
Teaching Operating Systems with Ruby
Robert Sheehan

Department of Computer Science
University of Auckland

New Zealand
0064 9 3737599

r.sheehan@auckland.ac.nz

ABSTRACT
Dynamic languages have regained enormous popularity in recent
years. One of the principal dynamic programming languages,
Ruby, has been used as the language for assignment work and the
presentation of concepts in an introductory Operating Systems
course. This was a strange choice for a systems course but there
were several good reasons for the choice including the ease with
which Ruby provides access to Unix commands and system calls.
After some initial problems, the change has been very successful
and demonstrates that even in the core courses of a Computer
Science curriculum dynamic programming languages have
benefits.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education.

D.4.9 [Operating Systems]: Systems Programs and Utilities –
Command and control languages.

General Terms

Human Factors, Languages.

Keywords
Ruby, scripting language, Operating Systems education.

1. INTRODUCTION
Many students in introductory Operating Systems courses have
not been exposed to the languages used to implement or control
Operating Systems. This means that students either have to learn a
new language to interact with the Operating Systems they study
or they are restricted to dealing with simulations or libraries that
interface with the Operating System.

If they are to learn a new language the question becomes which
one is most appropriate. In recent years students who have been
using Java for their other courses may have learnt C for the
Operating Systems course.

Another approach is to use a shell scripting language. In the world
of Operating System administration many tasks are carried out
with scripting languages, ranging from traditional shell script
languages such as the Bourne Shell [2] through to more recent
general purpose languages Perl [15], Python [8] and Ruby [13].

Ruby is both easy to learn, and very powerful when it comes to
interacting with common Operating Systems such as variants of
Unix or Microsoft Windows. Moreover Ruby is rapidly becoming
known as a useful Web development tool through the Ruby on
Rails framework [14]. This means that many students are keen to
learn the language. Could such a language be used as the main
language of instruction in an Operating Systems course?

1.1 Operating System Course Languages
Traditionally, Operating Systems courses and textbooks have
been taught using C [12] or assembly language as the language of
demonstration and practice. Some courses and textbooks have
used Pascal [6], or Java [11] as these languages became, at least
temporarily, the preferred languages for introductory
programming courses.
Different languages have been used in Operating Systems courses
for different reasons. C and assembly language have been used
because these were the languages that Operating Systems were
implemented with. This had the advantage that sections of
Operating System code could be examined to see exactly how
algorithms worked, especially in the ubiquitous Unix Version 6
source-code [7] that was freely available to academic institutions,
and more recently in Linux [3]. The sections of code written in
assembly language decreased rapidly with the introduction of
Unix and this led to a corresponding decline in the use of
assembly language in Operating Systems courses.
Textbooks and courses that used Pascal did so because of the
clarity with which algorithms could be expressed and the fact that
for a while Pascal was the major programming language in
academic Computer Science. Pascal was not widely used in the
implementation of Operating Systems with the exception of the
UCSD Pascal Operating System [4].
Silberschatz, Galvin and Gagne [11] produced a version of their
text book with examples and questions in Java. As Java runs on a
virtual machine, it seems an odd choice for an Operating System
language. The Java programmer is not exposed to the hardware or
Operating System the Java Virtual Machine is running on. From a
pedagogical perspective Java still makes sense as the language for
an Operating System course as it is the most common language in
programming courses and it is cross platform. In addition, Java
provides many services that are covered in Operating Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE’07, June 23–27, 2007, Dundee, Scotland, United Kingdom.
Copyright 2007 ACM 978-1-59593-610-3/07/0006...$5.00.

courses, such as threads, concurrency control, security, and
distributed systems.
Java does not reveal its interface to the underlying Operating
System; this means that rather than directly using Operating
System services, such as process creation, interprocess
communication, exception handling or file manipulation, a
student uses the Java representations which may or may not map
closely to the equivalent constructs in the Operating System. If
Java is to be used to interface directly with system calls, a
package such as Jtux [10] can be used. Without such a package
even interfacing with Unix commands is quite intimidating with
Java. Figure 1 shows how to do something to each line of output
produced by the Unix ps command. A scripting language can do
this in a much more straightforward way (see Figure 3) –
especially on a Unix type system where many commands are
provided for system control and administration.
import java.io.*;

public class PS {

 public static void main(String[] args) {
 Runtime runtime = Runtime.getRuntime();
 try {
 Process ps_process =
 runtime.exec("ps x");
 BufferedReader in = new BufferedReader(
 new InputStreamReader(
 ps_process.getInputStream()));
 String line;
 while ((line = in.readLine()) != null)
 doSomething(line);
 }
 catch (IOException e);
 }

}

Figure 1. Accessing Unix command output from Java.

