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Abstract

We investigate ensemble learning methods that construct a classifier ensemble by
repeatedly sampling the original training data and building a member classifier from
each subsample. We find that the performance of standard Bagging can frequently
be improved upon by simple variations of the sampling scheme, such as varying the
sample size, or sampling without replacement instead of sampling with replacement.

For all methods tested, the ensemble performance is greatly dependent on proper-
ties of the problem domain and the data sample. We try to explain the observed
performances of the various ensemble methods qualitatively and quantitatively, and
find that current ensemble analysis methods such as margin distributions, κ-Error
Diagrams, bias-variance decomposition etc. are not well suited for this task.

We postulate that the primary explanation for the performance of ensemble methods
is to be found in their effects on accuracy of the ensemble members on one side and
diversity among them on the other side, two contradictory goals which necessitate
a compromise, or trade-off. This motivates the presentation of a precise yet general
definition of what diversity is and how it is to be measured. This definition has the
desirable property that it is applicable to all single-stage voting ensembles, under
any given loss function.

We then study the mathematical relationships between ensemble loss, mean mem-
ber loss, and diversity. For squared loss, we show that our definitions lead to the
well known ensemble loss decomposition, and extend this decomposition to the case
where the ensemble members, instead of a real number, return a probability distri-
bution over R.

For the case of 0-1 loss, we derive the exact mathematical relations between ensem-
ble loss, mean member loss, and diversity. Studying those relations provides some
valuable insights into ensembles behavior, and produces some unexpected hence in-
teresting results. These results are also confirmed by the experimental observations.

Turning our attention back to the performance of Bagging variants, we show how the
loss decomposition can be used to reduce the number of parameter settings which
have to be tried out experimentally in order to find a well-performing ensemble
method for a given particular problem.
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1. Introduction

1.1 Scope

In recent years, there has been considerable interest in learners that produce models
of small expected loss by generating and aggregating multiple individual models. It
has been shown that ensemble methods often outperform single classifiers signifi-
cantly, and the increase in available computing power has made the application of
ensemble methods feasible even for large datasets ([18, 59, 69]).

A necessary and sufficient condition for an ensemble of classifiers to be more accurate
than any of its individual members is assumed to be if the individual classifiers are
accurate and diverse ([39]).

In this thesis we consider ensemble methods that construct a set of diverse classifiers
by applying the same base learning algorithm to different subsets of the original
training set, and then classify previously unseen examples by taking a (possibly
weighted) vote of the predictions of the ensemble members. We call those methods
resampling ensemble learning methods.

For the experimental part, we constrict ourselves to resampling methods for which
the learning process is parallelizable – that is, the training set subsamples and the
member classifiers can be constructed in parallel. The most well known such method
is Bagging ([8]). Used in conjunction with C4.5 ([66]) as the base learner, vast
improvements in performance over that of a single classifiers have been demonstrated
on a wide variety of application domains, e.g. in [16, 59, 66].

1.2 Motivation

A number of attempts have been made to explain the success of Bagging and to
analyze its performance theoretically. The most prominent such explanations are
the Margin explanation ([71]) and the Bias-Variance explanation ([24, 48, 51]).

While those analyses and others are proving useful to some extent in supplying qual-
itative explanations for the success of ensemble learning methods, they still fail to
provide accurate, quantitative diagnostic techniques for practical predictive analysis
of ensemble performance ([18, 24, 40]). As a result, the design of ensemble learning
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algorithms is – much like the design methods for classifier learning algorithms in
general – still rather ad-hoc in nature.

In particular, although Bagging is by far the most popular sampling scheme for
the training of ensembles with equally weighted classifier votes, to our knowledge
nobody has yet stated concisely if and/or under which exact conditions Bagging can
be shown to be the optimal sampling scheme for a given base learner. From the
no-free-lunch theorems ([78, 79]) follows directly that there must exist situations
in which standard Bagging is outperformed by other sampling schemes in terms of
predictive performance – the question is just whether or not these situations arise
frequently in practice.

Indeed, our experiments will show that Bagging can in fact be outperformed fre-
quently not just in theory but also in practice by some simple variations of the
sampling scheme, such as varying the bag size, or sampling without replacement
instead of sampling with replacement.

Such variations often have the additional advantage of reducing the time needed
to learn an ensemble. The speed advantages come mainly in two forms: First,
the number of examples that is passed to the base learner in each iteration may
sometimes be substantially reduced while maintaining or even increasing ensemble
performance, and most base learning algorithms have a linear time complexity in
terms of the number of training examples. Second, the performance of the ensemble
as new classifiers are added may increase faster for some sampling schemes than for
others, therefore less classifiers may have to be learned in order to achieve the same
or even better performance than standard Bagging.

This opens the question of whether certain sampling schemes are performing uni-
formly better than others in certain situations, and if so, how one can recognize these
situations without actually running all the different ensemble learning algorithms.
To this end, we examine ensemble analysis methods currently in use, and find them
unsuited to the task of predictive ensemble performance analysis.

It is commonly assumed that a good classifier ensemble is one whose members are
both accurate and diverse, i.e., that member accuracy and diversity constitute nec-
essary and sufficient conditions for an ensemble to obtain a low expected loss (e.g.
[3, 17, 60, 65, 70]). However, member accuracy and diversity are quite contradictory
goals: In order for the member classifiers to be diverse, they have to make mistakes.
And if the member models are all accurate, their predictions will agree with each
other.

Clearly, there is a trade-off one has to make when learning an ensemble of models:
Compared to learning a single model, we will have to sacrifice some of its accuracy
and instead generate a set of models which are somewhat less accurate on average
but are diverse.

This poses a dilemma when designing or choosing an ensemble method for a given
problem at hand: If we have a choice between several ensemble generation methods,
should we choose one that generates very accurate and consequently highly corre-

2



lated models, or should we instead go for the one generating less accurate but more
diverse models? How much accuracy should we sacrifice in order to gain how much
diversity?

This trade-off is not yet well understood. While there is an abundance of empirical
studies comparing various ensemble generation mechanisms on numerous learning
problems, theoretical research in this area has been rather scarce. One of the reasons
for this is the lack of a well-defined, universal, and quantitative definition of what
exactly it means for a set of models to be diverse. Different measures of diversity
are used for different loss functions and by different authors, e.g. in [18, 53, 64].
Accordingly, no unifying theory for analyzing the exact dependencies of the ensemble
performance on the accuracy and diversity of its members exists ([43, 69]).

Here, we propose a new definition for the diversity of ensemble members on a given
input. This definition can be applied no matter which loss function is in use. This
is similar in spirit to recent attempts by several authors to find a unifying definition
for classifier bias and variance ([9, 24, 48]). However, that research is concerned with
the analysis of the expected loss of a single classifier over different training samples,
while we are interested in the expected performance of ensembles of classifiers.

1.3 Scientific Contributions

The main scientific contributions of this thesis can be summarized as follows:

1. We perform an empirical comparison of different resampling ensemble learning
methods. Our experimental results include error curves as well as κ-Error
Diagrams, bias-variance decompositions, and cumulative margin distributions.
Several years of computing time and over ten million induced base classifiers
make this, to our knowledge, the most extensive such study undertaken to-
date.

2. The experimental results provide motivation for additional research into re-
sampling ensemble learning methods, as well as into ensemble analysis method-
ology.

3. We introduce some novel resampling ensemble learning methods, which, in cer-
tain situations, may outperform “standard” Bagging both in terms of ensemble
accuracy and in terms of running time.

4. We provide novel, unified definitions of what it means for a set of classifiers
to be accurate and diverse. These definitions have the desirable property that
they are applicable to a large class of ensembles and under any given loss
function, thus providing a unifying framework for the analysis of ensemble
learning methods.
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5. For the case of squared loss, we generalize the standard loss decomposition
for ensembles employing sum vote to the case where each classifier returns a
probability distribution over R.

6. For the case of 0-1 loss, we derive the exact quantitative relationships between
expected ensemble loss, ensemble member accuracy, and diversity. The exami-
nation of those relationships allows valuable and sometimes surprising insights
into ensemble behavior and performance.

7. We show that, under 0-1 loss, member accuracy and diversity are necessary
conditions for an ensemble to outperform the base classifier but not – as gen-
erally thought – sufficient ones. This explains some unexpected experimental
results which show that ensembles may under certain conditions perform worse
than all of its members.

8. We demonstrate how the loss decomposition can be used to reduce the number
of ensemble methods which have to be tried out experimentally by a practi-
tioner who is faced with the problem of finding the best ensemble for a given
particular prediction problem.

9. All of the above combine to further the general understanding of ensemble
behavior and performance.

1.4 Organization

The rest of this thesis is organized as follows:

In Chapter 2 we formally present the problem and the ensemble learning methods
under consideration, going from the more general to the more specific. We start by
formalizing our notion of predictors, predictor inducers, and how their performance
is measured (Section 2.1 and Section 2.2). We then provide a simple taxonomy of
ensemble learning methods (Section 2.3) and present the algorithms for the resam-
pling schemes Bagging and Cragging (Section 2.4). We also briefly examine the
relationship of our work to research on Bayesian Model Averaging (Section 2.5).

Chapter 3 presents a discussion of the accuracy vs. diversity trade-off for ensem-
bles, and ultimately provides the motivation for the introduction of our unified loss
decomposition framework.

In Chapter 4 we compare the performance of Bagging and Cragging on a set of
UCI benchmark datasets, and analyze the results using various conventional anal-
ysis methods. We conclude that those methods are not well suited for the task of
predictive performance analysis.

Chapter 5 presents a theoretical analysis of ensemble performance in terms of mem-
ber accuracy and diversity. We present our unified loss definitions of mean member
loss and diversity, and propose a unified decomposition of the ensemble loss as a
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function of mean member loss and ensemble diversity (Section 5.2). We show that
the commonly used decomposition under squared loss is but a special case of our
unified decomposition, and extend this decomposition to the case where the member
classifiers return a probability distribution over R (Section 5.3). We then instanti-
ate the unified decomposition for 0-1 loss, for two-class problems (Section 5.4.1) as
well as for multi-class problems (Section 5.4.2). These instantiations give the exact
quantitative relationships between the loss of the ensemble and the diversity and
average loss of its individual members. We discuss these relationships and analyze
some of their implications (Section 5.4.3). We also derive upper and lower bounds on
the expected ensemble loss that hold for a wide class of loss functions (Section 5.5).

In Chapter 6, we turn our attention back to the narrower problem of analyzing the
performance of Bagging and Cragging resampling schemes. We show how the loss
decomposition helps in predicting ensemble performance, and experimentally verify
some issues that arose from the theoretical analysis.

Chapter 7 concludes by summarizing our main results and discussing directions for
future work.
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2. Problem Description

We consider the standard problem of off-line (”batch”), supervised learning in noisy
environments, also commonly referred to as classification or regression. We formally
describe the problem setting in the following section.

2.1 Classification and Regression

A learner is given a finite sample S = 〈s1 = 〈x1, y1〉 , . . . , sm = 〈xm, ym〉〉 of randomly
drawn instances. Each instance si is a pair 〈xi, yi〉, where xi is called the input,
and yi is called the outcome. The set of all possible inputs is called input space
and denoted by X, while the set of all possible outcomes is called outcome space
and denoted by Y . The instances are generated according to a stationary joint
probability distribution P (X, Y ) on X × Y , the nature of which is unknown to the
learner.

After examining the sample S, the learner is required to produce a classifier C. A
classifier is a function C : X → Ŷ that maps each input x ∈ X to some prediction
ŷ := C(x). This classifier produced by the learner will then receive further random
instances from the same joint distribution P (X, Y ). For each instance 〈x, y〉, the
classifier will be shown only the input x, and will be asked to choose a prediction
ŷ(x) from some set of possible predictions Ŷ .

The process of producing a classifier from a sample is known as inducing or training,
while the process of showing further instances to the induced classifier is called eval-
uation or testing. The pseudo-code procedures for training and evaluating classifiers
are shown in Figure 2.1 and Figure 2.2. Note that training sample and test sample
are not sets in the strict mathematical sense of the word, but rather multi-sets, since
they can contain any given pair 〈x, y〉 more than one time.

Throughout this thesis, we will use the shorthand notation ŷC(x) to denote the
prediction ŷ produced by the classifier C for input x, or just ŷ(x) if the classifier C
is clear from the context. The outcomes y are assumed to be causally independent
of the predictions ŷ(x). The set of all possible predictions ŷ that a given classifier
C can make is called prediction space and denoted by ŶC , or just Ŷ if the classifier
C is clear from the context.

In general, for the theoretical results in Chapter 3 and Chapter 5 to be applicable,
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X, Y , and Ŷ may be arbitrary sets. To simplify the discussion, however, we restrict
ourselves to problems for which the inputs xi ∈ X can be represented as ordered
vectors of attribute values, and the outcomes yi are either discrete-valued (Y =
{Y1, Y2, . . . , Y|Y |}) or real-valued (Y ⊆ R). In principle, each attribute represents a
measurement of some instance property common to all instances. Throughout this
thesis, the inputs xi ∈ X are vectors of the form 〈xi1, xi2, . . . , xin〉 for some fixed
n ∈ N+. The components xij ∈ Xj are called the attribute values of xi. Attributes
are called discrete-valued iff their values are drawn from a finite set of symbols
Xj = {Xj1, Xj2, . . . , Xj|Xj |}. They are called real-valued iff Xj ⊆ R.

We consider two common types of classifiers: value classifiers, for which the predic-
tion space Ŷ is the same as the outcome space Y , and distribution classifiers, which
output a probability distribution over the outcome space.

Definition 2.1. A value classifier is a function that maps an input x ∈ X to an
outcome y ∈ Y .

Definition 2.2. A distribution classifier is a function that maps an input x ∈ X to
a probability distribution P̂ (Y |x) over the outcome space Y .

For distribution classifiers, the prediction space Ŷ is the set of all probability distri-
butions {P̂ (Y )} on the outcome space Y . For any y ∈ Y , p̂(y|x) reflects the degree
of the classifiers internal belief that the true outcome for input x is y. We will
call the the classifiers’ outputs p̂(y|x) beliefs, and the P̂ (Y |x) belief distributions –
this is to avoid confusion with the conditional probability distributions P (Y |x) on
the instance space, as well as to emphasize the fact that the p̂(y|x) are subjective
probability values and not necessarily frequentist ones.

2.2 Loss Functions

The performance of classifiers (and therefore implicitly the learners that produced
those classifiers) is assessed using loss functions.

Definition 2.3. A loss function is a function l : Ŷ × Y → R that maps each pair
〈ŷ, y〉 ∈ Ŷ × Y to a real number l(ŷ, y) ∈ R.

The loss l(ŷ, y) is interpreted as the cost of making the prediction ŷ when the true
value is y. The goal of a learner is to output a classifier with the smallest possible
expected loss L = EP (X,Y ) [l(ŷ, y)] according to some given loss function, i.e., a model
that minimizes the average loss l(ŷ(x), y) over instances drawn independently from
X × Y according to P (X, Y ). Commonly used loss functions for value classifiers
include:

• square loss
l2(ŷ, y) := (ŷ − y)2 (2.1)
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PROCEDURE LEARN (X, Y , P , m, z, l)
INPUT:

X is the input space
Y is the output space
Ŷ is the prediction space
P is a stationary joint probability distribution over X× Y
m is the training set size
z is the test set size
l is a loss function l : Ŷ × Y → R
J is a classifier inducer J : (X × Y )|S| × {l : Ŷ × Y → R} → {C : X → Ŷ }

OUTPUT:
classifier C is a classifier C : X → Ŷ
L is the average loss of C

BEGIN
training sample train := SAMPLE (X, Y , P , m)
classifier C := TRAIN (J , train, l)
test sample test := SAMPLE (X, Y , P , z)
average loss L := EVALUATE (C, test , l)

END
RETURN 〈C, L〉

Figure 2.1: Pseudo-code procedure LEARN.

• absolute loss
l‖(ŷ, y) := |ŷ − y| (2.2)

• zero-one loss

l01(ŷ, y) :=

{
0 iff ŷ = y
1 iff ŷ 6= y

(2.3)

Square loss or absolute loss are usually applied whenever Ŷ = Y = R, whereas zero-
one loss is predominant on problems where Y is some finite set of discrete symbols
(Y := {y1, . . . , yk}), and Ŷ = Y .

