Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.

- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.

- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form
PARTIALLY SUPERVISED TEXTURE SEGMENTATION AND RETRIEVAL

by

Linjiang Yu

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science, The University of Auckland, 2005

Supervisor: Associate Professor Georgy Gimel'farb
Co-supervisor: Professor Reinhard Klette
ABSTRACT

Partially supervised texture segmentation/retrieval aims to detect regions similar to a given texture in an arbitrary background. Such one-class texture detection has many important practical applications to identify regions of interest in remote sensing, medical diagnostics, industrial vision, or content-based image retrieval (CBIR). At the same time it differs from and cannot be performed with conventional supervised or unsupervised segmentation/retrieval techniques.

This thesis develops a novel partially supervised approach to segmentation and retrieval based on an original local-to-global texture descriptor. This latter exploits a distribution of distances between local and global frequencies of particular texture features. The empirical frequency distribution of the feature collected over the whole training texture globally characterises the texture. The similar distributions but collected within a moving window of a fixed size centred at each particular position in the image describe its local characteristics. The local-to-global distance distribution over a training texture provides a natural self-similarity threshold for separating the desired texture from each arbitrary background.

The thesis investigates capabilities of characteristic translation invariant pairwise interactions of pixel-wise colours as the texture features. The interactions are analysed using a generic Gibbs random field (GGRF) image model that produces a set of characteristic colour co-occurrence histograms (CCH) as generalised texture features. These latter are compared experimentally to other known features such as the marginal colour histogram (CH), the coordinated clusters representation (CCR), and the Tamura’s features popular in image retrieval.

Experimental investigation of the proposed approach was conducted with
large texture databases (e.g. the CUReT database containing more than 200 images for each of 61 natural textured surfaces, MIT VisTex database with more than 165 textured images, and Brodatz’s texture database with more than 100 images). These experiments confirm effectiveness of our approach for different types of textures. Moreover, the proposed local-to-global texture descriptor can be easily used with different features. This allows for selecting most appropriate pixel-wise features ensuring better performance in each particular application problem relating to single texture segmentation or retrieval.
To my wife, Yue Ding
ACKNOWLEDGMENTS

I would like to thank my supervisor, Associate-Professor Georgy Gimelfarb, for his advice, encouragement and patience during the development of this thesis. Discussions with him deepen my understanding of the PhD topics and assure completion of the thesis in time. His enthusiasm for scientific research has inspired me and promoted my interest on this research area. It is hardly possible for me to achieve this thesis so fast without his help and guidance.

I also thank my co-supervisor, Professor Reinhard Klette for his permanent support. Tutorship of his course COMPSCI 375 “Picture processing and analysis” in 2003 and 2004 greatly improved my teaching abilities.

I thank the Institute of Communication Theory and Signal Processing (TNT), University of Hannover, Hannover, Germany for providing the colour aerial image of the Earth’s surface in Fig. 1.3. I also wish to thank Mr. Don Owen (Australia) for the original colour images in Figs. 4.29-4.31.

This work was financially supported by the Royal Society of New Zealand Marsden Fund under Grant 3600771/9143 (UOA122).

Finally, I specially thank my wife, parents-in-law, and parents for their love, encouragement and support.
TABLE OF CONTENTS

LIST OF TABLES .. vi
LIST OF FIGURES .. viii

CHAPTER

1 Introduction ... 1
 1.1 Motivation ... 3
 1.2 Contribution of this Work .. 9
 1.3 Structure of the Thesis .. 13

2 Conventional One-class Classifiers and Texture Features 15
 2.1 General One-class Classification Problem 16
 2.2 Typical One-class Classifiers 23
 2.2.1 Statistical Methods .. 23
 2.2.2 Boundary Methods .. 26
 2.3 Local Image Features for Texture Segmentation 31
 2.4 Summary .. 41

3 Colour Co-occurrence Histogram as a Texture Descriptor 44
 3.1 Generic Gibbs Random Field Model of Homogeneous Colour
 Textures .. 45
 3.1.1 Pairwise Co-occurrences as Grey-coded Texture Descrip-
 tors ... 47
 3.1.2 Model-Based Interaction Map (MBIM) 48
 3.1.3 Characteristic Pairwise Pixel Interactions 49
 3.1.4 Colour Space Vector Quantization (CSVQ) 50
 3.2 Interaction Geometry vs. Texture Scales 55
 3.2.1 Pyramidal Image Representation 56
 3.2.2 Intra- and Inter-level MBIMs 57
 3.2.3 Structural Analysis of Stochastic and Nearly Periodic
 Textures .. 66
 3.3 Local-to-global Framework to Select a Single Texture 71
 3.3.1 Local-to-global Texture Description 72
 3.3.2 Distance measurements ... 75
 3.4 General Partially Supervised Texture Selection/Retrieval 77
 3.4.1 Local Features vs. the General Framework 80
 3.4.2 Time Complexity Comparisons 83
 3.5 Summary .. 83