2. WHY RUBY?
There are several aspects that make Ruby a sensible choice as the
main language in an Operating Systems course. Like Java, Ruby
works on most common machines and Operating Systems. It also
has built-in threads, concurrency control and a simple distributed
computing environment. Each of these will be considered briefly
in the following sections. Ruby also has a useful exception
handling mechanism which avoids the need to explicitly
propagate error codes back up through the calling chain and error
handling is an important topic in Operating System design.

Ruby is sometimes referred to as a reflective, object-oriented
programming language. It is commonly mentioned along with
other so-called scripting languages awk, Perl, Python and PHP,
but arguably has a nicer syntax and more consistent style than
those other languages. Being a scripting language it can be used
to manipulate files in sophisticated ways. It has regular
expressions built-in to the language which makes many
administrative tasks usually performed by awk or Perl very
convenient. As Ruby is developed mostly on Linux systems,
Unix-like features are conveniently available from the standard
Ruby commands and libraries. Because of its flexible nature,
Ruby is also ideal at producing domain specific languages to
solve particular Operating System problems.

2.1 Threads
User-level threads are provided with all implementations of Ruby.
This has the advantage of providing threads on Operating Systems
that don’t support native threads. This can be used to advantage.
E.g., the students in one session of the course were given an
assignment to compare Ruby’s user-level threads with POSIX
threads. The students had to measure how long it took to
construct, start and terminate a Ruby thread versus the same times
for Pthreads. Similarly they had to compare context-switching
times.
The greatest disadvantage of user-level threads is the blocking
problem. Normally when one user-level thread in a process blocks
for IO, all threads are blocked as the Operating System kernel
only schedules the process. Ruby solves this problem with a form
of jacketing.

2.2 Concurrency Control
Another important component of Operating Systems courses is a
discussion of concurrency control. The Ruby code for many
concurrency constructs such as simple locks, condition variables
and monitors, comes with the standard distribution and is
relatively easy to understand and extend. Figure 2 shows the
standard code for locking a simple lock or mutex. The lock
variable @locked is an instance variable of the Mutex class.
Attempts to grab the lock and waits
if it isn't available.

 def lock
 while (Thread.critical = true; @locked)
 @waiting.push Thread.current
 Thread.stop
 end
 @locked = true
 Thread.critical = false
 self
 end

Figure 2. Ruby simple lock.
In current versions of Ruby, thread synchronization primitives are
normally written using a special method Thread.critical=. In
Ruby code this looks like a simple assignment but is actually a
method call that is passed the parameter true or false. When
passed the value true, the method causes the thread scheduler to
stop scheduling other threads. It starts scheduling threads again
when passed the value false. This is a very low-level approach to
synchronization and is only supposed to be used to implement
higher-level thread synchronization mechanisms, but it is very
useful from a pedagogical perspective because it functions in a
similar way to disabling interrupts and can be used to demonstrate
how such a simple mechanism can underlie more sophisticated
approaches. In one assignment students were asked to extend the
Mutex class so that every time a thread blocked waiting for the
lock to become available a deadlock check was carried out. This
was very simple to implement.

2.3 Distributed Computing
Operating Systems are no longer the stand alone installations they
once were. It is very important in any Operating Systems course
to discuss distributed systems. Ruby has nice distributed classes,
and has become very popular as the basis for Web applications
with the Ruby on Rails [14] framework. Even without the
framework, Ruby provides a simple implementation of the Linda

[5] distributed environment, known as Rinda. It is also possible to
use the standard drb (distributed ruby) library which provides a
distributed object system, similar to Java's RMI, but simpler to
use.

2.4 Scripting Language Advantages
Being interpreted and dynamic, Ruby can be used directly from
the keyboard using the interactive Ruby program irb. In many
situations irb can be used in place of the shell as a command-line
interpreter. This is useful both to experiment with Operating
System commands and to help learn the language.