Although very common, the use of value classifiers has some serious drawbacks. For
example, the decision maker has no indication of how much confidence the classifier
has in its prediction. It does not even allow the classifier to refrain from making a
prediction if it is not sure of the correct label. Also, some types of mistakes may be
more costly than other types of mistakes. In database marketing, for example, the
cost of mailing a letter to a non-respondent is very small, but the cost of not mailing
to a respondent is the entire profit lost ([22]). While such non-uniform error costs
can be measured using loss functions, the above definition does not allow them to
be taken into account explicitly when making a prediction. Furthermore, there is no
possibility of dealing with changing loss functions: should the loss function change –
for example, if the average cost of mailing a letter changes with the total number of
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PROCEDURE SAMPLE (X, Y , P , s)
INPUT:

X is the input space
Y is the output space
P is the joint probability distribution of X × Y
s is the sample size

OUTPUT:
i.i.d.sample S

BEGIN
FOR EACH i in {1, . . . , s}

draw instance 〈xi, yi〉 at random from X × Y according to P
END FOR
S := 〈〈x1, y1〉 , 〈x2, y2〉 , . . . , 〈xs, ys〉〉
RETURN S

END

PROCEDURE TRAIN (J , S, l)
INPUT:

J is a classifier inducer J : {(X × Y )|S|}×{l : Ŷ × Y → R} → {C : X → Ŷ }
S is the training sample
l is a loss function l : Ŷ × Y → R

OUTPUT: classifier C
BEGIN

C := J(S, l)
RETURN C

END

PROCEDURE EVALUATE (C, S, l)
INPUT:

C is a classifier C : X → Ŷ
S is the test sample
l is a loss function l : Ŷ × Y → R

OUTPUT: average loss L ∈ R
BEGIN

L := 0
FOR EACH 〈x, y〉 ∈ S

prediction ŷ := C(x)
L := L + l(ŷ, y)

END FOR
L := L/ |S|
RETURN L

END

Figure 2.2: Pseudo-code procedures SAMPLE, TRAIN, and TEST.
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letters sent, or the expected profit per customer changes over time – the only option
for dealing with the change is to learn a new classier from scratch.

Distribution classifiers, rather than producing a prediction ŷ(x) directly, output
a belief distribution P̂ (Y |x) over the outcome space instead. In principle, more
sophisticated loss functions are possible for distribution classifiers, and the problem
of finding an optimal distribution classier for a given domain is reducible to finding
an optimal approximation P̂ (Y |X) for the probability distribution P (Y |X) on the
outcome space, conditioned on the input space.

In practice, however, the performance of distribution classifiers is usually evaluated
as follows:

Given a belief distribution P̂ (Y |x) and assuming the expected error costs l(ŷ, y) are
known, the Bayes optimal prediction to make is then the one that minimizes the
conditional risk ([22]):

R(ŷ|x) :=
∫

y∈Y
p̂(y|x)l(ŷ, y) dy (2.4)

The conditional risk R(ŷ|x) is the expected loss of making the prediction ŷ for input
x. The Bayes optimal prediction is guaranteed to achieve the lowest possible overall
expected loss over all possible instances 〈x, y〉, weighted by their probabilities of
occurrence p(〈x, y〉).

Thus, finding a prediction ŷ when presented with a belief distribution P̂ (Y |x) is
straightforward, and the loss functions applicable to value classifiers can also be
used for distribution classifiers.

2.3 Ensembles

An ensemble of classifiers is a set of classifiers whose individual predictions are
combined in some way to arrive at predictions for previously unseen instances ([18]).
That means that all ensembles are also classifiers according to either Definition 2.1
or Definition 2.2.

Many techniques for constructing ensembles of classifiers have been developed. As
shown in Figure 2.3, ensemble techniques can be divided into categories, according to
how the predictions of the individual member classifiers are combined into the final
ensemble prediction, and according to how the member classifiers are generated.

At the prediction level, we distinguish between single-stage combination methods
and multi-stage combination methods. In single-stage methods, all the individual
member predictions can (in principle) be computed in parallel from the input x, and
are then combined into the final ensemble prediction in one single step.

Common examples of single-stage combination methods are weighted or unweighted
majority voting (e.g. [3, 63, 76]), confidence averaging (e.g. [27, 64, 74]), rank
aggregation ([15, 28, 62]), and gating networks (e.g. [44, 45, 47, 72]). Bagging ([8])
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Figure 2.3: A taxonomy of ensemble learning methods.

and Boosting ([29, 72]) are examples of well-known ensemble learning methods using
single-stage combination methods.

A single-stage voting ensemble can be fully characterized by specifying a set of
member classifiers and a method of combining the (possibly weighted) individual
member predictions into a final ensemble prediction.

Definition 2.4. A (single stage) voting ensemble C with input space X and predic-
tion space Ŷ is a tuple C := 〈n, c,w, V 〉, where

• n ∈ N+ is the number of component classifiers,
• c := 〈c1, c2, . . . , cn〉 is an ordered tuple of classifiers ci : X → Ŷi,
• w := 〈w1, w2, . . . , wn〉 is a real-valued weight vector such that

∑n
c=1 wc = 1,

and
• V is a voting function V : Ŷ1×· · ·×Ŷn×R1×· · ·×Rn → Ŷ which maps tuples
of member classifiers’ predictions ŷc and classifiers’ weights wc into ensemble
predictions ŷ.

Definition 2.5. The ensemble prediction ŷ(x) of a (single-stage) voting ensemble
〈n, c,w, V 〉 for input x ∈ X is defined as

ŷ(x) := V (ŷ(x),w) (2.5)

where ŷ(x) = 〈ŷ1(x), . . . , ŷn(x)〉 is the vector of the individual member classifiers’
predictions given input x.
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Given an input x, first all the predictions of the member classifiers are computed,
which can be done in parallel. Usually all the member classifiers operate on the
same output space, which we will refer to as Ŷc.

The requirement that the number of component classifiers be finite or even countable
is not strictly necessary for the results in this thesis - it is just a concession in order
to obtain a more readable notation. The same holds true for the requirement that
the voting weights should always sum to 1.

Further on, we will frequently need to refer to the expected value of some variables,
where the expectation is taken over the set of weighted individual member classifiers.
To this end, we will use the notation EC [Ac] to refer to the expected value of variable
Ac, taken over all member classifiers c ∈ C according to the classifier weights wc.
For a finite ensemble C with n component classifiers this expectation is the weighted
average

EC [Ac] :=
n∑

c=1

wcAc (2.6)

In any case, the final ensemble prediction for single-stage voting ensembles is ob-
tained simply by combining the (possibly weighted) individual member predictions
via the voting function V .

Some examples of commonly used voting functions are:

• Sum Vote
For Y = Ŷ = Ŷc = R and l = l2:

Vsum(ŷ(x),w) := EC [ŷc(x)] =
n∑

c=1

wcŷc(x) (2.7)

For Y = Ŷ = R, Ŷc = {P (R)}, and l = l2:

Vsum(ŷ(x),w) :=
n∑

c=1

wc

∫

y′∈R
p̂c(y

′|x)y′ dy′ (2.8)

• Majority Vote
For Y = Ŷ = Ŷc = {Y1, . . . , Yk} and l = l01:

Vmaj(ŷ(x),w) := arg max
y′∈Y

n∑

c=1

wcI(ŷc(x) = y′) (2.9)

For Y = Ŷ = {Y1, . . . , Yk}, Ŷc = {P (Y )}, l = l01:

Vmaj(ŷ(x),w) := arg max
y′∈Y

n∑

c=1

wcI(arg max
y′′∈Y

p̂c(y
′′|x) = y′) (2.10)
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• Probabilistic Vote
For Y = Ŷ = {Y1, . . . , Yk}, Ŷc = {P (Y )} and l = l01:

Vprob(ŷ(x),w) := arg max
y′∈Y

n∑

c=1

wcp̂c(y
′|x) (2.11)

For Y = {Y1, . . . , Yk}, Ŷ = Ŷc = {P (Y )} and l = l01:

Vprob(ŷ(x),w) :=
〈
P̂ (Y |x)

〉
with p̂(y|x) :=

n∑

c=1

wcp̂c(y|x) (2.12)

The weight vector w = 〈w1, . . . , wn〉 is determined as part of the induction process.
The function I() denotes the the indicator function

I(a = b) :=

{
1 iff a = b
0 iff a 6= b

(2.13)

Many other voting functions are conceivable and have been investigated, see e.g.
[43], [63] or [73] for surveys.

In multi-stage methods, some of the member classifiers take as part of their input
the predictions of other member classifiers. Therefore, the prediction process is not
completely parallelizable. Popular multi-stage combination methods are for example
Cascading ([46]), Stacking ([80]), or Serial Combination ([55]).

The nature of multi-stage combination methods usually calls for ensemble induction
methods that also proceed in multiple stages: classifiers which take as part of their
input the predictions of classifiers in lower stages must usually be trained after the
construction of the earlier stage classifiers is already complete. For, single-stage
combination methods, however, we can distinguish ensemble techniques further by
whether or not the induction process can be parallelized. Parallelizable ensemble
induction methods include for example Bagging ([8]), MetaCost ([22]), ECOC ([19,
50]), Randomization ([16]), and Random Subspaces ([42]). Some popular ensemble
induction methods are not parallelizable: they proceed sequentially in iterations. In
each iteration, some member classifiers are constructed, and the output (classifiers,
weights, etc.) of previous iterations is needed in later iterations. Boosting ([29, 72]),
Arcing ([9]), and MCMC ([2, 32]) are examples of popular ensemble methods where
the voting process is parallelizable but the induction process is not.

Our theoretical results in Chapter 5 are independent of how the member classifiers
were generated – they are applicable to all single-stage prediction methods as defined
in Definition 2.4.

The experimental part of this thesis (Chapter 4 and Chapter 6) is concerned with
ensemble methods that generate member classifiers by running a particular learning
algorithm on different samples, which are generated from the original training sample
by some fixed sampling method. All the ensemble methods in our experiments fall
into the category of single-stage prediction, parallel induction.
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PROCEDURE BAGGING (J , S, l, r, s)
INPUT:

J is a classifier inducer
S is the training sample
l is a loss function l : Ŷ × Y → R
r is the desired number of iterations
s is the desired relative sample size

OUTPUT:
ensemble C with r member classifiers

BEGIN
FOR EACH i in {1, . . . , r}
Si := Bootstrap sample containing s ∗ |S| instances from S

(i.i.d.sample with replacement)
Ci := J(Si, l)

END FOR
C := 〈C1, C2, . . . , Cr〉
RETURN C

END

Figure 2.4: The Bagging algorithm.

2.4 Bagging and Cragging

There has recently been much interest in ensemble methods that generate multiple
member classifiers by running some fixed base learning algorithm multiple times on
different samples generated from the original training sample.

One of the most popular such ensemble methods is Bagging ([8]). Figure 2.4 shows
the outline of the Bagging algorithm. Given a training sample S and a classifier
inducer J , Bagging constructs an ensemble of r member classifiers by generating r
bootstrap samples (hence the name Bootstrap Aggregating) and running the clas-
sifier inducer on each of the r samples. Each bootstrap sample is generated by
sampling s ∗ |S| instances from the original training sample with replacement, for
some constant s ∈ R+. Note that in the original Bagging algorithm, each bootstrap
sample Si contains the same number of instances as the original training sample S.
In this thesis, the number of instances in each bootstrap sample is s ∗ |S|, where s
is a parameter to the Bagging algorithm. The standard behavior of |S| instances in
each bootstrap sample is obtained by setting s := 1.

The final ensemble classifier C is assembled from the r member classifiers by one
of the voting functions given in Section 2.3, with the voting weights all being equal
(wc := 1/r for all c ∈ C).

Significant performance improvements through Bagging have been demonstrated
empirically by many authors (e.g. [3, 16, 18, 68, 59]). However, the theoretical
findings related to Bagging (and other single-stage prediction ensembles, for that
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PROCEDURE CRAGGING (J , S, l, r, s)
INPUT:

J is a classifier inducer
S is the training sample
l is a loss function l : Ŷ × Y → R
r is the desired number of iterations
s is the desired number of cross-validation folds

OUTPUT:
ensemble C with r ∗ s member classifiers

BEGIN
FOR EACH i in {1, . . . , r}

randomly divide S into s equal-sized partitions S′
i,j

FOR EACH j in {1, . . . , s}
Si,j := S′

i,1 ∪ · · · ∪ S′
i,j−1 ∪ S′

i,j+1 ∪ · · · ∪ S′
i,s

C(i−1)∗s+j := J(Si,j, l)
END FOR

END FOR
C := {C1, C2, . . . , Cr∗s}
RETURN C

END

Figure 2.5: The Cragging algorithm.

matter) are still not complete: There have been different and sometimes contradic-
tory explanations as to when it works and why. In Chapter 4, we will investigate the
more popular of those explanations in detail. Specifically, nobody has yet been able
to show conclusively if, and under which precise conditions, for a given problem do-
main 〈X, Y, P 〉 and restrictions 〈l, |S|, n〉, Bagging is the optimal way of combining
n classifiers.

The relative sample size s of the bootstrap samples is one example – nobody has
proven yet that always setting s := 1 is the optimal thing to do in terms of expected
ensemble loss. This motivates the experimental studies carried out in Chapter 3 and
Chapter 4.

Another performance-influencing factor that we considered worth a closer look is
the actual sampling scheme. We could replace the sampling with replacement by
a sampling scheme without replacement. This leads to an ensemble method called
Cragging (as in Cross-validation Aggregating), which is shown in Figure 2.5. Crag-
ging divides the original training sample S into s approximately equal-sized, mutu-
ally exclusive partitions or folds {S′

1, . . . ,S
′
s}. The training sample for each member

classifier is then constructed by copying the original sample S, but leaving out one
of the s partitions. This whole partitioning process can be repeated r times, leading
to an ensemble consisting of a total of r ∗ s member classifiers.

As we will usually compare ensembles generated using the same base classifier in-
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ducer J (namely, C4.5) and under the same loss function l, we will simply use
Bagging(s; n) or B(s; n) to denote Bagging with n iterations and relative sample
size s (Bagging (J , S, l, r, s) with r := n), and we will use Cragging(f ; n) or
C (f ; n) to denote Cragging with n iterations and f partitions (Cragging (J , S, l, r,
s) with r := n and s := f) operating on some sample S where J , l, and S are clear
from the context. Note that B(s; n) generates an ensemble with n members, while
C (f ; n) generate ensembles consisting of n ∗ f members.

Ensembles constructed by Cragging are also sometimes called cross-validated com-
mittees ([18]). There have been some studies of Cragging in the literature ([52, 61]),
but those are inconclusive to say the least. Kohavi reports in [49], within the con-
text of estimating classifier accuracy that, under 0-1 loss, cross-validation results
in accuracy estimates with both lower bias and higher variance than accuracy es-
timates obtained using bootstrap samples. This leads us to suspect that Cragging
may actually produce ensembles whose member are more accurate and diverse than
those produced by Bagging – a hypothesis which we will investigate in Chapter 3.

2.5 Relationship to Bayesian Model Averaging

Bayesian Model Averaging (BMA) is a technique designed to help account for the
uncertainty inherent in the model induction process. By averaging over many dif-
ferent classifiers, BMA can incorporate uncertainties about the underlying problem
domain into the induction and prediction processes. As such, BMA can be inter-
preted as a single-stage voting ensemble technique, with the classifiers’ weights wc

corresponding to the posterior model probability given the observed training sample
S. Mathematically, the BMA rule can be written as

p̂(〈x, y〉 |S) :=
∑

c∈C

p(〈x, y〉 , S|c)p̂(c), (2.14)

where p̂(c) is the prior belief (prior to having observed any training data) that c
is the true model for the problem domain, and p(〈x, y〉 , S|c) is the probability of
observing the new instance 〈x, y〉 and the training sample S, given that c actually
is the true model ([57]).

It is well known that, when using a complete set of all candidate models, such that
exactly one candidate model actually is the true model, the BMA rule combined
with conditional risk minimization as in Equation 2.4 will lead to optimal predictors.
That is, no other prediction method operating with the same prior knowledge (as
manifested by the selection of candidate models c and prior model probabilities p̂(c))
can achieve lower expected loss on new instances.

Explicitly constructing such an ensemble of all candidate models (“Optimal BMA”)
is usually computationally infeasible, due to the sheer number of candidate models.
Optimal BMA is therefore commonly approximated by selecting the few candidate
models with the highest posterior probability and combining them into an ensemble
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(“Common BMA”). However, no equivalent optimality guarantees can be made for
Common BMA.

In fact, other single-stage voting ensemble methods can be interpreted as alternative
approximations of Optimal BMA, and have been shown to outperform Common
BMA under certain circumstances ([20, 23]).