4 Single Texture Segmentation/Retrieval: Experiments 86
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Test Database With Ground Truth Segmentation Maps</td>
<td>86</td>
</tr>
<tr>
<td>4.2</td>
<td>Measuring Segmentation and Retrieval Accuracy</td>
<td>93</td>
</tr>
<tr>
<td>4.3</td>
<td>Empirical Distance Distributions</td>
<td>95</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Selection of the Moving Window Size</td>
<td>96</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Homogeneity Threshold</td>
<td>100</td>
</tr>
<tr>
<td>4.4</td>
<td>Experiments in Segmenting Natural Images</td>
<td>109</td>
</tr>
<tr>
<td>4.5</td>
<td>Experiments in Segmenting Artificial Collages</td>
<td>115</td>
</tr>
<tr>
<td>4.6</td>
<td>Experiments in Retrieving Textures</td>
<td>140</td>
</tr>
<tr>
<td>4.7</td>
<td>Image Pyramids for CCH-based Segmentation and Retrieval of Inhomogeneous Textures</td>
<td>154</td>
</tr>
<tr>
<td>4.8</td>
<td>Summary</td>
<td>162</td>
</tr>
</tbody>
</table>

5 Conclusions and Prospectives 168
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Minimum, maximum, mean, and standard deviation of local-to-global distances $D^* = [d(F_{x,y}(g^), F(g^)) : (x, y) \in \mathcal{R}^*]$ for each training texture with different sizes of the moving window $W_x \times W_y$.</td>
</tr>
<tr>
<td>4.2</td>
<td>Distance ranges with the moving window of sizes 17×17 and 31×31 using different distance measures for the four training regions: field, vegetation, residential area, and industrial area in Fig. 1.3.</td>
</tr>
<tr>
<td>4.3</td>
<td>The 16 Brodatz's training textures in Fig. 4.40 are divided into homogeneous subset and inhomogeneous subset based on the thresholds of homogeneity, i.e. $\zeta = 0.5$ for χ^2-distance and fidelity measure and $\zeta = 0.25$ for quadratic form measure.</td>
</tr>
<tr>
<td>4.4</td>
<td>Means and standard deviations (STD) of relative missed area f_{T^-} of the desired texture, the relative background area f_{O+} falsely selected as the desired texture w.r.t. the “ground truth”, and the sum of f_{T^-} and f_{O+} in Tables 4.7 - 4.10 with different texture features for the CUReT collages.</td>
</tr>
<tr>
<td>4.5</td>
<td>Confidence intervals for the mean with respect to the total error rate $f_{T^-} + f_{O+}$ with the different texture features for the CUReT collages.</td>
</tr>
<tr>
<td>4.6</td>
<td>Means and standard deviations (STD) of relative missed area f_{T^-} of the desired texture, the relative background area f_{O+} falsely selected as the desired texture w.r.t. the “ground truth”, and the sum of f_{T^-} and f_{O+} in Table 4.11 with different texture features for the three natural images.</td>
</tr>
<tr>
<td>4.7</td>
<td>Relative missed area f_{T^-} of the desired texture and the relative background area f_{O+} falsely selected as the desired texture w.r.t. the “ground truth” for the CUReT collages Clg01 - Clg04 using CH, CCH, and CCR features, respectively.</td>
</tr>
<tr>
<td>4.8</td>
<td>Relative missed area f_{T^-} of the desired texture and the relative background area f_{O+} falsely selected as the desired texture w.r.t. the “ground truth” for the CUReT collages Clg05 - Clg07 using CH, CCH, and CCR features, respectively.</td>
</tr>
<tr>
<td>4.9</td>
<td>Relative missed area f_{T^-} of the desired texture and the relative background area f_{O+} falsely selected as the desired texture w.r.t. the “ground truth” for the CUReT collages Clg01 - Clg04 using Tamura's features: coarseness (CRS), contrast (CON), and directionality (DIR), respectively.</td>
</tr>
<tr>
<td>4.10</td>
<td>Relative missed area f_{T^-} of the desired texture and the relative background area f_{O+} falsely selected as the desired texture w.r.t. the “ground truth” for the CUReT collages Clg05 - Clg07 using Tamura's features: coarseness (CRS), contrast (CON), and directionality (DIR), respectively.</td>
</tr>
</tbody>
</table>
4.11 Relative missed area f_{T-} of the desired texture and the relative background area f_{O+} falsely selected as the desired texture w.r.t. the “ground truth” for the three natural images in Figs. 4.58 - 4.62.