2.5 Unix Connections
Many Operating Systems courses spend substantial time
discussing Unix and its related Operating Systems. Ruby provides
a large number of Unix connections.
Ruby allows very simple communication with Operating System
commands via the traditional shell back-quote mechanism. Figure
3 shows the one line Ruby equivalent to Figure 1.
`ps x`.each { |line| do_something line }

Figure 3. Accessing Unix command output from Ruby.
The same mechanism works with Microsoft Windows’ commands
as well.
Concepts such as pipes, process creation with fork, and signals are
directly accessible from Ruby. Figure 4 shows a simple use of a
pipe.
 reader, writer = IO.pipe

 writer.puts "from the pipe"
 output = reader.gets
 puts output

Figure 4. Simple use of a pipe.
Actually, this code also works under Windows but the code in
Figure 5 which employs a fork system call only works on versions
of Unix.
 reader, writer = IO.pipe

 if fork
 puts "parent sending pid"
 writer.puts Process.pid
 else
 puts "child #{Process.pid}"
 puts "child gets: " + reader.gets
 end

Figure 5. Fork and pipe.
The code in Figure 5 produces output like:
parent sending pid
child 6628
child gets: 6627

Compare Figure 5 with the equivalent C program (Figure 6) in
order to see the simplification Ruby provides.
 #include <unistd.h>
 #include <stdio.h>

 int main(int argc, char **argv) {
 int pipe_ends[2];

 pipe(pipe_ends);
 FILE *reader = fdopen(pipe_ends[0], "r");
 FILE *writer = fdopen(pipe_ends[1], "w");

 if (fork()) {
 printf("parent sending pid\n");
 fprintf(writer, "%d\n", getpid());
 } else {
 printf("child %d\n", getpid());
 char data[10];
 fscanf(reader, "%s", data);
 printf("child gets: %s\n", data);
 }
 }

Figure 6, Fork and pipe, C version
Figure 7 gives an example of Unix commands being manipulated
with Ruby code. The line numbers are added for reference. In line
1 the Unix ps command is invoked with several options. The text
output from this command is then split into lines and passed off to
the block of code following the each method call. The lines are
split in line 2 into two String variables waiting and pid. If the
contents of the waiting variable matches the regular expression
pipe (line 3), a message is written to the standard output
describing what is about to happen, and then, on line 5, the
corresponding process is sent the SIGKILL signal. This code kills
any of the user’s processes that are currently waiting on a pipe.
1: `ps x -o wchan,pid`.each do |line|
2: waiting, pid = line.split
3: if waiting =~ /pipe/
4: puts "about to kill #{pid}"
5: Process.kill("KILL", pid.to_i)
6: end
7: end

Figure 7. Unix process manipulation.

2.6 Domain Specific Language
Another useful feature of Ruby is its ability to be modified to
become a domain specific language. Apart from the usual ability
to implement what looks like a domain specific language using
method calls, it is possible to produce syntax which matches
language features from other environments. As an example, the
code in Figure 8 appears to show a synchronize keyword in the
language which provides mutually exclusive access to the code
after it.
 synchronize do
 whatever ...
 end

Figure 8. A synchronize block.
In reality synchronize is a method which takes a block of code
as a parameter. The method is shown in Figure 9. The yield calls
the block of code passed with the synchronize call. This
method first calls the lock method and then when the lock is
gained calls the passed block of code (at the yield statement)
and is guaranteed to call unlock before returning, regardless of
any errors that may occur.
 def synchronize
 lock
 begin
 yield
 ensure
 unlock
 end
 end

Figure 9. The synchronize method.
This flexibility was employed in another assignment where the
students had to implement a message passing system inspired by
the CSP like communication technique in Erlang [1]. The

resulting message passing system looked as though it was part of
the Ruby language.

3. ADVANTAGES
There are advantages for both the students and the instructors in
using Ruby in an Operating Systems course. The conciseness and
power of the language and standard libraries means that many
topics can be presented with examples that are easy to
comprehend without the need for overwhelming amounts of
scaffolding code. One further example will illustrate.
To provide a Rinda server that distributed processes (or Operating
Systems) can use to post their own services onto requires five
lines of code, see Figure 10.
 require 'rinda/ring'
 require 'rinda/tuplespace'

 DRb.start_service
 Rinda::RingServer.new(Rinda::TupleSpace.new)
 DRb.thread.join

Figure 10. Rinda TupleSpace server.

