitted in successive 2-s bins following each of the four possible two-reinforcer sequences in Experiment 2a 177

Fig. 3.57 Log response ratios emitted following sequences of confirmations plotted as a function of the logistic transformations of the proportions of all sequences of that length that were of that type in Experiment 1 156
Fig. 4.8 Log time- and response-allocation ratios as a function of log reinforcer magnitude ratios for each subject in Experiment 2b

Fig. 4.9 Log reinforcer effect and log k as a function of reinforcer lag for each subject in each condition of Experiment 2b

Fig. 4.10 Log reinforcer effect and log k calculated separately for reinforcers at the two alternatives as a function of reinforcer lag for each subject in each condition of Experiment 2b

Fig. 4.11 Log response ratios emitted following sequences of confirmations and sequences of confirmations ending with a single disconfirmation in Experiment 2b

Fig. 4.12 The log response ratios emitted in successive 2-s bins following each of the four possible two-reinforcer sequences in Experiment 2b

Fig. 4.13 The mean numbers of responses emitted in successive 2-s bins following each of the four possible two-reinforcer sequences in Experiment 2b

Fig. 4.14 Log reinforcer effect and log k calculated separately for reinforcers at the two alternatives as a function of reinforcer lag for each subject in each condition of Experiment 2a

CHAPTER V

Fig. 5.1 Log response ratios emitted following sequences of confirmations plotted as a function of the logistic transformations of the proportions of all sequences of that length that were of that type in Experiment 2a
Fig. 5.2 The proportions of all sequences of reinforcers one to eight reinforcers in length that were sequences of successive confirmations obtained at the alternative providing the higher rate of reinforcement in Condition 3 of Experiment 2a, and a simulation of Nevin’s (1969) procedure