4.12 Means, standard deviations (STD), and confidence interval for the mean with respect to “Recall” (REC), “Precision” (PRE), and the sum of “Recall” and “Precision” (REC+PRE) in Tables 4.14 - 4.22 for different texture features: colour histogram (CH), colour co-occurrence histogram (CCH), Tamura coarseness (CRS), Tamura contrast (CON), Tamura directionality (DIR).

4.13 Percentages of the own query images and relevant images contained in three retrieved top-rank images in Tables 4.14 and 4.22 for different texture features.

4.14 Texture retrieval in CUReT database for different query patches using different texture features: colour histogram (CH), colour co-occurrence histogram (CCH), Tamura coarseness (CRS), Tamura contrast (CON), Tamura directionality (DIR).

4.15 Texture retrieval in CUReT database for different query patches using different texture features: colour histogram (CH), colour co-occurrence histogram (CCH), Tamura coarseness (CRS), Tamura contrast (CON), Tamura directionality (DIR).

4.16 Texture retrieval in CUReT database for different query patches using different texture features: colour histogram (CH), colour co-occurrence histogram (CCH), Tamura coarseness (CRS), Tamura contrast (CON), Tamura directionality (DIR).

4.17 Texture retrieval in CUReT database for different query patches using different texture features: colour histogram (CH), colour co-occurrence histogram (CCH), Tamura coarseness (CRS), Tamura contrast (CON), Tamura directionality (DIR).

4.18 Texture retrieval in CUReT database for different query patches using different texture features: colour histogram (CH), colour co-occurrence histogram (CCH), Tamura coarseness (CRS), Tamura contrast (CON), Tamura directionality (DIR).

4.19 Texture retrieval in CUReT database for different query patches using different texture features: colour histogram (CH), colour co-occurrence histogram (CCH), Tamura coarseness (CRS), Tamura contrast (CON), Tamura directionality (DIR).

4.20 Texture retrieval in CUReT database for different query patches using different texture features: colour histogram (CH), colour co-occurrence histogram (CCH), Tamura coarseness (CRS), Tamura contrast (CON), Tamura directionality (DIR).

4.21 Texture retrieval in CUReT database for different query patches using different texture features: colour histogram (CH), colour co-occurrence histogram (CCH), Tamura coarseness (CRS), Tamura contrast (CON), Tamura directionality (DIR).