Both BMA and our accuracy vs. diversity trade-off analysis provide two alternative
explanations for the performance of ensemble techniques. As is usually the case with
multiple analyses of any phenomena, these two analyses highlight different aspects
concerning the performance of ensemble techniques.

On one side, under the assumption that exactly one of the ensemble members con-
stitutes the true model for the given problem domain, Equation 2.14 can be used to
compute an optimal set of weights wc for the ensemble members, and the optimal-
ity guarantee implies the existence of optimal trade-off points for the accuracy vs.
diversity trade-off, which can even be quantitatively specified.

The above assumption is violated for all of the ensemble methods and prediction
problems studied in the experimental part of this thesis. However, it may certainly
be possible to use optimal BMA to arrive at meaningful conclusions about the loca-
tion of optimal trade-off points for simple base learners on simple artificial problem
domains.

One the other side, our work shows that Common BMA may not be the best approx-
imation to Optimal BMA. This is especially true in situations where Common BMA
selects models with high posterior probabilities which are very similar to each other.
It is entirely conceivable that choosing models with lower posterior probabilities but
higher diversity will result in better performing ensembles than those constructed
using Common BMA.

Thus, our work provides an alternative explanation for the outperformance of Com-
mon BMA by simple ensemble methods (such as e.g. Bagging) to the explanations
given in ([20, 57]).
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3. The Accuracy-Diversity

Trade-Off

Just as there can be no single best classifier in general ([21, 78, 79]), there can be no
single best ensemble method. The correct question is therefore usually not which
method is better, but rather under which conditions a certain method outperforms
another one or vice versa.

The prevailing wisdom is that a good classifier ensemble is one whose members are
both accurate and diverse (e.g. [3, 17, 60, 65, 70]). To see why accuracy and diver-
sity are good, consider an ensemble C := 〈n, c,w, V 〉, consisting of three equally-
weighted classifiers (n := 3, c := 〈c1, c2, c3〉, and w := 〈1/3, 1/3, 1/3〉), and any
test instance 〈x, y〉. On being presented with input x, the three models make the
predictions ŷ(x) = 〈ŷ1(x), ŷ2(x), ŷ3(x)〉.

If the three models are identical (not diverse), then whenever ŷ1(x) is incorrect,
ŷ2(x) and ŷ3(x) will also be incorrect, as will be the prediction of the ensemble
as a whole. If, however, the three models tend to make different predictions given
input x, then even though ŷ1(x) is incorrect, ŷ2(x) and ŷ3(x) may still be correct,
so that a majority vote of the three models c1, c2, and c3 will correctly predict
y. More precisely, if we had an ensemble consisting of n = 2k + 1 models whose
probabilities of making a mistake would all be equal to some probability p < 0.5
and whose mistakes would be independent of each other, the probability that the
majority vote of those classifiers would be wrong would follow the area under the
binomial distribution B2k+1(k; p), which rapidly approaches 0 with growing k.

Unfortunately, in real life the matter is not quite that simple. The mistakes of
the member models will never be completely independent of each other, unless the
predictions themselves are completely random (in which case the probability of a
mistake will not be less than 0.5 anymore). In fact, accuracy and diversity are quite
contradictory goals: In order for the member models to be diverse, they have to
make mistakes. And if the member models are all accurate, their predictions will
agree with each other.

Clearly, there is a trade-off one has to make when learning an ensemble of models:
Compared to learning a single model, we will have to sacrifice some of its accuracy
and instead generate a set of models which are somewhat less accurate on average
but are diverse.
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Within the neural network community, this trade-off has been formalized and quan-
tified for the case of square loss ([18, 39, 52]): Given an ensemble C consisting of
n member classifiers c1, c2, . . . , cn, the mean member loss is the opposite of mean
member accuracy, and is defined as

L2(x, y) := EC

[
(ŷc(x) − y)2

]
=

1

n

n∑

c=1

(ŷc(x) − y)2. (3.1)

The diversity among the ensemble members is measured by

D2(x) := EC

[
(ŷc(x) − ŷ(x))2

]
=

1

n

n∑

c=1

(ŷc(x) − ŷ(x))2. (3.2)

The ensemble loss, which is defined as

L2(x, y) := (ŷ(x) − y)2, (3.3)

can then be re-written as

L2(x, y) = L2(x, y) − D2(x), (3.4)

which very nicely expresses the trade-off between member accuracy and diversity in
a concise numerical form ([52]). From Equation 3.4 also follows that, under square
loss, accuracy and diversity are necessary and sufficient conditions for an ensemble
of classifiers to outperform any of its member classifiers.

It is commonly assumed that similar trade-offs apply to ensemble learning in general,
and that the necessity and sufficiency of member accuracy and diversity extend to
other loss functions as well ([3, 17, 65, 70]): For an ensemble of classifiers to be
useful, its member classifiers must disagree on some instances. Clearly, if all the
member predictions agree with each other on all instances, then there is no more
information to be gained from the ensemble then there is from just a single classifier.

Figure C.1 in Appendix C (pages 86–87) shows the error curves for Cragging(n; 1)
for each of the datasets tested, together with the expected loss for a single classifier
shown as horizontal lines (see Section 4.1 for a detailed description of the experimen-
tal methodology). Figure 3.1 on page 20 summarizes the results from Appendix C: it
shows the error curve obtained by averaging all the error curves shown in Figure C.1.

Remember that Cragging(n; 1) generates n classifiers by dividing the original train-
ing sample S into n disjoint partitions {S′

1, . . . ,S
′
n} and calling the base learner n

times, each time with a new training sample Si := S−S′
i that is generated from the

original training sample by leaving out the instances in partition S′
i. The 0-1 loss

of the resulting ensemble is shown on the y-axis, for the ensembles generated with
n := {2, . . . , 30}.

Each of the member classifiers is trained on |S|(1 − 1/n) instances, and any two
member classifiers of the same ensemble share all but |S|/n training instances. We
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Figure 3.1: Averaged error curves for Cragging(n; 1)

can expect therefore, generally, that small settings of n will result in ensembles of
low member accuracy (as the member classifiers get to see only a small fraction
of the original training sample) and high diversity (as the member classifiers are
trained with a higher fraction of disjoint instances), whereas higher settings of n
will result in ensembles of higher member accuracy and lower diversity. Looking
at Figure C.1 and Figure 3.1, one can see that, as we increase n, the ensemble
loss tends to first decrease and then increase again, with some domain-dependant
optimal setting for n resulting in a minimal loss in between. This supports the
notion of some accuracy-diversity tradeoff taking place.

Similar observations can be made when comparing the performance of ensembles
with the same number of member classifiers but generated using different sampling
schemes, as shown in Figure 3.2 on pages 21–23. All ensembles shown consist of
30 member classifiers, with the loss of a single base classifier shown for comparison
on the left. Recall that Bagging(s; n) works by generating n member classifiers
using n bootstrap samples of the original training sample S, each bootstrap sample
containing s ∗ |S| instances.

As we go from Bagging(0.5; 30) over Bagging(1; 30) on to Bagging(2; 30), we expect
the member classifiers to become more and more accurate (as the bootstrap samples
they are trained on contain a higher and higher proportion of the original training in-
stances) but less and less diverse (as the bootstrap samples for the different member
classifiers share a higher and higher proportion of instances).

Similar effects occur when we move from Cragging(2; 15) over Cragging(3; 10) to
Cragging(30; 1): member classifiers will become more and more accurate but less
and less diverse. Recall that Cragging(f ; n) generates n member classifiers in n/f
iterations, during each iteration partitioning the original training sample S into f
partitions and and then generating f member classifiers by leaving out one of the
partitions at a time.

So, what Figure 3.2 shows is that changes to member accuracy and diversity using
different methods but qualitatively in the same direction will result in similar qual-
itative changes to the ensemble loss, independent of how these changes in member
accuracy and diversity were caused. Again, this supports the hypothesis of member
accuracy and diversity being the main influencing factors with respect to expected
ensemble loss.
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Figure 3.2: Loss comparison for ensembles with 30 classifiers.
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Figure 3.2: Loss comparison for ensembles with 30 classifiers.
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Thus, in summary we find that the notion of a trade-off between member accuracy
and diversity in order to achieve minimal ensemble loss is not only nice and intuitive,
but also seems to hold up in practice. However, so far this is only guessing, and a
formal, quantitative analysis of the accuracy vs. diversity trade-off has been missing
so far for loss functions other than square loss. In Chapter 5 we will show that, for
the case of 0-1 loss, accuracy and diversity are indeed necessary conditions but by
themselves not sufficient ones.
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4. Current Ensemble Analysis

Methods

In Chapter 3 we presented a preliminary intuitive explanation for why ensembles
work. We have also seen (Figure 3.2) that “standard” Bagging can indeed frequently
be improved upon by varying the instance sampling scheme.

In this chapter we are going to examine some additional/alternative ensemble anal-
ysis methods together with their respective explanations of why and how ensembles
work.

4.1 Experimental Methodology

To evaluate the performance of the various sampling schemes, we selected 36 datasets
from the UCI dataset repository ([5]). The datasets where chosen without regard to
the result of the evaluation. Rather, we selected them based on their previous usage
in similar studies – for easier comparability of results – and on their easy availability.
The chosen datasets actually form a superset of the UCI datasets employed for the
comparison studies in [3, 16, 49, 59], and [66]. Table 4.1 on page 25 gives the
characteristics of the datasets. No other domains have been tested as part of this
study.

All the experimental results were obtained using 10 runs of 10-fold cross-validation,
resulting in a total of 100 runs for each dataset, ensemble method, and number
of component classifiers. The same random seed was used for each experiment,
ensemble method, and number of member classifiers, resulting in the same 100
training data samples to be passed to each ensemble method in each experiment,
thus ensuring direct comparability of results with respect to the different ensemble
methods and across experiments.

As base classifier inducer, we used J.48 in the Weka machine learning software
version 3.1.5 ([77]), which is the Weka implementation of C4.5 Release 8 ([66]) to
generate unpruned decision trees (”weka.classifiers.j48.J48 -- -U -B”). Mul-
tiple studies ([3, 8, 16]) have come to the conclusion that ensemble methods based
on data resampling work best with unpruned decision trees. This is attributed gen-
erally to the fact that unpruned decision trees are more “unstable”, i.e., they exhibit
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Dataset Description Instances Features Classes
cont. discr.

anneal Annealing 898 6 32 5
audiology Audiology 226 - 69 24
autos Auto Imports 205 15 10 6
balance Balance Scale 625 4 - 3
breastc Breast-Cancer 286 0 9 2
breastw Breast-Cancer Wisconsin 699 9 - 2
colic Horse-Colic 368 7 15 2
credita Australian Credit 690 6 9 2
creditg German Credit 1,000 7 13 2
diabetes Pima Diabetes 768 8 - 2
glass Glass Identification 214 9 - 6
heartc Cleveland Heart-Disease 303 6 7 2
hearth Hungarian Heart-Disease 294 6 7 2
hearts Switzerland Heart-Disease 123 6 7 5
heartv Virginia Heart-Disease 270 6 7 2
hepatitis Hepatitis 155 6 13 2
hypo Hypothyroid 3,772 7 22 4
ionosphere Ionosphere 351 34 - 2
iris Iris 150 4 - 3
krk King+Rook vs. King 28,050 - 6 18
krkp King+Rook vs. King+Pawn 3,196 - 36 2
labor Labor Contracts 57 8 8 2
letter Letter Recognition 20,000 16 - 26
lymph Lymphography 148 3 15 4
phoneme Phonemes 5,404 5 - 2
primary Primary Tumor 339 - 17 22
satimage Satellite Images 6,435 36 - 6
segment Image Segmentation 2,310 19 - 7
shuttle Shuttle 58,000 9 - 7
sick Thyroid Disease 3,772 7 22 2
sonar Sonar Signals 208 60 - 2
soybean Soybean 683 - 35 19
splice Splice-Junctions (DNA) 3,190 - 61 3
vehicle Vehicle Silhouettes 846 18 - 4
voting House Votes 435 - 16 2
waveform Waveform-5000 5,000 40 - 3

Table 4.1: Datasets used in the experiments.
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a greater statistical variance than pruned ones ([8, 51], see also Section 4.5).

Where error bars are shown or standard deviations are reported, these reflect one
standard deviation taken over the ten runs, after averaging the ten cross-validation
results for each run separately – as recommended e.g. in [7, 49]. Ensembles consist
of up to 30 member classifiers, as several studies (e.g. [59, 66]) have shown that
most of the performance gains occur with combining the first few classifiers (see also
Section 4.2).

Several of the experiments described in the remainder of this chapter produce esti-
mates of the expected ensemble performance by repeatedly measuring the ensemble
loss on some data subsamples. To ensure that all the experimental results reported
are indeed correct and consistent with each other, we compare the ensemble loss
estimates obtained from different experiments with each other in Appendix J.

4.2 Error Curves

One of the simplest approaches to analyzing ensemble performance is to actually
check how the ensemble loss behaves as more and more member classifiers are added
to the ensemble. Figure 4.1 on pages 26–31 shows the error curves for Bagging
with different relative sample sizes, namely Bagging(0.5; n), Bagging(1; n) (“normal”
Bagging), and Bagging(2; n), while Figure 4.2 on pages 32–36 shows the error curves
for Cragging(2; n) and Cragging(3; n) versus Bagging(1; n). The horizontal lines
show the mean and standard deviation of the 0-1 loss for a single base classifier.

— B(0.5;n) — B(1;n) — B(2;n) — B(1;n) — B(2;n) — B(0.5;n)
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Figure 4.1: Error curves for B(0.5; n) versus B(1; n), B(2; n) versus
B(1; n), and B(2; n) versus B(0.5; n).
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Figure 4.1: Error curves for B(0.5; n) versus B(1; n), B(2; n) versus
B(1; n), and B(2; n) versus B(0.5; n).
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Figure 4.1: Error curves for B(0.5; n) versus B(1; n), B(2; n) versus
B(1; n), and B(2; n) versus B(0.5; n).
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Figure 4.1: Error curves for B(0.5; n) versus B(1; n), B(2; n) versus
B(1; n), and B(2; n) versus B(0.5; n).
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Figure 4.1: Error curves for B(0.5; n) versus B(1; n), B(2; n) versus
B(1; n), and B(2; n) versus B(0.5; n).
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Figure 4.1: Error curves for B(0.5; n) versus B(1; n), B(2; n) versus
B(1; n), and B(2; n) versus B(0.5; n).

From a “well-behaved” ensemble one would expect the ensemble loss to decrease as
the ensemble size increases – we have already seen in Figure C.1 on pages 86–87
that Cragging(n; 1) is not a “well-behaved” ensemble method in this sense. This
can be attributed to the fact that, with increasing n, the expected accuracy of the
member classifiers will increase but the diversity will decrease, and the increase in
member accuracy may not be enough to make up for the decrease in diversity. All
the other ensemble methods described here are “well-behaved” in the sense that
the expected ensemble loss tends to continue to decrease with increasing number of
member classifiers. Intuitively and unlike for Cragging(n; 1), for both Bagging(s; n)
and Cragging(f ; n), member accuracy and diversity are dependent only on the rel-
ative size s or the number of sample partitions f , but not the number of iterations
n.

Figure 4.1 and Figure 4.2 also show that the loss limit is usually reached with only a
relatively small number – sometimes as few as 5 – member classifiers. This confirms
previous results from e.g. [59] and [66].

Contrary to common beliefs, “normal” Bagging (Bagging(1; n)) does not always
perform better than a single base classifier: it is sometimes clearly outperformed by
a single decision tree, e.g. on the datasets anneal, krkp (although not significantly),
and splice in Figure 4.1 – this can also be seen in Figure 3.2 on pages 21–23.