3.1 Advantages For The Students
If students have to learn a new language for an Operating Systems
course shouldn’t it be C? It can certainly be argued that C or C++
are the ideal languages as most current Operating Systems are
implemented with them. However, students who have only been
exposed to Java have to spend a considerable amount of time
becoming proficient with these. Many Operating Systems courses
use Java because of this. Also, it is common to use a scripting
language in order to administer Operating Systems; this means
that a student might have to learn two languages for an Operating
Systems course.
As has been shown, Ruby can fulfil the role of communicating
with Unix process and system calls which would normally be
performed by C. Additionally, Ruby fits ideally as a scripting
language to administer Operating Systems. It is also very easy to
learn [9]. Students can pick up enough of the basics to deal with
assignments within two weeks.
Very few of our students move on to jobs which require the
development of Operating Systems. Some will produce device
drivers, but in the current Operating Systems’ world these are still
very system dependent and almost exclusively require C/C++
programming skills. A larger number of the students doing this
course are likely to end up with standard programming or system
administration type jobs. For these students Ruby has definite
appeal.
In Computer Science programs it is advantageous to be exposed
to different types of programming language. Dynamic reflective
languages such as Ruby are certainly different from Java or C++.
Using Ruby in an Operating Systems course demonstrates many
of its advantages to students and shows them ways to achieve
results they would otherwise not have experienced.

3.1.1 Level-playing Field
The Operating Systems course is taken by two types of students:
degree students who have been using Java for over two years and
diploma students who enter the course from a variety of
backgrounds. One of the problems with using Java as the
programming language for the course was that many of the

diploma students were at a great disadvantage. Using Ruby has
helped this substantially as all students are learning the language
together and facing the same problems.

3.2 Advantages For The Instructors
The flexible nature of Ruby along with its clean interaction with
Unix system calls provides new scope for assignments. Over the
three years Ruby has been used in the Operating Systems course
there have been several assignments given to the students that
would have been substantially different (if not very difficult to
produce) if Java was the course language. Some of these have
already been mentioned.

• a comparison of Unix processes, Pthreads and Ruby threads

• the implementation of a local deadlock detector (once
developed this worked transparently in any existing or future
Ruby program)

• a distributed deadlock detector via a white-board system

• the implementation of an Erlang-like message passing
system with timeouts

• a scheduler based on Unix signals which solved the priority
inversion problem

• a file-system that allowed Unix-type hard links between
directories

• a low-level file-system simulator built on top of a disk
simulator

Some of these assignments would have been possible with
standard Java, but some would have required the development of
native libraries and the solutions would not have been as simple
as they were in Ruby. They would all have been possible with C
but at the cost of requiring much more scaffolding. Without the
scaffolding the main point of the assignment becomes more
apparent.
There are some topics in introductory Operating Systems courses
that can only be included in practical assignments by simulations.
In particular, memory management and virtual memory
assignments have been presented in our course over the years via
simple simulators. The students either have to extend the
simulators or develop algorithms which are implemented on the
simulators.
Because of its flexible and dynamic nature, development in Ruby
is faster and (for many programmers) more enjoyable. Thus it is
possible to produce larger and more flexible simulations within
the time constraints of course preparation.
None of the individual advantages of Ruby are overwhelming but
after several years of running the introductory Operating Systems
course it has been refreshing to use Ruby as the language of
example and presentation. Occasionally students are still
presented with pseudo Unix source code with little bits of C, but
most algorithms can be represented very clearly with Ruby. One
last advantage of Ruby is that many programmers find that it is
fun to program in. Even though most instructors may find
Operating Systems’ topics full of interest this does always not
seem to be the perception of an average undergraduate.