4.22 Texture retrieval in CUReT database for different query patches using different texture features: colour histogram (CH), colour co-occurrence histogram (CCH), Tamura coarseness (CRS), Tamura contrast (CON), Tamura directionality (DIR).
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Collage of the Outex textures with its ground-truth region map.</td>
</tr>
<tr>
<td>1.2</td>
<td>Five training samples for Fig. 1.1 (left to right: barleyrice001, canvas004, canvas046, carpet010, and crushedstone005).</td>
</tr>
<tr>
<td>1.3</td>
<td>Original aerial image and four different training samples (courtesy of the Institute of Communication Theory and Signal Processing TNT, University of Hannover, Hannover, Germany).</td>
</tr>
<tr>
<td>1.4</td>
<td>Example of an one-class classification problem.</td>
</tr>
<tr>
<td>1.5</td>
<td>Four outcomes of the one-class classification.</td>
</tr>
<tr>
<td>1.6</td>
<td>Local Gaussian approximation.</td>
</tr>
<tr>
<td>1.7</td>
<td>Global Gaussian approximation.</td>
</tr>
<tr>
<td>1.8</td>
<td>Binary 3 x 3 patterns and their binary numbers.</td>
</tr>
<tr>
<td>1.9</td>
<td>CCR histograms of training images.</td>
</tr>
<tr>
<td>1.10</td>
<td>Pixel pair separated by the distance d along the direction α.</td>
</tr>
<tr>
<td>1.11</td>
<td>Pixel neighbourhood formed by three clique families.</td>
</tr>
<tr>
<td>1.12</td>
<td>Textures D9, D53, and D101.</td>
</tr>
<tr>
<td>1.13</td>
<td>First five levels of the Gaussian (top) and Laplacian (bottom) pyramid of the texture D101.</td>
</tr>
<tr>
<td>1.14</td>
<td>Texture D9: The first three intra-level MBIMs (top) and scaled up MBIMs of their corresponding parent images (bottom).</td>
</tr>
<tr>
<td>1.15</td>
<td>Texture D53: The first three intra-level MBIMs (top) and scaled up MBIMs of their corresponding parent images (bottom).</td>
</tr>
<tr>
<td>1.16</td>
<td>Texture D101: The first three intra-level MBIMs (top) and scaled up MBIMs of their corresponding parent images (bottom).</td>
</tr>
<tr>
<td>1.17</td>
<td>Texture D9: the inter-level MBIMs.</td>
</tr>
<tr>
<td>1.18</td>
<td>Texture D53: the inter-level MBIMs.</td>
</tr>
<tr>
<td>1.19</td>
<td>Texture D101: the inter-level MBIMs.</td>
</tr>
<tr>
<td>1.20</td>
<td>Changes in the number of the characteristic clique families along the Gaussian image pyramid.</td>
</tr>
<tr>
<td>1.21</td>
<td>Relative Gibbs energy comparison of up to 30 characteristic clique families with the highest relative Gibbs energies along the Gaussian image pyramid.</td>
</tr>
<tr>
<td>1.22</td>
<td>Texture D9: variations of the relative Gibbs energies $\varepsilon(\xi,\eta)(G^{(k)})$ for different clique families $(\xi, \eta): \xi = 0, 1, 2, 3; \eta = 0, 1, \ldots, \eta_{\text{max}}$ along the Gaussian pyramid.</td>
</tr>
<tr>
<td>1.23</td>
<td>Texture D101: variations of the relative Gibbs energies $\varepsilon(\xi,\eta)(G^{(k)})$ for different clique families $(\xi, \eta): \xi = 0, 1, 2, 3; \eta = 0, 1, \ldots, \eta_{\text{max}}$ along the Gaussian pyramid.</td>
</tr>
<tr>
<td>1.24</td>
<td>Texture D101: variations of the relative Gibbs energies $\varepsilon(\xi/2^k,\eta/2^k)(G^{(k)})$ for different clique families $(\xi, \eta): \xi = 39; \eta = 0, 1, \ldots, \eta_{\text{max}}$ along the Gaussian pyramid.</td>
</tr>
</tbody>
</table>
3.25 Relative histograms and its cumulative ones of the empirical local-to-global distances D^* over the Brodatz's training textures D9 and D68 in Fig. 4.40 using CCH texture feature and χ^2-distance measure. 73
3.26 Flowchart of the algorithm. 78
4.27 Collages "Clg01" - "Clg04" (left) of CUReT textures, and their corresponding training textures (right) for each rectangular area in the collages. 88
4.28 Collages "Clg05" - "Clg07" (left) of CUReT textures, and their corresponding training textures (right) for each rectangular area in the collages. 89
4.29 CatDogCarpet: training textures and their "ground truth" (one-region maps with textures). 90
4.30 GrassFlowers: training textures and their "ground truth" (one-region maps with textures). 91
4.31 GrassRockSand: training textures and their "ground truth" (one-region maps with textures). 92
4.32 Query texture patches. 94
4.33 Illustration of the "ground truth" for a target class (inside the solid curve) and the detected or retrieved area (inside the dashed curve). 95
4.34 Brodatz's texture D36: empirical distributions of the local-to-global distances with different sizes of the moving window $W_x \times W_y$. 98
4.35 Brodatz's texture D75: empirical distributions of the local-to-global distances with different sizes of the moving window $W_x \times W_y$. 98
4.36 Brodatz's texture D93: empirical distributions of the local-to-global distances with different sizes of the moving window $W_x \times W_y$. 99
4.37 Brodatz's texture D101: empirical distributions of the local-to-global distances with different sizes of the moving window $W_x \times W_y$. 99
4.38 Empirical distributions of the local-to-global distances with the moving window of size 17×17 over different training samples in Fig. 1.3 using CCH texture feature and different distance measures. 102
4.39 Empirical distributions of the local-to-global distances with the moving window of size 31×31 over different training samples in Fig. 1.3 using CCH texture feature and different distance measures. 103
4.40 16 typical image textures of size 128×128 cut from the Brodatz's database. 105
4.41 Empirical distributions of the local-to-global distances over 16 Brodatz's training textures in Fig. 4.40 using CCH texture feature and χ^2-distance measure. 106
4.42 Empirical distributions of the local-to-global distances over 16 Brodatz's training textures in Fig. 4.40 using CCH texture feature and fidelity measure. 107
4.43 Empirical distributions of the local-to-global distances over 16 Brodatz's training textures in Fig. 4.40 using CCH texture feature and quadratic form (QF) measure. 108
4.44 Candidate colour maps after colour thresholding, local-to-global distance maps, and detected region maps, respectively, of the aerial image for the four training samples "field" (second row), "vegetation" (third row), "residential area" (fourth row), and "industrial area" (fifth row). 110
4.45 Comparison using different distance measures: \(\chi^2\)-distance (left), fidelity measure (middle), and QF distance (right) for different training samples: “field” (first row), “vegetation” (second row), “residential area” (third row) and “industrial area” (fourth row) with the moving window size 17 \(\times\) 17.