It can also be seen in Figure 4.1 and Figure 4.2 that Bagging(1; n), the “nor-
mal” Bagging, is indeed frequently outperformed by either Bagging(0.5; n) (bal-
ance, breastc, credita, heartc, hearth, heartv, labor, primary), Bagging(2; n) (an-
neal, autos, breastc, krk, krkp, phoneme, segment, shuttle, sick, splice, vehicle),
Cragging(2; n) (balance, breastc, credita, heartc, hearth, heartv, iris, labor, pri-
mary, splice, voting), or Cragging(3; n) (anneal, autos, colic, krk, krkp, primary,
segment, sonar, splice). Either the outperforming ensemble method has a lower en-
semble loss limit as the number of component classifiers grows, or the loss limit is
the same as that of Bagging(1; n) but the outperforming method reaches that limit
faster, that is, with a smaller number of component classifiers (see also Figure 3.2
on pages 21–23, which shows a direct loss comparison of ensembles with 30 member
classifiers).
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Figure 4.2: Error curves for C (2; n) and C (3; n) versus B(1; n).
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Figure 4.2: Error curves for C (2; n) and C (3; n) versus B(1; n).
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Figure 4.2: Error curves for C (2; n) and C (3; n) versus B(1; n).
(continued on next page)

34



— C (2;n) — B(1;n) — C (3;n) — B(1;n) — C (2;n) — C (3;n)

phoneme

0 5 10 15 20 25 30

10
12

14
16

0 5 10 15 20 25 30

10
12

14
16

0 5 10 15 20 25 30

10
12

14
16

primary

0 5 10 15 20 25 30

58
60

62
64

66
68

0 5 10 15 20 25 30

58
60

62
64

66
68

0 5 10 15 20 25 30

58
60

62
64

66
68

satimage

0 5 10 15 20 25 30

10
12

14
16

0 5 10 15 20 25 30

10
12

14
16

0 5 10 15 20 25 30

10
12

14
16

segment

0 5 10 15 20 25 30

2
3

4
5

0 5 10 15 20 25 30

2
3

4
5

0 5 10 15 20 25 30
2

3
4

5

shuttle

0 5 10 15 20 25 30

0.
02

0.
04

0.
06

0 5 10 15 20 25 30

0.
02

0.
04

0.
06

0 5 10 15 20 25 30

0.
02

0.
04

0.
06

sick

0 5 10 15 20 25 30

1.
0

1.
4

1.
8

0 5 10 15 20 25 30

1.
0

1.
4

1.
8

0 5 10 15 20 25 30

1.
0

1.
4

1.
8

sonar

0 5 10 15 20 25 30

20
25

30

0 5 10 15 20 25 30

20
25

30

0 5 10 15 20 25 30

20
25

30

soybean

0 5 10 15 20 25 30

8
10

12
14

16

0 5 10 15 20 25 30

8
10

12
14

16

0 5 10 15 20 25 30

8
10

12
14

16

Figure 4.2: Error curves for C (2; n) and C (3; n) versus B(1; n).
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Figure 4.2: Error curves for C (2; n) and C (3; n) versus B(1; n).

These observations from Figure 4.1 and Figure 4.2 are summarized in Table 4.2.
For each dataset, a “Y” is shown in those columns where the corresponding en-
semble learning method has a lower loss limit than that of “normal” Bagging
(Bagging(1; n)), and a “y” is shown where the corresponding ensemble learning
method has approximately the same loss limit as “normal” Bagging, but reaches
that limit using a smaller number of component classifiers. Overall, Bagging(1; n)
is outperformed by another sampling method on 23 out of the 36 datasets tested.
Hence, it may be beneficial to also try sampling methods other than “standard”
Bagging when constructing classifier ensembles.

Another interesting observation from Table 4.2 is that the relative ensemble per-
formances seem to be correlated to each other. Cragging(2; n/2) tends to out-
perform Bagging(1; n) whenever Bagging(0.5; n) outperforms Bagging(1; n), and
vice versa. Similarly, although less pronounced, Cragging(3; n/3) tends to out-
perform Bagging(1; n) whenever Bagging(2; n) outperforms Bagging(1; n), and vice
versa. Furthermore, both Cragging(2; n/2) and Bagging(0.5; n) tend to outper-
form Bagging(1; n) whenever Cragging(3; n/3) and Bagging(2; n) do not outperform
Bagging(1; n), and vice versa. Intuitively, both Bagging(0.5; n) and Cragging(2; n/2)
produce ensembles with smaller member accuracy and higher diversity than those
produced by Bagging(1; n), while both Bagging(2; n) and Cragging(3; n/3) produce
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Dataset B(0.5; n) B(2; n) C (2; n/2) C (3; n/3)
anneal Y Y
audiology
autos Y y
balance Y Y
breastc Y y Y
breastw
colic Y
credita Y y
creditg
diabetes
glass
heartc Y Y
hearth Y y
hearts
heartv Y Y
hepatitis
hypo
ionosphere
iris Y
krk Y y
krkp Y y
labor Y y
letter
lymph
phoneme Y
primary Y Y y
satimage
segment y y
shuttle y
sick Y
sonar y
soybean
splice Y Y Y
vehicle y
voting Y y
waveform Y

Table 4.2: Ensemble loss comparison summary. A “Y” is shown in those columns
where the corresponding ensemble learning method has a lower loss limit
than that of “normal” Bagging (Bagging(1; n)). A “y” is shown wherever
the corresponding ensemble learning method has approximately the same
loss limit as “normal” Bagging, but reaches that limit using a smaller
number of component classifiers.
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ensembles with higher member accuracy but lower diversity than those produced by
Bagging(1; n). Added to the results presented in Chapter 3, this lends further cred-
ibility to the hypothesis that mean member accuracy and diversity are the major
influencing factors with regard to expected ensemble loss.

Even if two ensemble methods perform the same in terms of expected ensem-
ble loss, it may still be advantageous to choose one over the other for computa-
tional reasons. For example, the data subsamples obtained using Cragging(2; n/2)
or Bagging(0.5; n) contain only half the number of instances compared to that of
Bagging(1; n). Since most base classifiers have a time complexity at least linear in
terms of the number of training instances, smaller subsamples will result in shorter
run times for the ensemble learning process. When using decision tree algorithms
as base learners, an additional benefit of using smaller data subsamples is that the
resulting member classifiers will be decision trees with fewer nodes ([58]), which
may result in better understandability of the learned ensemble, as well as faster
classification of new instances.

4.3 κ-Error Diagrams

One method frequently used to analyze ensemble behavior are κ-Error Diagrams
([56]). The κ-Error Diagram is a scatterplot where each point corresponds to a pair
of member classifiers. The x-coordinate of the point is the value of the kappa-statistic
(κ), which is a statistical measure of agreement between two value classifiers. The
y-coordinate of the point is the average 0-1 loss (error) for the two classifiers making
up the pair. Hence, the points at the lower right of the κ-Error Diagram represent
pairs of classifiers that are very accurate but also very similar to each other. The
points at the upper left represent pairs of classifiers that are less accurate, but also
less similar to each other. Points near the origin represent pairs of classifiers which
exhibit the desirable properties of accuracy and diversity. Thus, κ-Error Diagrams
can help visualize the accuracy and diversity of the individual classifiers making up
an ensemble.

The κ statistic is computed as follows ([14, 56]). Given a discrete-valued outcome
space Y with k possible outcomes, a data sample S = 〈〈x1, y1〉 , 〈x2, y2〉 , . . . , 〈xm, ym〉〉
with yi ∈ Y for i ∈ {1, . . . , m}, and two value classifiers c1 and c2 whose predic-
tion spaces are equal to the outcome space (Ŷc1 = Ŷc2 = Y = {Y1, Y2, . . . , Yk}),
let K be a k × k matrix such that Kij contains the number of instances in S

that are classified as yi by the first classifier and as yj by the second classifier
(Kij := |{〈x, y〉 ∈ S|ŷc1(x) = yi ∧ ŷc2(x) = yj}|). Let

Ω1 :=

∑k
i=1 Kii

m
(4.1)

and
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Ω2 :=
k∑

i=1




k∑

j=1

Kij

m

k∑

j=1

Kji

m


 (4.2)

Then, the κ statistic is defined as

κ :=
Ω1 − Ω2

1 − Ω2

(4.3)

Ω1 simply is an estimate of the probability p(ŷc1(x) = ŷc2(x)) that the two classifiers
c1 and c2 agree with each other, while Ω2 estimates the probability that c1 and c2

agree by chance. In problem domains with some outcomes occurring much more
often than others, all reasonable classifiers would tend to agree with each other,
thus all pairs of classifiers would obtain high values of Ω1. Therefore, rather than
using Ω1 as a measure of agreement directly, the κ statistic corrects for this by also
taking into account the probability that the two classifiers agree with each other
simply by chance, given the observed counts Kij.

The kappa statistic κ = 1 when the two classifiers agree on every example, and
κ = 0 when the rate of agreement equals that expected by chance. Negative values
of κ signify systematic disagreement between c1 and c2, that is, less agreement than
that which would be expected by chance.

Appendix D contains the κ-Error Diagrams for ensembles with 30 member classi-
fiers. Figure D.1 on pages 88–95 shows the κ-Error Diagrams for Bagging(0.5; 30),
Bagging(1; 30), and Bagging(2; 30). Figure D.2 on pages 95–102 shows the κ-Error
Diagrams for Cragging(2; 15), Cragging(3; 10), and Cragging(30; 1).

When comparing the κ-Error Diagrams in Figure D.1 for any given dataset, one can
see that the pairwise average loss of the member classifiers decreases when going from
Bagging(0.5; 30) over Bagging(1; 30) to Bagging(2; 30), while the classifier agreement
– as measured by the κ statistic – increases. Similarly, one can see from Figure D.2
that pairwise average member loss decreases while classifier agreement increases
when going from Cragging(2; 15) over Cragging(3; 10) to Cragging(30; 1). These
results confirm our expectations from Chapter 3 regarding the behavior of member
accuracy and diversity with respect to the different ensemble learning methods.

One can also see that component classifiers of the Cragging(30; 1) ensembles are
always more accurate but also less diverse that those of any other ensemble method.
This does not come as a surprise either, as any two member classifiers share more
than 96 percent of their training samples (see also Chapter 3).

While κ-Error Diagrams are useful for visualizing a given classifier ensemble, they
have some handicaps which seriously limit their applicability to the task of predictive
ensemble performance analysis as outlined in Section 1.2, that is, to be able to tell
which ensemble learning method will perform well on a given problem domain,
without actually having to go through the whole ensemble training process.

First, the κ statistic is defined only for value classifiers (that is, for classifiers whose
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Figure 4.3: κ-Error Diagram summary – mean pairwise errors versus ensemble losses.

prediction space equals the outcome space) and as such is not applicable e.g. to
voting functions other than democratic voting, or when the classifiers output a
probability distribution over the outcome space. Moreover, application of κ-Error
Diagrams is limited to problem domains where the outcome space is discrete-valued,
as the κ statistic is defined only for such outcome spaces. Even if we were to restrict
ourselves to domains with discrete-valued outcomes and to ensembles with demo-
cratic voting only, the use of κ-Error Diagrams for ensemble performance analysis
only makes sense under 0-1 loss as a loss function. This is a rather serious limi-
tation, as we frequently encounter problems where some mistakes are much more
costly than others ([22]).

Second, κ-Error Diagrams provide little understanding of how the ensemble perfor-
mance and the problem domain interact ([4]). For example, they don’t provide an-
swers to questions such as “On which types of examples does the ensemble perform
well?”, “On which types of examples are the member classifiers most/least accu-
rate/diverse?”, or “On which type of problem can I expect my ensemble learning
method to perform well?”. This restriction stems from the fact that the κ statistic
and the average pairwise error are summary measures across the whole data sample,
and is perhaps an inherent one when visualizing an ensemble of classifiers in a single
graphic.

Finally, and perhaps most importantly given our goal of choosing a sampling method
when presented with a problem domain or data sample, the κ value is a statistical
measure of how significant the agreement between two classifiers is given the ob-
served prediction counts, and as such inherently dependent on the distribution of
outcomes in the data sample S. This makes comparison of κ-Error Diagrams across
domains very difficult if not impossible.

To see this, consider Figure 4.3, Figure 4.4, and Figure 4.5, which we devised to sum-
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Figure 4.4: κ-Error Diagram summary – kappa values versus ensemble losses.
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Figure 4.5: κ-Error Diagram summary. Darker points have lower ensemble loss.
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marize the data from the κ-Error Diagrams shown in Figure D.1 and Figure D.2. All
three figures show one scatterplot for each ensemble learning method. In the scatter-
plots, one point is shown for each dataset. The coordinates for each point 〈x, y〉 are
obtained by averaging the κ values and the pairwise mean errors, respectively, over
all possible pairs of member classifiers from the corresponding κ-Error Diagram (in
Appendix D, one κ-Error Diagram is shown for each dataset and ensemble learning
method).

Figure 4.3 shows the mean pairwise error of the component classifiers (x-axis) versus
the 0-1 loss of the ensemble as a whole (y-axis). Similarly, Figure 4.4 shows the
average κ values (x-axis) for the pairs of component classifiers versus the 0-1 loss of
the ensemble (y-axis). Figure 4.5 shows the average κ values on the x-axis and the
mean pairwise errors on the y-axis, while the gray-scale of the points represents the
ensemble loss: darker points have lower ensemble loss than lighter points.

While there is a clear correlation between the ensemble loss and member accuracy
as measured by the mean pairwise error of the component classifiers (Figure 4.3),
a correlation between ensemble loss and member diversity is not nearly as evident
(Figure 4.4). In fact, there even seems to be a negative correlation between ensem-
ble loss and ensemble member diversity (remember that high κ values signify high
agreement rates among member classifiers whereas small κ values signify high diver-
sity). This can also be seen from Figure 4.5: The ensemble loss tends to decrease
with increasing κ values (points get darker), even across problem domains where the
mean pairwise error stays almost the same.

This is unintuitive and contrary to all previous results. We attribute this apparent
discrepancy to the correction made by the κ statistic for the classifier agreement
expected by chance. Intuitively, as far as the quantitative influence of member
agreement on ensemble loss is concerned, it should not matter whether the agreement
is systematic or “random”, i.e., equal to that expected by chance. We therfore
have to conclude that the κ statistic, while useful as a statistical measure of the
significance of agreement, does not constitute an adequate measure of ensemble
member diversity for our purposes.

4.4 Margin Distributions

In [71], Schapire et. al. presented a theoretical analysis framework of ensemble
learning methods under 0-1 loss, applicable to single-stage voting ensembles of clas-
sifiers, such as e.g. in Bagging, Boosting, Arcing, ECOC, etc. They introduced a
measure of an ensembles confidence into its prediction called the margin. For a given
example 〈x, y〉, the margin is the difference between the weight of votes correctly
predicting the class label and the maximum weight of votes assigned to any single
incorrect label. Specifically,

MC(〈x, y〉) :=
∑

c∈C|ŷc(x)=y

wc − max
y′∈Y,y′ 6=y

∑

c∈C|ŷc(x)=y′

wc (4.4)
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if C is an ensemble of value classifiers (Ŷc = Y ∀c ∈ C), and

MC(〈x, y〉) :=
∑

c∈C

wcp̂c(y|x) − max
y′∈Y,y′ 6=y

∑

c∈C

wcp̂c(y
′|x) (4.5)

if C is an ensemble of distribution classifiers (Ŷc = {P̂ (Y )} ∀c ∈ C). The margin
can also be defined for a single distribution classifier, namely as

MC(〈x, y〉) := p̂C(y|x) − max
y′∈Y,y′ 6=y

p̂C(y′|x) (4.6)

In the case where the ensemble is a distribution classifier (Ŷ = {P̂ (Y )}) whose
members are distribution classifiers as well (Ŷc = {P̂ (Y )}), the definitions of the
margin according to Equation 4.5 and Equation 4.6 coincide if the ensemble decides
on its prediction by probabilistic voting (Equation 2.11). They don’t necessarily
coincide if other voting schemes (such as e.g. majority voting as in Equation 2.9)
are employed.

The margin is a number in the range [−1, 1], and an instance 〈x, y〉 is classified
correctly if and only if its margin MC(〈x, y〉) is positive. Schapire et. al. showed
in [71] that an ensemble’s generalization error (that is, the expected 0-1 loss on
test instances) can be bound in terms of the distribution of margins on the training
sample, the sample size, and the VC dimension of the base learner. In particular,
the lower the probability of a small margin on the training sample, the lower the
bound on expected ensemble loss.

Schapire et. al. also state, however, that the bounds presented in [71] are too
loose to allow practical quantitative predictions of ensemble loss. Nevertheless, they
propose the use of margin distributions to explain the success of ensemble learning
algorithms such as Bagging and Boosting, and argue that ensembles primarily work
because they minimize the probability of low margins on the training sample. Apart
from the fact that application of margin analysis is sensible only for problems with
discrete-valued outcomes, under 0-1 loss, and with certain voting functions, this
proposed explanation has also been subsequently criticized in the literature for being
inaccurate or incomplete.