4. DISADVANTAGES
No Operating Systems have been (or are likely to be)
implemented in Ruby. This means that students cannot use Ruby
to directly extend a real Operating System. Instead, a student can
deal with many of the concepts of Operating Systems in an easy
way and can deal quite closely with process and file system calls,
especially when Ruby is run on Unix.
Ruby displays its Unix roots quite clearly. The file and process
manipulation commands derive from a Unix model. Most file
commands work without difficulty on Microsoft Windows
Operating Systems as well; Ruby even converts “/” file separators
to whatever the underlying Operating System requires. To provide
process and service management on Windows it is necessary to
add some specific Ruby Windows libraries that do not come with
the default distribution.
The general lack of Ruby documentation in English was a major
difficulty when the first version of the course was offered; even
though it was much better than just a few years previously. Now,
due to Ruby’s fast growth and prominence with the Ruby on Rails
framework there are over a dozen recent Ruby titles available.
Students can be freely given the electronic version of the first
edition of the standard Ruby book “Programming Ruby” [13].

5. STAFF AND STUDENT IMPRESSIONS
How well was Ruby received as the programming language for
the Operating Systems course? The instructor found much greater
freedom to produce different styles of assignment for the practical
aspects of the course. The students in the first year Ruby was used
had a mixed reaction to the language. Some of them loved it and
some hated it. Part of the problem was that there was not enough
support in the early part of the course to learn the language. The
students were largely expected to pick up the language by
themselves (they were third year students). No laboratory
assistants had had experience with the language and so questions
were frequently referred to the course instructor. As a result of
these problems several changes were made for the second year.
Tutorials in the language were implemented and an expanded
Ruby handout was prepared for the students. Once again some of
the novel aspects of Ruby were used to provide assignments that
would have been difficult in other languages. This time the course
evaluations showed a greatly reduced number of negative
comments about Ruby, and, as they had in the first year, the best
students really enjoyed learning the language and using it in the
assignments.
Student evaluations for the course initially dipped on the
introduction of Ruby but have since risen to be higher than the
evaluations when Java was used. Most of the content of the course
has remained substantially the same over that period.
It is also worth noting that as the students are only exposed to
Ruby for the one semester, many of them do not feel confident

with their use of the language. In two of the years that the course
has been run with Ruby, the students have been allowed to
implement the last assignment in any programming language that
was appropriate. Most students chose Java rather than Ruby, even
though the Ruby solutions were both simpler, and much shorter.

6. CONCLUSION
With features such as its clearly understandable concurrency
constructs, a simple distributed computing environment,
flexibility to add features to the language, a close connection to
Unix process and file system calls and a dynamic nature for
simulations, Ruby can be used as the main language of
demonstration and assignment work in an introductory Operating
Systems course. The experiment to use Ruby in such a course has
proven successful and enjoyable for both staff and students, and
suggests a greater flexibility in choosing languages in such
courses has merit.

7. REFERENCES
1. Armstrong, J., Virding, R., Wikström, C. and Williams, M.

Concurrent Programming in Erlang. Prentice Hall, 1996.
2. Arthur, L.J. UNIX Shell programming. Wiley, New York,

1990.
3. Bovet, D.P. and Cesati, M. Understanding the Linux Kernel.

O'Reilly & Associates, Sebastopol, CA, 2003.
4. Bowles, K. Beginner's Guide for the UCSD Pascal System.

McGraw-Hill, 1980.
5. Carriero, N. and Gelernter, D. Linda in context.

Communications of the ACM, 32 (4). 444 - 458.
6. Deitel, H.M. Operating Systems. Addison-Wesley, Reading,

Massachusetts, 1990.
7. Lions, J. Lions' Commentary on Unix. Peer-To-Peer

Communications, 1977.
8. Lutz, M. Programming Python. O’Reilly & Associates,

Sebastopol, CA, 2001.
9. Pine, C. Learn to Program. The Pragmatic Bookshelf,

Raleigh, North Carolina, 2006.
10. Rochkind, M.J. Jtux — Java-To-UNIX Package,

http://basepath.com/aup/jtux/, 2005.
11. Silberschatz, A., Galvin, P.B. and Gagne, G. Applied

operating system concepts. John Wiley, New York, 2000.
12. Tanenbaum, A.S. and Woodhull, A. Operating systems :

design and implementation. Prentice Hall, Upper Saddle
River, NJ, 1997.

13. Thomas, D. Programming Ruby: The Pragmatic
Programmer's Guide. Pragmatic Bookshelf, 2004.

14. Thomas, D. and Heinemeier, D. Agile Web Development
with Rails. Pragmatic Bookshelf, 2006.

15. Wall, L. and Schwartz, R.L. Programming Perl. O’Reilly &
Associates, Sebastopol, CA, 1991.