4.46 Comparison using different distance measures: \(\chi^2\)-distance (left), fidelity measure (middle), and QF distance (right) for different training samples: “field” (first row), “vegetation” (second row), “residential area” (third row) and “industrial area” (fourth row) with the moving window size 31 \(\times\) 31.

4.47 Comparison using different numbers of the most characteristic families of pixel pairs: \(|A| = 1\) (left), \(|A| = 5\) (middle), \(|A| = 10\) (right) for different training samples: “field” (first row), “vegetation” (second row), “residential area” (third row) and “industrial area” (fourth row) with the moving window size 17 \(\times\) 17, the \(\chi^2\)-distance measure.

4.48 Comparison using the texture features: colour histogram (CH) (left), colour co-occurrence histogram (CCH) (middle), coordinated clusters representation (CCR) (right) for different training samples: “field” (first row), “vegetation” (second row), “residential area” (third row) and “industrial area” (fourth row) with the moving window size 17 \(\times\) 17, the \(\chi^2\)-distance measure.

4.49 Comparison using the texture features: Tamura’s coarseness (CRS) (left), Tamura’s contrast (CON) (middle), and Tamura’s directionality (DIR) (right) for different training samples: “field” (first row), “vegetation” (second row), “residential area” (third row) and “industrial area” (fourth row) with the moving window size 17 \(\times\) 17, the \(\chi^2\)-distance measure.

4.50 Results of detecting TT01 and TT02 in the collage Clg01 using CH (top), CCH (middle), and CCR (bottom).

4.51 Results of detecting TT01 and TT02 in the collage Clg01 using the three Tamura’s features: CRS (top), CON (middle), DIR (bottom).

4.52 Results of detecting TT03 and TT04 in the collage Clg01 using CH (top), CCH (middle), and CCR (bottom).

4.53 Results of detecting TT03 and TT04 in the collage Clg01 using the three Tamura’s features: CRS (top), CON (middle), DIR (bottom).

4.54 Results of detecting TT05 and TT06 in the collage Clg01 using CH (top), CCH (middle), and CCR (bottom).

4.55 Results of detecting TT05 and TT06 in the collage Clg01 using the three Tamura’s features: CRS (top), CON (middle), DIR (bottom).

4.56 Results of detecting TT07 and TT08 in the collage Clg01 using CH (top), CCH (middle), and CCR (bottom).

4.57 Results of detecting TT07 and TT08 in the collage Clg01 using the three Tamura’s features: CRS (top), CON (middle), DIR (bottom).

4.58 Results of detecting cat and dog in CatDogCarpet using CH (top), CCH (middle), and CCR (bottom).

4.59 Results of detecting cat and dog in CatDogCarpet using the three Tamura’s features: CRS (top), CON (middle), DIR (bottom).

4.60 Results of detecting grass and flowers in GrassFlowers using CH (top), CCH (middle), and CCR (bottom).
4.61 Results of detecting grass and flowers in GrassFlowers using the three Tamura’s features: CRS (top), CON (middle), DIR (bottom).................. 137
4.62 Results of detecting grass and rock in GrassRockSand using CH (top), CCH (middle), and CCR (bottom)................................. 138
4.63 Results of detecting grass and rock in GrassRockSand using the three Tamura’s features: CRS (top), CON (middle), DIR (bottom)........ 139
4.64 Query for “08-022p” (three top rank images and their similar candidate regions) using CH and CCH texture features.................. 143
4.65 Query for “08-022p” (three top rank images and their similar candidate regions) using CRS, CON and DIR texture features........ 144
4.66 Flowchart of the pyramid-based algorithm for separating a single texture.. 156
4.67 Results for detecting the inhomogeneous training sample “industrial area” from the aerial image using the one-level algorithm in Section 3.4 and the pyramidal CCH-based detection algorithm in Section 4.7.. 161
4.68 Results of detecting for different training samples using χ²-distance measure from the image GrassPlantsSky.1.......................... 163
4.69 Results of detecting for different training samples using χ²-distance measure from the image ValleyWater.2.............................. 164
4.70 Results of detecting for different training samples with Q_h = 64, Q_s = 2, Q_v = 2 from the image ValleyWater.2......................... 165