For example, J.R. Quinlan demonstrates in [67] that classifiers which have the same
margin distributions on the training sample may nevertheless exhibit significantly
different 0-1 loss on the test sample. L. Breiman introduced an alternative analysis
framework based on a function he called the edge, and notes that his framework
“gives results which are the opposite of what we would expect given Schapire et al.’s
explanation of why arcing works” ([10]). Within the context of linear classifiers,
Herbrich and Graepel note that the margin is too coarse a measure to give sufficiently
tight bounds on generalization error ([41]). In [37], A. Grove and D. Schuurmans
present modified boosting algorithms that achieve larger minimum margins on the
training sample than Adaboost, yet generally fail to yield better performance on
test data ([37]). And in [40], M. Harries induced ensembles whose members all fit
the training data perfectly – that is, the ensemble has a minimum margin of 1 – and
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Figure 4.6: Average margins on training (o) and test (+) data (x-axis) versus average
loss on test data (y-axis).

showed that generalization performance can still be improved after the maximum
value for the minimum margin is already obtained.

Appendix E (pages 103–123) shows the cumulative margin distributions on both
training set sample and test sample for ensembles containing 30 member classifiers,
for the ensemble learning methods considered in the experimental part of this thesis:
Bagging(0.5; 30), Bagging(1; 30), Bagging(2; 30), Cragging(2; 15), Cragging(3; 10),
and Cragging(30; 1). Figure E.7 on pages 121–123 shows the cumulative margin
distributions for a single base classifier. The margins are computed according to
Equation 4.6, and the curves shown are obtained by averaging the 100 distributions
obtained from 10 runs of 10-fold cross-validation.

We devised Figure 4.6 to summarize those results from Appendix E. For each of
the ensembles as well as the base classifier, Figure 4.6 shows the average margins
on the training (“o” points) and test (“+” points) samples on the x-axis versus the
expected 0-1 loss on the test samples (y-axis) for each of the datasets from Table 4.1.
The average margin for classifier C on data sample S is simply

MAVGC(S) :=
1

|S|

∑

〈x,y〉∈S

MC(〈x, y〉) (4.7)

According to [71], we should get lower ensemble losses with higher margins, and vice
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versa. While this relationship holds at least approximately for the margins on the
test samples, it does not hold for the training sample margins - and therefore train-
ing sample margins can not be used to predict ensemble behaviour on unseen test
data. Quite often a classifier C1 has both lower (higher) training sample margins and
lower (higher) loss than another classifier C2. We also note that the Cragging(30; 1)
ensembles seem to have the highest average training sample margins (which is not
surprising as the Cragging(30; 1) member classifiers can be expected to fit the orig-
inal training sample most perfectly), but from Figure 3.2 we already know that
Cragging(30; 1) is actually the worst performing ensemble learning method out of
the ones shown in Figure 4.6.

This is contradictory to the results we would expect from the analysis framework in
[71], and shows that margin analysis alone can not be used to analytically explain
ensemble behavior.

4.5 Bias-Variance Decomposition

The bias-variance decomposition is a widely-used theoretical tool in machine learn-
ing not only with respect to ensemble learning, but for developing and understanding
prediction algorithms in general. It was originally developed in [33] for the case of
squared loss, and recently several authors (e.g. [9, 31, 50, 48, 75]) have proposed
bias-variance decompositions for 0-1 loss. Subsequently, Domingos ([24, 25, 26])
presented a unified theoretical framework for consistent application of bias-variance
decompositions under different loss functions.

Let ŷopt(x) := argminŷ∈Y EP (Y |x) [l(ŷ, y)] be the optimal prediction given input x,

i.e., the prediction with minimal expected loss out of all possible predictions ŷ ∈ Ŷ .

Imagine that the process of inducing and testing classifiers is repeated many times,
each time using the same classifier inducer J but different training samples S, which
are obtained by sampling from P (X, Y ). Then let

ŷm(x) := argminŷ∈Y EP (S)

[
l(ŷ, ŷJ(S)(x))

]
(4.8)

be the main prediction for input x, that is, the prediction with minimal expected loss
with respect to the predictions made by classifiers induced by J from the training
samples S. The main prediction ŷm(x) can also be interpreted as the prediction
made by some (fictive) “average” predictor which in turn would be induced by J
from an “average” training sample.

The expected loss EP (S) [L(J,x)] = EP (S),P (Y |x)

[
l(ŷJ(S)(x), y)

]
for input x of classi-

fiers learned by classifier inducer J is decomposed into three terms ([24]):

• The statistical bias B(J,x) := l(ŷm(x), ŷopt(x)) is the loss of the main pre-
diction ŷm(x) relative to the optimal prediction ŷopt(x). This is a sensible
performance measure because it expresses what we can expect the generaliza-
tion error to be on “average”.
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• The statistical variance V (J,x) := EP (S)

[
l(ŷJ(S)(x), ŷm(x))

]
measures how the

predictions of the classifiers induced by J vary around the main prediction,
i.e., how the choice of the training sample effects the generalization error.

• The noise N(x) := EP (Y |x) [l(ŷopt(x), y)] is the expected loss of the optimal
prediction ŷopt(x) relative to the true outcomes y. This is the unavoidable
component of the loss and is incurred independently of the classifier inducer
J .

The underlying fundamental insight is that reducing either one of bias or variance
without increasing the other will result in a reduced expected loss. A classifier in-
ducer, when presented with a training sample S, has to choose one “best” classifier
out of a set of possible candidate classifiers. The set of candidate classifiers is usu-
ally called hypothesis space or model space and is a property inherent to the inducer.
When presented with different training samples, simple inducers (i.e., inducers with
small model spaces) will tend to produce classifiers whose predictions are similar
(low variance) but less than optimal (high bias). In contrast, more powerful in-
ducers employing larger spaces of candidate classifiers will produce classifiers whose
predictions, on “average”, will be closer to the optimal prediction (low bias), but
will fluctuate around this “average” (high variance).

Specifically, in [24] it is shown that, for the case of 0-1 loss,

EP (S) [L(x)] = EP (S),P (Y |x)

[
l(ŷJ(S)(x), y)

]
= c1N(x) + B(J,x) + c2V (J,x), (4.9)

where

c1 = pP (S)(ŷJ(S)(x) = ŷopt(x))
−pP (S)(ŷJ(S)(x) 6= ŷopt(x))pP (S),P (Y |x)(y = ŷJ(S)(x)|y 6= ŷopt(x))

(4.10)

and

c2 =

{
1 iff ŷm(x) = ŷopt(x)
−pP (S)(ŷJ(S)(x) = ŷopt(x)|ŷJ(S)(x) 6= ŷm(x)) otherwise

(4.11)

The concepts of bias and variance have been used to explain the empirical success
of ensemble methods such as Bagging and Cragging. In [9], Breiman claims that
Bagging, as well as other ensemble algorithms, reduces the variance portion of the
loss while keeping the bias (almost) unchanged. Intuitively, while allowing a more
intensive search for a single classifier is liable to increase variance, averaging the
predictions of multiple classifiers is likely to reduce it ([24]). However, Breiman
himself acknowledged that this is only part of the story ([9]). For example, if the base
classifier is very “stable” (i.e, has a low variance), the reduction in variance will we
negligible. Other authors have also criticized this explanation for being insufficient.
For example, theoretical work of Buja and Stuetzle ([12, 13]) provides examples for
which Bagging is proven to increase both bias and variance. Schapire and Singer
note that a large variance of the base classifier inducer is not a requirement for
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ensemble learning to be effective. Moreover, ensemble methods can increase the
variance while still reducing the generalization error ([72]). Grandvalet ([34, 35, 36])
showed through simple experiments that Bagging may either reduce or increase the
variance for one and the same problem domain, depending on the base classifier
inducer. And in [1], simulations with artificial data show that drawing a new training
sample for training each classifier – a process that ensemble methods such as Bagging
supposedly imitate in order to achieve their improved performance – may not yield
the same reductions of ensemble loss as other ensemble learning methods.

Appendix F shows the bias-variance decomposition results for each of the ensemble
learning methods considered here, as well as for the base classifier inducer. For each
ensemble learning method, there are two tables. The first table shows the absolute
values of the bias and variance measurements whereas the second table shows the
ratios relative to a single base classifier.

Following [24], we also show the values for the contribution to variance from unbiased
examples

VU(J) := EP (X) [(1 − B(J,x))V (J,x)] (4.12)

and the contribution to variance from biased examples

VB(J) = EP (X) [c3B(J,x)V (J,x)] (4.13)

where

c3 =

{
1 iff ŷm(x) = ŷopt(x)
pP (S)(ŷJ(S)(x) = ŷopt(x)|ŷJ(S)(x) 6= ŷm(x)) otherwise

(4.14)

The net variance V (J) is the difference VU(J) − VB(J).

A practical difficulty with measuring bias and variance is that, unlike in theory,
we have only one training sample S. Following other authors ([48, 24]), the mul-
tiple training sets are therefore simulated using bootstrap resampling. There are,
however, two problems with this:

First, the bootstrap sampling process will change the distribution of instances pre-
sented to the classifier inducer compared to the distribution of instances in the
original training sample. Thus, classifiers are induced using one instance distribu-
tion but evaluated using another. Our experiments show that this will result in loss
estimates which are generally too large (see Appendix J for detailed results). The
effects of the bootstrap sampling procedure on the estimates of bias and variance
are unknown.

Second, as the bootstrap samples are not representative of the real underlying pop-
ulation but only of the one original data sample, the bias-variance decomposition
statistics can only be approximations to the true values. The accuracy of those ap-
proximations is unknown. This by itself is not an uncommon occurrence in Statistics
and Machine Learning. Usually we can find better approximations by drawing larger
data samples. Here, however, changing the size of the data sample would change the
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Method Loss Bias Var VarU VarB

Base Classifier 20.24 15.64 4.60 8.14 3.54
Bagging(0.5; 30) 17.37 15.20 2.18 4.68 2.50
Bagging(1; 30) 17.49 15.30 2.19 4.86 2.67
Bagging(2; 30) 17.98 15.39 2.59 5.41 2.81
Cragging(2; 15) 17.43 15.15 2.27 4.80 2.53
Cragging(3; 10) 17.76 15.21 2.55 5.20 2.65
Cragging(30; 1) 19.58 15.70 3.87 7.25 3.37

Table 4.3: Averages from bias-variance decomposition (absolute values).

Method Loss Bias Var VarU VarB

Base Classifier 1.00 1.00 1.00 1.00 1.00
Bagging(0.5; 30) 0.88 1.12 0.48 0.59 0.91
Bagging(1; 30) 0.86 1.00 0.54 0.63 0.80
Bagging(2; 30) 0.88 0.97 0.71 0.73 0.81
Cragging(2; 15) 0.86 1.03 0.50 0.60 0.78
Cragging(3; 10) 0.87 0.99 0.58 0.66 0.79
Cragging(30; 1) 0.97 0.99 0.87 0.91 0.93

Table 4.4: Averages from bias-variance decomposition (ratios relative to the base
classifier).

actual variables we want to measure, namely bias and variance of the learner. This
dilemma only can be solved by using data sources where the underlying population
parameters themselves are known and arbitrarily many samples can be generated,
i.e., artificial data.

Thus, while we value the bias-variance decomposition as an important tool to analyze
general behaviour of learners based on artificial data, we believe its applicability to
real-world problems by practitioners to be rather limited.

For each dataset, we executed 10 runs of 10-fold cross-validation to obtain 100
estimates of bias, variance, etc. The mean and standard deviations over those 100
estimates are shown in Appendix F. To obtain each one of those 100 estimates,
we induced 30 classifiers – or 30 classifier ensembles, each consisting of 30 base
classifiers – from 30 training samples, which in turn where obtained by standard
bootstrap resampling the training partition of the corresponding cross-validation
fold. We then measured bias and variance of the classifiers on the test partition of
the corresponding cross-validation fold. As the noise level N(x) is very difficult to
estimate, we assume N(x) = 0 as in [48, 24], and let the noise be part of the bias
estimates BJ(x).

Table 4.3 and Table 4.4 summarize the results from Appendix F by averaging over
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the datasets, allowing for a comparison of the average behavior of the ensemble
methods across the whole range of datasets. Table 4.3 shows the average absolute
values of the bias-variance decomposition statistics, while Table 4.4 show the average
ratios relative to the base classifier inducer.

While it is true that Bagging usually reduces variance, this is not always the case –
e.g. audiology dataset in Table F.2 on 125, which shows the bias-variance decom-
position results of “standard” Bagging with 30 member classifiers (Bagging(1; 30))
divided by those of the base classifier inducer. Also, the amount of the variance
reduction varies greatly with the dataset. The bias is increased for some datasets
and decreased for others. As a result, while the loss usually decreases (due to the
variance reduction being larger than the increase in bias), the loss may also increase
(e.g. shuttle dataset in Table F.2).

Different sampling schemes also have different impact on bias and variance – the
increase/decrease of bias and variance may vary greatly with the sampling scheme.
It is unclear how this variation can be related to dataset characteristics.

There are also some unresolved theoretical issues which affect the practical applica-
tion of bias-variance decompositions. For example, the decomposition in Equations
4.9 through 4.11 is rather complex. Unfortunately, it has been shown that a nice and
simple additive decomposition – such as the one for squared loss – does not exist for
the case of 0-1 loss ([38]). Also, given some component classifiers, different ensembles
can be constructed from those component classifiers via different voting functions.
These ensembles will usually exhibit different ensemble loss (e.g. in [3]), something
that currently can not be analyzed or explained with bias-variance decompositions.
Finally, bias-variance decompositions still leave unanswered the question of how the
success of ensemble learning methods can be related to domain characteristics.

The bias-variance decomposition is undoubtedly an invaluable theoretical tool for
understanding classification and regression algorithms and has rightfully become a
cornerstone of machine learning. Nevertheless, its practical applicability to the task
of deciding which ensemble method to choose for which kind of problem domain is
rather limited.
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5. Loss Decomposition

In Chapter 3, we discussed the accuracy-diversity trade-off as a general, intuitive
explanation for why ensembles outperform single classifiers: It is widely accepted
[18, 39, 52] that a good ensemble is one whose members are both accurate and
diverse.

Given a test example 〈x, y〉 drawn from X × Y according to P (X, Y ), the error
of the member classifiers – as a measure of accuracy – can be easily quantified,
it is simply their expected loss. Here, the expectation is taken over the set of
member classifiers: L(x, y) = Ec∈C [Lc(〈x, y〉)] = 1

n

∑n
c=1 l(ŷc(x), y), where y is the

true value and ŷc(x) is the prediction made by the member classifier c for the given
test example. Given the error, determining the accuracy is straightforward. This
definition easily extends to multiple test examples. Currently, however, there is
no universally agreed upon way to measure the diversity of the member models.
Instead, different measures of diversity are used for different loss functions and by
different authors, e.g. [18, 53, 64]. Accordingly, no unifying theory for analyzing
the exact dependencies of the ensemble performance on the accuracy and diversity
of its members exists [43, 69].

In this chapter we present a general definition of ensemble diversity that can be
applied under any given loss function. We also propose a unified form for decom-
posing the loss of a classifier ensemble into the mean loss of the individual ensemble
members and a term D(x) which is a direct measure of the diversity of the ensem-
ble members. We show that the well-known decomposition under squared loss is
a special case of this unified decomposition. We then instantiate the unified de-
composition for the 0-1 loss function and derive formulas for the ensemble loss of
democratically voting ensembles as a function of mean member loss and diversity,
which provide insights into ensemble behavior.

5.1 Voting Schemes

In what follows, we will formalize the notion of diversity among the predictions of the
ensemble members, in order to allow a formal, quantitative analysis of the accuracy-
diversity trade-off. We would like this analysis framework to cover as many different
ensemble learning algorithms as possible. However, as with any model, we have to
make a compromise between generality and complexity of the analysis framework.
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We chose to make the following two assumptions (which translate to certain restric-
tions on the ensemble learning methods covered by the framework).

First, we require all the member classifiers to be distribution classifiers. That is,
we require each member classifier c, given input x, to output a belief distribution
P̂c(Y |x) over the outcome space Y . This is not too strong a limitation, as value
classifiers can be transformed easily into distribution classifiers using p̂c(y|x) := 1 if
y = ŷc and p̂c(y|x) := 0 otherwise, for all y ∈ Y . Other types of classifiers besides
value classifiers and distribution classifiers also exist (e.g, ranking classifiers), but
either their use is currently rather limited, or their output could in principle be
computed from an (internal) intermediate belief distribution anyway.

Second, in order to make the quantitative analysis feasible, we place a restriction
on the voting schemes that can be used. We do so by defining the following class of
voting functions:

Definition 5.1. Let l : Ŷ × Y → R be a loss function, let c = 〈c1, . . . , cn〉 be an
ordered tuple of distribution classifiers, and let w = 〈w1, . . . , wn〉 be a weight vector
such that

∑n
c=1 wc = 1. Then, the democratic voting function is defined as

Vdem(ŷ(x),w) := arg min
y′∈Y

n∑

c=1

wc

∫

y′′∈Y
p̂c(y

′′|x)l(y′, y′′) dy′′. (5.1)

A single-stage voting ensemble 〈n, c,w, V 〉 whose members are all distribution classi-
fiers is called a democratic ensemble if and only if its voting function V is equivalent
to the democratic voting function Vdem.

Definition 5.1 instantiates the requirement for an ensemble to output a prediction
ŷ(x) which constitutes a compromise among the predictions P̂c(Y |x) of the individ-
ual ensemble members. Among all the possible predictions an ensemble could make
for a given input, the ensemble prediction is the one that minimizes the expected
loss of the ensemble prediction, according to the weighted predictions made by each
of the individual members for the given input. Note that Equation 5.1 can also be
written as

Vdem(ŷ(x),w) := arg min
y′∈Y

EC

[
E

P̂c(Y ′′|x)
[l(y′, y′′)]

]
. (5.2)

For the case that all the weights are equal, and the member classifiers as well as the
ensemble itself are value classifiers (Ŷc = Ŷ = Y ), Definition 5.1 specializes to the
standard voting functions under all the commonly used loss functions. For exam-
ple, under zero-one loss, the ensemble prediction ŷ(x) is the value most frequently
predicted by the member classifiers. Under squared loss, it is the mean; and under
absolute loss it is the median of all the member predictions ŷc ∈ ŷ(x).

All the ensemble methods considered in the experimental sections are uniform voting
ensembles, that is, all the member classifiers carry the same weight wi := 1/|C|.
However, this is not a necessary condition, and all the results in this chapter apply
equally to non-uniform voting ensembles.

51



If we define the ensemble’s belief distribution to be the weighted average of the
individual ensemble members’ belief distributions, that is

p̂(y|x) := EC [p̂c(y|x)] =
n∑

c=1

wcp̂c(y|x), (5.3)

then the ensemble prediction of a democratic ensemble is also the Bayes optimal
prediction, i.e., the one that minimizes the conditional risk R(ŷ|x) as given in Equa-
tion 2.4 on page 10:

Vdem(ŷ(x),w) = arg min
y′∈Y

n∑

c=1

wc

∫

y′′∈Y
p̂c(y

′′|x)l(y′, y′′) dy′′

= arg min
y′∈Y

∫

y′′∈Y
l(y′, y′′)

n∑

c=1

wcp̂c(y
′′|x) dy′′

= arg min
y′∈Y

∫

y′′∈Y
l(y′, y′′)p̂(y′′|x) dy′′

= arg min
y′∈Y

R(y′|x).

Most of the voting function presented in Section 2.3 (Equation 2.7 through Equa-
tion 2.12) can be re-written in the form specified by Definition 5.1.

• Sum Vote:
For Y = Ŷ = Ŷc = R, p̂c(y|x) := I(y = ŷc(x)), and l = l2:

Vdem(ŷ(x),w) = arg min
y′∈Y

n∑

c=1

wc

∫

y′′∈Y
p̂c(y

′′|x)l2(y
′, y′′) dy′′ (5.4)

= arg min
y′∈Y

n∑

c=1

wc

∫

y′′∈Y
I(y′′ = ŷc(x))(y′ − y′′)2 dy′′ (5.5)

= arg min
y′∈Y

n∑

c=1

wc(y
′ − ŷc(x))2 (5.6)

=
n∑

c=1

wcŷc(x) (5.7)

= Vsum(ŷ(x),w) (5.8)

For Y = Ŷ = R, Ŷc = {P (R)}, and l = l2:

Vdem(ŷ(x),w) = arg min
y′∈Y

n∑

c=1

wc

∫

y′′∈Y
p̂c(y

′′|x)l2(y
′, y′′) dy′′ (5.9)

= arg min
y′∈Y

n∑

c=1

wc

∫

y′′∈Y
p̂c(y

′′|x)(y′ − y′′)2 dy′′ (5.10)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)y′ dy′ (5.11)

= Vsum(ŷ(x),w) (5.12)
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• Majority Vote:
For Y = Ŷ = Ŷc = {y1, . . . , yk}, p̂c(y|x) := I(y = ŷc(x)), and l = l01:

Vdem(ŷ(x),w) = arg min
y′∈Y

n∑

c=1

wc

∫

y′′∈Y
p̂c(y

′′|x)l01(y
′, y′′) dy′′ (5.13)

= arg min
y′∈Y

n∑

c=1

wc

∫

y′′∈Y
I(y′′ = ŷc(x))I(y′ 6= y′′) dy′′(5.14)

= arg min
y′∈Y

n∑

c=1

wcI(ŷc(x) 6= y′) (5.15)

= arg max
y′∈Y

n∑

c=1

wcI(ŷc(x) = y′) (5.16)

= Vmaj(ŷ(x),w) (5.17)

• Probabilistic Voting:
For Y = Ŷ = {y1, . . . , yk}, Ŷc = {P (Y )}, and l = l01:

Vdem(ŷ(x),w) = arg min
y′∈Y

n∑

c=1

wc

∫

y′′∈Y
p̂c(y

′′|x)l01(y
′, y′′) dy′′ (5.18)

= arg min
y′∈Y

n∑

c=1

wc

∫

y′′∈Y
p̂c(y

′′|x)I(y′ 6= y′′) dy′′ (5.19)

= arg min
y′∈Y

n∑

c=1

wc(1 − p̂c(y
′|x)) (5.20)

= arg max
y′∈Y

n∑

c=1

wcp̂c(y
′|x) (5.21)

= arg max
y′∈Y

n∑

c=1

wcI(arg max
y′′∈Y

p̂c(y
′′|x) = y′) (5.22)

= Vprob(ŷ(x),w) (5.23)

There exist also voting functions which are not democratic according to Defini-
tion 5.1. Examples are the majority vote with distribution classifiers (Equation 2.10),
aristocratic voting schemes (dictatorships), or progressive voting schemes such as the
progressive quadratic vote or the progressive exponential vote ([6]). Definition 5.1
could be extended to cover those voting schemes as well, by introducing interme-
diate functions v(p̂c(y|x)) which modify the ensemble members’ belief distributions
p̂c(y|x) prior to applying the current Definition 5.1.

5.2 Decomposition

The generalization error or loss of an ensemble for a given instance 〈x, y〉 will,
by definition, always equal the loss of the ensemble prediction relative to the true
value. To avoid confusion, we will denote this ensemble loss by L(x, y) – as opposed
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to L(x, y), which will be called mean member loss and used to denote the average
expected loss of the individual ensemble members. We then propose to measure the
diversity among the predictions of the member classifiers by measuring their loss
relative to the ensemble prediction.

Definition 5.2. The loss of ensemble C = 〈n, c,w, V 〉 on instance 〈x, y〉 under loss
function l is given by

L(x, y) := l(ŷ, y). (5.24)

This simply states that the loss of an ensemble is the difference between the ensemble
prediction (computed through the voting function V as defined in Definition 2.5)
and the true value, as measured by the loss function.

From the standard definitions of accuracy and error for different loss functions used
e.g. in [16, 39, 52] we derived the following generalized definition:

Definition 5.3. The mean member loss of ensemble C = 〈n, c,w, V 〉 on instance
〈x, y〉 under loss function l is given by

L(x, y) := EC

[
E

P̂c(Y |x)
[l(ŷc(x), y)]

]
=

n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, y) dy′. (5.25)

The mean member loss of an ensemble indicates how much the predictions of the
individual ensemble members differ from the true outcome y. The expectation is
taken over the set of ensemble members, according to the weight distribution w.

This quantifies formally the notion of an ensemble whose members are accurate: The
ensemble members are more (less) accurate if and only if the ensemble has a lower
(higher) mean member loss. We are now ready to introduce the general definition
of ensemble diversity, which is applicable to any given loss function.

Definition 5.4. The diversity of ensemble C = 〈n, c,w, V 〉 on input x under loss
function l is given by

D(x) := EC

[
E

P̂c(Y |x)
[l(ŷc(x), ŷ(x))]

]
=

n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, ŷ(x)) dy′. (5.26)

In words, the diversity is the weighted average loss incurred by the predictions of
the member models ŷc(x) relative to the ensemble prediction ŷ(x). Note that the
diversity is independent of the true outcome y.

The definitions for loss L(x, y), mean member loss L(x, y), and diversity D(x) can be
averaged over the instance distribution P (X, Y ) to obtain the expected performance
measures for the ensemble on the problem domain 〈X, Y, P, l〉, which we will refer
to as

• expected ensemble loss:

L := EP (X,Y ) [L(x, y)] =
∫

X×Y
L(x, y)p(x, y) d〈x, y〉 (5.27)
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Figure 5.1: Intuitive relations between L, L, D and y, ŷ and ŷc.

• expected mean member loss:

L := EP (X,Y )

[
L(x, y)

]
=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉 (5.28)

• expected diversity:

D := EP (X)

[
D(x)

]
=

∫

X

D(x)p(x) dx. (5.29)

Figure 5.1 shows the relations between the various terms just defined. It shows
that the expected loss L is a function of the ensemble predictions ŷ and the true
outcomes y, the expected mean member loss L is a function of y and the various base
classifiers predictions ŷc, and the expected diversity D is a function of the various
base classifiers predictions ŷc and the ensemble predictions ŷ.

We propose to write the loss L(x, y) for a given ensemble as a function of the loss
and the diversity of its members:

L(x, y) = fl(L(x, y), D(x)) (5.30)

The specific form of the functional dependency fl will depend on the loss function
l being used. We proceed by giving fl for several commonly used loss functions.
Usually one is interested in the expected performance of an ensemble over the whole
domain, so we will also give the formulas for L obtained by integrating Equation 5.30
over the instance distribution.

5.3 Instantiating the Decomposition for Squared

Loss

We will first show that the commonly used standard decomposition for democratic
voting ensembles under squared loss (Equation 3.4) is a special case of the unified
decomposition as presented in Equation 5.30. In Section 5.4 we will then instantiate
the unified decomposition under 0-1 loss for two-class and multi-class problems.

The following theorem states that the commonly used decomposition for squared
loss is indeed a special case of our general decomposition:

55



Theorem 5.1. Let C := 〈n, c,w, V 〉 be an ensemble of classifiers such that Y =
Ŷ = R, Ŷc = {P (R)} for all c ∈ {1, . . . , n}, and V = Vdem. Then, for squared loss,
the ensemble loss L(x, y) can be written as

L(x, y) = fl(L(x, y), D(x)) = L(x, y) − D(x). (5.31)

The proof of Theorem 5.1 can be found in Appendix G on page 137.

Theorem 5.1 actually covers the more general case where the individual member
classifiers are distribution classifiers that each output a probability distribution over
R. The classic regression model with value classifiers is obtained as a special case
by setting p̂c(y

′|x) := I(y′ = ŷc(x)), as the following theorem shows.

Theorem 5.2. Let C := 〈n, c,w, V 〉 be an ensemble of classifiers such that Y =
Ŷ = R, Ŷc = R for all c ∈ {1, . . . , n}, and V = Vdem. Then, for squared loss, the
ensemble loss L(x, y) can be written as

L(x, y) = fl(L(x, y), D(x)) = L(x, y) − D(x). (5.32)

The proof of Theorem 5.2 can be found in Appendix G on page 139.

Under squared loss, the additivity of the loss decomposition is also preserved when
integrating over the instance space:

Theorem 5.3. For ensembles 〈n, c,w, Vdem〉 and squared loss, the expected ensemble
loss over the domain is

L = L − D. (5.33)

The proof of Theorem 5.3 can be found in Appendix G on page 140.

Theorem 5.1 through Theorem 5.3 are significant for two reasons. Firstly, they show
that the decomposition commonly used for real-valued classes under squared loss is
a special case of our general decomposition framework presented in Section 5.2. Sec-
ondly, they extend this decomposition to the case where the base classifiers, rather
than producing a single real number as their prediction, may output a probability
distribution over R instead.

5.4 Instantiating the Decomposition for 0-1 Loss

We now instantiate Equation 5.30 for 0-1 loss as the loss function, first for the case
where the outcome space Y consists of two classes. In Section 5.4.2 we will generalize
this to multi-class problems.

5.4.1 0-1 Loss for Two-Class Problems

The following theorem shows the relationship between ensemble loss L(x, y), mean
member loss L(x, y), and diversity D(x) for a single given instance 〈x, y〉.
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Theorem 5.4. For ensembles 〈n, c,w, Vdem〉 and 0-1 loss in two-class problems, the
ensemble loss L(x, y) can be written as

L(x, y) = fl(L(x, y), D(x)) = L(x, y) + zD(x) (5.34)

with z = −1 iff ŷ(x) = y, and z = 1 iff ŷ(x) 6= y.

The proof of Theorem 5.4 can be found in Appendix G on page 141.

To find an expression of the expected ensemble loss L over the entire domain, we
need to distinguish between the expected diversity of the ensemble over T and F .

Definition 5.5. Let Y := Y1, . . . , Yk be a discrete outcome space, and let l be the 0-1
loss function. Given any ensemble C, let T := {〈x, y〉 ∈ X× Y |ŷ(x) = y} denote the
set of instances that C predicts correctly, and let F := {〈x, y〉 ∈ X × Y |ŷ(x) 6= y}
denote the set of instances that C predicts incorrectly. Then, the expected diversity
over correctly predicted instances is defined as

DT :=
∫

〈x,y〉∈T
D(x)p(〈x, y〉|〈x, y〉 ∈ T ) d〈x, y〉, (5.35)

and the expected diversity over incorrectly predicted instances is defined as

DF :=
∫

〈x,y〉∈F
D(x)p(〈x, y〉|〈x, y〉 ∈ F ) d〈x, y〉. (5.36)

Naturally, the expected diversity over the entire instance space D can also be ex-
pressed in terms of the expected diversities over correctly and incorrectly predicted
instances, as the following theorem shows:

Theorem 5.5. Under 0-1 loss, the expected diversity D can be written as

D = (1 − L)DT + LDF . (5.37)

The proof of Theorem 5.5 can be found in Appendix G on page 142.

For democratic ensembles, DT , DF , and D will always be between 0 and 0.5 for
binary classes, and between 0 and 1 − 1/ |Y | in general. This can be easily seen for
a two class dataset. A value of D > 0.5 would mean that, for some instances, more
than half of the individual member classifiers votes is given to a label different from
the one the ensemble is predicting, and by definition the ensemble would have to
change its prediction for those instances, making D less than 0.5 again. The same
argument holds for DF and DT and becomes even more obvious when there are
more than two classes.

The following two theorems express the relationships between expected ensemble
loss, expected mean member loss, and expected diversity over the entire instance
space:
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Theorem 5.6. For ensembles 〈n, c,w, Vdem〉 and 0-1 loss in two-class problems, the
expected ensemble loss over the domain can be written as

L =
L − D

1 − 2DF

. (5.38)

Theorem 5.7. For ensembles 〈n, c,w, Vdem〉 and 0-1 loss in two-class problems, the
expected ensemble loss over the domain can be written as

L =
L − DT

1 − DT − DF

. (5.39)

The proofs of Theorems 5.6 and 5.7 can be found in Appendix G on pages 143 and
144, respectively. Alternatively, Theorem 5.7 can also be derived from Theorem 5.6,
and vice versa, via substitution of one the variables D or DT by the corresponding
expression derived from Theorem 5.5.

Equation 5.39 appears to be rather counter-intuitive: On first sight it would seem
that increasing DF (the diversity on incorrectly predicted examples) would actually
increase the overall expected ensemble loss L, rather than decrease it. However, one
has to take into account that one cannot change DF without also changing the mean
member loss L at the same time. If, for example, we are to change the ensemble
in some way resulting in an increase of DF by α, this change will also result in a
decrease of L by Lα.

This is markedly different from the behavior under squared loss, where it is (in
principle) always possible to increase diversity while leaving the mean member loss
constant, resulting in better ensemble performance. This difference in behavior,
however, is a consequence only of the different properties of the loss functions. Our
consistent definition of diversity and accuracy/mean member loss makes explicit
this qualitative difference in ensemble behavior. In Section 5.4.3 we will show that
increasing DF will indeed decrease the expected ensemble loss.

5.4.2 0-1 Loss for Multi-Class Problems

We now instantiate the unified decomposition for 0-1 loss for multi-class problems.
The proofs follow closely the two-class case; the main difference being that now,
for those examples that the ensemble predicts incorrectly, increasing diversity does
not automatically entail lowering mean member loss: [ŷ(x) 6= y ∧ ŷc(x) 6= ŷ(x)] 6⇒
ŷc(x) = y.

Theorem 5.8. For ensembles 〈n, c,w, Vdem〉 and 0-1 loss, the ensemble loss L(x, y)
can be written as

L(x, y) = fl(L(x, y), D(x)) = L(x, y) + zD(x), (5.40)

with z = −1 iff ŷ(x) = y, and z =
∑n

c=1
wcp̂c(y|x)

1−
∑n

c=1
wcp̂c(ŷ(x)|x)

iff ŷ(x) 6= y.

58



The proof of this theorem can be found in Appendix G on page 145. Note that

Theorem 5.4 is a special case of Theorem 5.8 with z =
∑n

c=1
wcp̂c(y|x)

1−
∑n

c=1
wcp̂c(ŷ(x)|x)

= 1 for

the case of ŷ(x) 6= y, since, for two-class problems, ŷ(x) 6= y implies that p̂c(y|x) =
1 − p̂c(ŷ(x)|x) for all ensemble members c.

As for two-class problems, an expression of the expected ensemble loss over the
domain L can be obtained by integrating L(x, y) over the instance distribution. Let
DT and DF denote the expected diversities on correctly and incorrectly predicted
examples, respectively, as in Definition 5.5. Furthermore, let

DP :=
∫

〈x,y〉∈F
(1 − L(x, y))p(〈x, y〉|〈x, y〉 ∈ F ) d〈x, y〉 (5.41)

denote the average weight that the individual ensemble members assign to the cor-
rect outcome, given that the ensemble as a whole predicts the same instance incor-
rectly. Then, the following theorems hold:

Theorem 5.9. For ensembles 〈n, c,w, Vdem〉 and 0-1 loss, the expected ensemble
loss over the domain can be written as

L =
L − D

1 − DP − DF

. (5.42)

The proof of this theorem can be found in Appendix G on page 147.

The expression for the expected ensemble loss in Theorem 5.9 depends on four
variables, one of which we can eliminate by substituting the expected diversity D
in Equation 5.42 by its expression from Theorem 5.5:

Theorem 5.10. For ensembles 〈n, c,w, Vdem〉 and 0-1 loss, the expected ensemble
loss over the domain can be written as

L =
L − DT

1 − DT − DP

. (5.43)

The proof of this theorem can be found in Appendix G on page 148.

From Theorem 5.10 follows that for multi-class problems, on those instances that the
ensemble predicts incorrectly, not all diversity contributes to reducing the ensemble
loss. Out of all member classifiers that disagree with the ensemble prediction, only
some will actually predict y correctly, and only those contribute to reducing the ex-
pected loss. This has an important consequence: As the number of classes increases,
one can expect the optimal accuracy-diversity trade-off to shift towards ensembles
with members that are more accurate but less diverse, all other things being equal.

5.4.3 Discussion

Naturally, the two-class case (Y = {Y1, Y2}) discussed in Section 5.4.1 is a special
case of the multi-class case (Y = {Y1, . . . , Yk}) discussed in Section 5.4.2. As such,
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Theorem 5.4 is a special case of Theorem 5.8, Theorem 5.6 is a special case of
Theorem 5.9, and Theorem 5.7 is a special case of Theorem 5.10. What makes
the two-class case special is that, on those instances that the ensemble predicts
erroneously, a member prediction that differs from the ensemble prediction entails
the member prediction being a correct one. Consequentially, for the two-class case,
it holds DP = DF , that is, the expected weight of member classifier votes assigned to
labels different from the ensemble prediction equals the expected weight of member
classifier votes assigned to the correct label, where the expectation is taken in both
cases over those instances that the ensemble predicts erroneously.

Given a prediction problem, there are basically two ways to manipulate ensemble
diversity:

1. by keeping T and F constant. In this case, the ensemble decisions do not
change, hence the 0-1 loss does not change, but the diversities DT , DF , and
DP can be manipulated independently.

2. by changing the boundaries of T and F . In this case, the 0-1 loss is affected,
and so are DT , DF , and DP .

Case 1: When keeping T and F constant and increasing DT by α, D increases by
α(1− L) (by Theorem 5.5) and so does L (because of Equation 5.43 and L remains
constant). Theorem 5.9 confirms that L remains constant under such change. For
two-class problems, if DP is increased by α, D increases by αL (again by Theo-
rem 5.5), and L decreases by αL (by Theorem 5.7). Theorem 5.6 confirms that
L remains constant under such change. For problems with more than two classes,
increasing DP may or may not increase D, depending on whether or not the mem-
ber classifiers whose votes are changed agreed with the ensemble prediction before
the change. However, L will decrease by αL (by Theorem 5.10), and in either case
Theorem 5.9 confirms the constancy of L, since DF decreases by exactly the same
amount as D.

Case 2: Now consider manipulating T and F by moving instances from F to T such
that L decreases by α. Let M be the set of instances {〈x, y〉 ∈ X × Y } that moved
from F to T . The contribution of those instances to L − D is 0 by Theorem 5.8.
Hence, by Theorem 5.9, we have L − α = (L − D)/(1 − DP − DF ), which after
some manipulations gives DP = (1−DF )− (L−D)/(L−α), that is, DP increases.
This also works the other way around; increasing DP helps decrease the expected
ensemble loss L.

Let us look at a case study to make this a bit clearer. In Figure 5.2 we have three
instances in the set T and two instances in the set F. There are three member
classifiers for classifying each of these instances; their votes are given beside each
instance. In case 1 we increase DT while keeping T and F constant; for example
changing the votes at instance 1 from TTT to TTF. This will cause an increase
in D and L but L remains constant. Likewise, changing the votes for instance 4
from FFF to FTF will cause an increase in DF and D, but a decrease in L, while
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Figure 5.2: Case study of relations between L, L, and D.

L remains constant. This highlights that just increasing or decreasing diversity can
have no effect on the benefits derived from an ensemble.

Now let us examine case 2. If we move instance 3 from the T set to the F set by
changing its votes from FTT to FTF, we will cause L to increase while D hasn’t
changed. L will also increase, and DF could either have increased or decreased. If we
move instance 5 from the F set to the T set by changing its votes from FFT to FTT,
we will cause L to decrease while D still hasn’t changed. L will also decrease, and
DT could either have increased or decreased. From this we can see, that increasing
the diversity over the F set is the only way to lower the ensemble loss.

The deciding influence of DT and DP becomes even more evident when we assume
the availability of a family of base classifiers with some given, fixed mean member
loss L.

Consider the following example with three classes (Y = {a, b, c}), six instances
(X × Y = {〈x1, y1〉 , . . . , 〈x6, y6〉}), and a set of four classifiers C = {c1, c2, c3, c4},
each classifier being able to classify three instances correctly and three incorrectly
(L = 0.5). For simplicity, a democratic voting scheme is used (V = Vmaj as in
Equation 2.9), and the weights are assumed to be uniform (wc = 1/5 for all c ∈ C).

If all of the classifiers’ predictions are exactly the same, that is, if there is no diversity,
we get a situation as shown in Table 5.1. Only three instances will be classified
correctly, and no gain over the individual base classifiers is made.

By increasing the diversity we can achieve a situation where all of the instances
are predicted correctly (Table 5.2), although any one of the member classifiers still
predicts three out of the six instances incorrectly.

However, Table 5.3 and Table 5.4 show examples where the diversity is also increased
(compared to Table 5.1), but the ensemble loss stays the same (Table 5.3) or even
increases (Table 5.4). Note that the ensembles shown in Table 5.3 and Table 5.4
have exactly the same mean member loss L and diversity D, they only differ in the
instances on which the diversity occurs (DT and DF ).

Probabilistic voting can be interpreted as majority voting where, instead of a single
vote by a single classifier ci, a set of classifiers ci,1, . . . , ci,|Y | vote democratically, and
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x y c1 c2 c3 c4 Ensemble L(x, y) L(x, y) D(x)
x1 a a a a a a 0 0/4 0/4
x2 b b b b b b 0 0/4 0/4
x3 c c c c c c 0 0/4 0/4
x4 a b b b b b 1 4/4 0/4
x5 b c c c c c 1 4/4 0/4
x6 c a a a a a 1 4/4 0/4

L = 3/6
L = 12/24
D = 0/24
DT = 0/12
DF = 0/12
DP = 0/12

Table 5.1: Example where there is no diversity (D = 0).

x y c1 c2 c3 c4 Ensemble L(x, y) L(x, y) D(x)
x1 a b c a a a 0 2/4 2/4
x2 b b c a b b 0 2/4 2/4
x3 c c a b c c 0 2/4 2/4
x4 a a a b c a 0 2/4 2/4
x5 b c b b a c 0 2/4 2/4
x6 c a c c b c 0 2/4 2/4

L = 0/6
L = 12/24
D = 12/24
DT = 12/24
DF = n/d
DP = n/d

Table 5.2: Example with high diversity and perfect classification.

x y c1 c2 c3 c4 Ensemble L(x, y) L(x, y) D(x)
x1 a b a a a a 0 1/4 1/4
x2 b a b b b b 0 1/4 1/4
x3 c c c a c c 0 1/4 1/4
x4 a a b b b b 1 3/4 1/4
x5 b b c c c c 1 3/4 1/4
x6 c a a c a a 1 3/4 1/4

L = 3/6
L = 12/24
D = 6/24
DT = 3/12
DF = 3/12
DP = 3/12

Table 5.3: Example with high diversity but no performance gain.

x y c1 c2 c3 c4 Ensemble L(x, y) L(x, y) D(x)
x1 a a a a a a 0 0/4 0/4
x2 b b b b b b 0 0/4 0/4
x3 c b b a c b 1 3/4 2/4
x4 a c a b b b 1 3/4 2/4
x5 b b c c c c 1 3/4 1/4
x6 c a a c a a 1 3/4 1/4

L = 4/6
L = 12/24
D = 6/24
DT = 0/8
DF = 6/16
DP = 4/16

Table 5.4: Example with high diversity and performance loss.
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a portion p̂c(y|x) = Yi) of those votes for y = Yi while the rest votes for y 6= Yi.
Therefore, the same effect can be observed in probabilistically voting ensembles.

5.5 General Bounds on the Expected Ensemble

Loss

Using only some weak assumptions about the characteristics of the loss function
in use, we can derive upper and lower bounds on the ensemble loss in terms of
mean member loss and diversity. The assumptions we have to make are the ones of
triangularity and symmetry :

Definition 5.6. A loss function l : Y × Y → R is called triangular iff it obeys the
triangle inequality

∀a, b, c ∈ Y : l(a, b) + l(b, c) ≥ l(a, c). (5.44)

Definition 5.7. A loss function l : Y × Y → R is called symmetric iff

∀a, b ∈ Y : l(a, b) = l(b, a). (5.45)

Many commonly used loss functions are both triangular and symmetric, including
e.g. 0-1 loss, squared loss, absolute loss, etc.

Theorem 5.11. Let l be any triangular loss function. Then, for any given demo-
cratic ensemble,

L(x, y) ≥ L(x, y) − D(x) (5.46)

and
L ≥ L − D. (5.47)

Theorem 5.12. Let l be any loss function which is both triangular and symmetric.
Then, for any given democratic ensemble,

L(x, y) ≤ L(x, y) + D(x) (5.48)

and
L ≤ L + D. (5.49)

The proofs of Theorems 5.11 and 5.12 can be found in Appendix G on pages 149
and 150, respectively.

Using Theorem 5.11 and Theorem 5.12, we can thus bound the ensemble loss in
terms of the mean member loss and the diversity, both from above and from below,
for any triangular and symmetric loss function.
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6. Applying the Loss

Decomposition

While the true quantities L, L, D, etc. are defined in terms of expectations with
respect to the (unknown) joint distribution of X × Y and therefore as such are
unknown, they can be easily estimated by measuring them on a given sample drawn
from X×Y , as is standard practice for the ensemble loss L. In order to empirically
verify the theorems derived in Chapter 5 as well as to illustrate their practical
use, we estimated all the components of the loss decomposition for each of the 36
previously used UCI datasets using 10 runs of 10-fold cross-validation, as described
in Section 4.1. For each of the 100 training/testing splits per data set, we learned
an ensemble consisting of 30 unpruned decision trees on the training set. We then
evaluated the ensemble on the test set, measuring expected ensemble loss L, expected
mean member loss L, and expected diversity D, as defined in Section 5.2. We further
measured expected diversity on correctly predicted examples DT , expected diversity
on incorrectly predicted examples DF , and expected probability of predicting the
true class given that the ensemble made a mistake DP . The averages and standard
deviations of those measurements are shown in Appendix H, with one table for each
ensemble method.

When plugging those averages into the formulas given in Section 5.4.1 and Sec-
tion 5.4.2, the left hand side does usually not equal the right hand side. This is
not a flaw of the formulas however, but due only to the averaging over the 100
training/testing splits: in general, avg(a1, a2..., an)/avg(b1, b2..., bn) does not equal
avg(a1/b1, a2/b2, ..., an/bn). When plugging the estimates into the formulas for each
individual training/testing split, the left hand side does indeed equal the right hand
side.

In Appendix H, Column L∗ shows the results of computing the expected ensem-
ble loss that are obtained by plugging the averaged estimates for L, DT , and DP

into Equation 5.43 (for a small number of training/testing splits, DF and DP were
unmeasurable because the ensemble made no mistakes on the test data – for the
calculation of the averages of L∗, we set DP = DF = 0 for those training/testing
splits). When, on the other hand, the right hand side of Equation 5.43 is com-
puted directly from the estimates for each individual training/testing split and the
results averaged afterwards, the obtained values do indeed match those obtained by
averaging the measured ensemble loss estimates, which are shown in column L.
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Dataset L L∗

Vprob Vmaj Vprob Vmaj

anneal 0.39±0.20 0.39±0.20 0.33±0.20 0.33±0.20
audiology 17.56±1.61 17.74±1.52 17.45±1.61 17.63±1.52
autos 16.02±1.13 16.07±1.12 16.00±1.13 16.07±1.12
balance 19.96±0.50 19.96±0.50 19.97±0.50 19.97±0.50
breastc 31.79±1.87 31.58±1.80 31.95±1.87 31.75±1.80
breastw 3.98±0.21 4.00±0.20 3.88±0.21 3.91±0.20
colic 14.70±0.44 14.67±0.56 14.72±0.44 14.66±0.56
credita 14.46±0.53 14.54±0.60 14.46±0.53 14.54±0.60
creditg 25.44±1.09 25.44±1.09 25.52±1.09 25.52±1.09
diabetes 24.09±1.20 23.96±1.07 24.10±1.20 23.96±1.07
glass 25.09±1.46 25.05±1.44 25.23±1.46 25.18±1.44
heartc 19.40±1.20 19.49±1.15 19.41±1.20 19.50±1.15
hearth 22.69±0.90 22.49±0.81 22.83±0.90 22.60±0.81
hearts 63.70±2.94 63.68±2.82 63.59±2.94 63.61±2.82
heartv 20.04±0.93 20.07±0.92 19.93±0.93 19.95±0.92
hepatitis 18.11±1.36 18.23±1.65 18.20±1.36 18.06±1.65
hypo 0.33±0.07 0.34±0.06 0.31±0.07 0.32±0.06
ionosphere 7.44±0.59 7.50±0.57 7.23±0.59 7.27±0.57
iris 5.47±0.88 5.67±0.79 5.09±0.88 5.27±0.79
krk 16.16±0.18 16.18±0.18 16.16±0.18 16.18±0.18
krkp 0.39±0.07 0.39±0.07 0.35±0.07 0.35±0.07
labor 15.27±1.73 15.10±1.73 13.52±1.73 13.51±1.73
letter 5.74±0.12 5.74±0.12 5.74±0.12 5.74±0.12
lymph 17.65±1.95 17.65±1.95 17.54±1.95 17.54±1.95
phoneme 9.96±0.19 10.17±0.16 9.96±0.19 10.17±0.16
primary 60.68±1.29 60.77±1.58 60.73±1.29 60.83±1.58
satimage 9.19±0.17 9.17±0.15 9.19±0.17 9.16±0.15
segment 2.21±0.18 2.26±0.18 2.19±0.18 2.24±0.18
shuttle 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00
sick 1.13±0.11 1.15±0.13 1.11±0.11 1.13±0.13
sonar 20.33±2.57 20.90±2.52 20.38±2.57 20.98±2.52
soybean 8.05±0.49 7.99±0.46 8.04±0.49 7.98±0.46
splice 5.86±0.06 5.86±0.06 5.86±0.06 5.86±0.06
vehicle 24.74±0.57 24.85±0.71 24.68±0.57 24.80±0.71
voting 4.25±0.38 4.23±0.36 4.05±0.38 4.09±0.36
waveform 17.12±0.35 17.10±0.37 17.13±0.35 17.11±0.37
Mean 8.16 8.19 8.00 8.03

Table 6.1: Loss comparison of Bagging(1; 30) with Probabilistic vs. Majority Vote.
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L L D DT DF DP L∗

Vprob 8.16 11.68 7.74 6.17 26.20 20.41 8.00
Vmaj 8.19 11.50 7.43 5.86 25.67 20.04 8.03

Table 6.2: Loss decomposition components for Bagging(1; 30) with Probabilistic vs.
Majority Vote.

6.1 Probabilistic vs. Majority Vote

The original Bagging algorithm presented in [8] uses only the predicted outcomes,
i.e., the member classifiers are value classifiers as in Definition 2.1, and the ensem-
ble predicts the outcome most frequently predicted by the member classifiers, in
accordance with Equation 2.9. This is also the most commonly used version of
Bagging. However, many types of classifiers are able to make probabilistic predic-
tions, i.e. to output a probability distribution over the outcome space rather than
just a single predicted outcome. To make use of those probabilistic predictions in
an ensemble, all that has to be done is a suitable extension to the voting function
in order to enable it to combine whole probability distributions rather than single
predictions. The extension shown in Equation 2.11 is straightforward: The voting
function averages the member classifiers’ belief distributions for each outcome and
predicts the outcome with the highest average belief. As shown in Section 5.1, both
voting functions Equation 2.9 and Equation 2.11 are democratic voting functions as
in Definition 5.1, and Equation 2.11 is a generalization of Equation 2.9.

Furthermore, for ensembles whose members are distribution classifiers, each mem-
ber classifier can be seen as a collection of many value classifiers, out of which a
portion p̂c(y|x) predicts the corresponding outcome y. Therefore, given that the
benefits of using ensembles presumably grow as the number of member classifiers
grows, we would expect probabilistic voting to perform better than simple majority
vote. To test this hypothesis, we ran the loss decomposition experiments for both
Bagging(1; 30) with majority vote and Bagging(1; 30) with probabilistic voting. The
results are shown in Table H.1 (majority vote) and Table H.2 (probabilistic voting)
on pages 151–152.

Table 6.1 directly compares the ensemble loss for the two voting functions on a per
dataset basis, whereas Table 6.2 shows the averages (in terms of the geometric mean)
over all datasets for all variables of the loss decomposition. As expected, probabilistic
voting slightly outperforms simple majority vote: it performs slightly better on
17 datasets and slightly worse on 11 datasets, although none of the differences
is statistically significant. Bagging with probabilistic voting achieves an average
ensemble loss of 8.16 percent, versus an average ensemble loss of 8.19 percent using
majority vote.

This reduction in expected ensemble loss is achieved despite a slight increase in
the expected member loss L and comes with a slight increase in expected diversity
D. (Although in both cases the ensembles were learned and evaluated on the same

66



L L D DT DF DP L∗

Bagging(0.5; 30) 8.73 13.43 9.79 8.03 30.44 23.24 8.55
Bagging(1; 30) 8.16 11.68 7.74 6.17 26.20 20.41 8.00
Bagging(2; 30) 8.13 10.63 6.07 4.70 21.57 17.05 8.02
Cragging(2; 15) 8.37 12.53 8.77 7.14 28.44 21.91 8.21
Cragging(3; 10) 8.22 11.50 7.29 5.77 24.02 18.82 8.11
Cragging(30; 1) 9.14 10.09 3.16 2.24 11.53 9.33 9.12

Table 6.3: Comparison of sampling schemes.

100 training/testing split and consist of the same decision trees, the definition of
expected mean member loss according to Equation 5.25 and Equation 5.28 never-
theless leads to slightly different values of L.) The small increase in DP is able to
make up for the proportionally higher increase in DT , resulting overall in the slight
reduction of expected ensemble loss.

These experiments confirm empirical observations made in [3]. Apart from the
marginally better performance, the added expense of storing and handling the indi-
vidual member classifiers’ belief distributions may also be justified by other consid-
erations, such as when a probability distribution over the outcome space is desired
as ensemble output.

6.2 Comparison of Sampling Schemes

We have already seen in Section 4.2 that the “standard” Bagging algorithm can be
improved upon frequently by varying the scheme according to which the instances
passed to the base classifier inducer are sampled from the original training set. Rep-
resentatively we consider here varying the resampling rate s (Bagging(0.5; 30) with
s := 0.5, standard Bagging(1; 30) with s := 1, and Bagging(2; 30) with s := 2), as
well as using cross-validation sampling with r runs and f folds instead of bootstrap
sampling (Cragging(30; 1) with r := 1 and f := 30, Cragging(2; 15) with r := 15
and f := 2, and Cragging(3; 10) with r := 10 and f := 3). All schemes generate
ensembles with 30 member classifiers and consistently use Vprob (Equation 2.11) as
the voting function. Appendix H shows the measured values of the loss decom-
position components for each tested problem domain. The same data is shown
again in Appendix I, organized differently. While Appendix H has one table per
sampling scheme, Appendix I contains one table for each loss decomposition com-
ponent. Thus, the tables in Appendix H are suited for comparisons regarding one
sampling scheme across different problem domains, while the tables in Appendix I
facilitate comparisons of different sampling schemes against each other. In each row
of the tables in Appendix I, the best-performing ensemble method (i.e., the combi-
nation of decomposition variables resulting in the lowest expected ensemble loss) is
marked in bold.
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Figure 6.1: Influence of decomposition variables on ensemble loss for
Bagging(0.5; 30), Bagging(1; 30), and Bagging(2; 30).
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Figure 6.2: Influence of decomposition variables on ensemble loss for Cragging(2; 15),
Cragging(3; 10), and Cragging(30; 1).
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Figure 6.5: Values of L/(1− DP − DF ) and D/(1−DP −DF ) for Bagging(0.5; 30),
Bagging(1; 30), and Bagging(2; 30).

Table 6.3 shows the geometric means for all components of the loss decomposition
over all tested problem domains in percent. All tested sampling schemes outperform
on average a single base classifier, which has an average expected loss of 9.49 percent
(Table B.1 on page 85). However, when considering individual datasets (Table I.1
on page 158), the expected ensemble loss L of ensembles including those learned by
standard Bagging can – contrary to popular beliefs – sometimes be greater than that
of the base learner (LC4.5), independent of whether majority vote or probabilistic
voting is used as the voting function. Here, this happens for the datasets annealing,
krkp, splice and heart-h (although not significantly).

This is a direct manifestation of the accuracy-diversity trade-off: In order to learn
diverse classifiers, bagging generates bootstrap replicates of the original data set.
Those bootstrap replicates will on average contain only about 63.2 percent of the
original training examples, resulting in member classifiers which are less accurate
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Figure 6.6: Values of L/(1 − DP − DF ) and D/(1 − DP − DF ) for Cragging(2; 15),
Cragging(3; 10), and Cragging(30; 1).

than a single classifier learned from all the original data; i.e. L > LC4.5. Sometimes
the gain in diversity will not be enough to compensate for this loss in accuracy.

What is more, the expected ensemble loss L can sometimes be greater than the
expected mean member loss L – namely when LDP > (1 − L)DT , as is the case
for all tested ensemble methods on the annealing dataset. The possibility of having
L > L even when L < 0.5 and the ensemble members are diverse is contradictory
to common expectations among researchers and markedly different from ensemble
behavior under squared loss.

Table I.1 also shows that, out of the sampling methods tried, Bagging(1; 30) per-
forms best on only 3 out of 36 datasets. On the the remaining 33 datasets it is
outperformed by at least one of the other sampling methods. Thus, it is beneficial
to consider alternative sampling schemes besides “normal” Bagging when building
classifier ensembles. As none of the sampling schemes consistently outperforms the
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others, a sensible approach would be to “tweak” the sampling scheme using a hold-
out set of evaluation data. However, the enormous computational effort required
to construct and evaluate multitudes of classifier ensembles may present a serious
obstacle to this undertaking. Ideally, one would like to be able to determine the
performance of the ensemble methods in advance, using only properties of the data
set and the base learner. While the inherent complexity of the base learner C4.5
prevents a rigorous theoretical predictive analysis, we can still use the loss decom-
position from Chapter 5 to perform a comparative analysis among the sampling
schemes, in order to at least reduce somewhat the number of parameter settings
that have to be examined.

Consider Figure 6.1 and Figure 6.2 on page 68, which show the ensemble loss (y-axis)
vs. each of the loss decomposition components (x-axis). In each of the plots, one
point is shown for each data set and ensemble method. The remarkable similarity
between Figure 6.1 and Figure 6.2 reinforces the hypothesis from Chapter 3 that
similar changes to diversity and member accuracy will lead to similar changes in
ensemble loss, independent of how those changes were arrived at.

Figure 6.3 on page 69 and Figure 6.4 on page 70 show the measured values of the
loss decomposition components for all tested sampling schemes. While there is no
obvious pattern discernible for the expected ensemble loss L itself (Figure 6.3 top),
the individual components of the ensemble loss do seem to change in a consistent
manner when varying the sampling scheme. That is, we usually have:

• LB(0.5;30) > LC (2;15) > LB(1;30) > LC (3;10) > LB(2;30) > LC (30;1)

• DB(0.5;30) > DC (2;15) > DB(1;30) > DC (3;10) > DB(2;30) > DC (30;1)

• DT,B(0.5;30) > DT,C (2;15) > DT,B(1;30) > DT,C (3;10) > DT,B(2;30) > DT,C (30;1)

• DF,B(0.5;30) > DF,C (2;15) > DF,B(1;30) > DF,C (3;10) > DF,B(2;30) > DF,C (30;1), and

• DP,B(0.5;30) > DP,C (2;15) > DP,B(1;30) > DP,C (3;10) > DP,B(2;30) > DP,C (30;1)

What is more, not only the directions but also the magnitudes of the variations seem
to be consistent – and therefore predictable. This behavior was to be expected for
the expected mean member loss L as well as the expected diversity D (see Chap-
ter 3) and to some extent for the expected diversities over correctly and incorrectly
predicted instances, DT and DF , due to the nature of the ensemble learning process
via data resampling. It is not immediately obvious why DP (the expected proba-
bility of an ensemble member predicting correctly, given that the ensemble a whole
predicts incorrectly) behaves in such a consistent manner; e.g. why DP for example
consistently decreases when changing the sampling scheme from Bagging(0.5; 30) to
Bagging(2; 30). We believe that this happens because, when the base classifier has
more training instances available, instances will tend to be predicted correctly more
often by the ensemble as a whole (i.e, instances move from F to T ), and the only
instances remaining in F are those which are inherently difficult to predict.
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Figure 6.7: Consistency of changes in L, L/(1 − DP − DF ), and D/(1 − DP − DF )
when switching sampling schemes.

As a result of this consistency, we can infer expected values for the ensemble loss com-
ponents (and hence for the ensemble loss itself) for any one sampling scheme from
the measured values of the ensemble loss components of other sampling schemes.
Using Theorem 5.9 from page 59, we can write the expected ensemble loss L as

L =
L − D

1 − DP − DF

=
L

1 − DP − DF

−
D

1 − DP − DF

(6.1)

The values of the two terms L/(1 − DP − DF ) and D/(1 − DP − DF ) for the
surveyed problem domains are shown in Figure 6.5 and Figure 6.6, for the sampling
schemes with and without replacement, respectively. It is evident that the values
of L/(1−DP −DF ) and D/(1−DP −DF ) behave in a coherent manner across all
problem domains. When changing the sampling parameters, not only the directions
of the changes of the two terms are consistent across the problem domains but also
the magnitudes of the changes.

Consider also Figure 6.7, which shows the differences in L (left), L/(1 − DP − DF )
(middle), and D/(1 − DP − DF ) (right) between the sampling schemes for all
datasets. The top row shows the differences when switching from Bagging(0.5; 30)
to Bagging(1; 30), versus the differences when switching from Bagging(1; 30) to
Bagging(2; 30). The bottom row shows the differences when switching from
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Figure 6.8: Relative ensemble losses and DP vs. number of classes.

Cragging(2; 15) to Cragging(3; 10), versus the differences when switching from
Cragging(3; 10) to Cragging(30; 1). There are no direct apparent relations between
the differences in ensemble losses (left). However, this is because of the loss of
information due to the “hidden” variables. The differences of L/(1 − DP − DF )
(middle), and D/(1 − DP − DF ) (right) do exhibit clear dependencies, and the
〈x, y〉-coordinates of the ∆ [L] plot on the left can be obtained by taking the differ-
ence of the 〈x, y〉-coordinates of the other two plots (by Equation 6.1).

Thus, while we are still not able to directly predict ensemble performance without ac-
tually going through the ensemble learning process, the ensemble loss decomposition
can provide some guidance as to sensible choices of ensemble learning algorithms.
It can also be used nicely to predict the performance of some ensemble algorithms
indirectly from the performance of other ensemble algorithms, thus reducing the
number of parameter settings that have to be evaluated.

6.3 Number of Classes

In Section 5.4.2 we showed that, under 0-1 loss and on problems with more than
two classes, not all diversity contributes to reducing the ensemble loss on incorrectly
predicted instances, but only those member classifiers which actually predict the
correct outcome.

As a measure of the amount of ensemble diversity that really entails a reduction in
ensemble loss, we defined DP as the probability of a member classifier predicting the
correct outcome, given that the ensemble as a whole predicts the outcome incorrectly.
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Consequently we stipulated that, under 0-1 loss and all other things being equal,
ensemble algorithms like Bagging and Cragging should in general work better on
problems with fewer classes.

Obviously, “all other things” are not equal when considering real-world datasets.
Nevertheless, we believe that the data in Figure 6.8 exhibits general trends that
support this hypothesis.

The top row of graphs in Figure 6.8 shows the ensemble losses relative to those of a
single base classifier versus the number of classes |Y |. For each ensemble method M ,
the relative ensemble loss is (LM −LC4.5)/LC4.5 and measures how bad an ensemble
performs compared to a single base classifier. A point is shown for each dataset and
ensemble method, with the lines drawn through the averages of relative ensemble
losses taken over the datasets.

There does seem to be a general tendency for the relative ensemble loss to increase
as |Y | increases. This effect is more pronounced for ensembles with lower mean
member accuracy and higher diversity (Bagging(0.5; 30), Cragging(2; 15)) than for
ensembles with the trade-off more placed in direction of higher mean member ac-
curacy and lower diversity (Bagging(2; 30), Cragging(30; 1)). The bottom row of
graphs in Figure 6.8 shows that the general increase in relative ensemble loss is
accompanied by a general decrease in DP as the number of classes |Y | increases.

Thus, it may be advisable to decompose multiple-class problems into a series of
two-class problems prior to applying ensemble methods. Error-Correcting Output
Coding ([19]) is an ensemble technique designed to do just this. It can be applied
independently of or conjointly with other ensemble methods such as Bagging or
Cragging.
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7. Conclusions and Further

Research

7.1 Summary

In recent years, one of the most active areas of research in supervised learning has
been to study methods for constructing ensembles of classifiers ([17]). Bagging is one
of the most popular of those methods. It has been observed that ensembles in general
and those constructed via Bagging in particular often significantly outperform the
individual classifiers they consist of.

However, a thorough theoretical understanding of ensembles has been lacking so far,
and with that precise answers to crucial questions such as exactly why, how, and
under which conditions they perform well. Rather, analysis of ensembles has been
rather ad-hoc in nature, and so have been the resulting explanations of ensemble
performance. In Chapter 4 we surveyed popular methods for ensemble analysis, and
pointed out some of their shortcomings.

Although it is generally agreed upon that diversity among the component classifiers
is the principal source of the performance gains, a rigorous theoretical analysis has
been missing – perhaps due to the fact there was no coherent definition of what
exactly is diversity and how it is to be measured. Also often overlooked is the fact
that member accuracy and diversity are two goals that directly contradict each other,
and therefore constructing a good ensemble involves finding a good compromise
between those two.

In Chapter 3 we showed that the optimal trade-off between member accuracy and
diversity depends on properties of both the base classifier inducer and the problem
domain. Finding the optimal trade-off necessitates an analysis of the exact quanti-
tative relationships between ensemble performance, ensemble member accuracy, and
diversity.

In Section 5.2 we proposed general definitions of accuracy and diversity among a
set of ensemble members. Those definitions are applicable to all single-stage voting
ensembles, under a wide range of voting functions and under any given loss function.
We showed that the classic definitions under squared loss are but a special case of
our general definitions, and extended the classic loss decomposition under squared
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loss to the case where the member classifiers are distribution classifiers.

We then instantiated the loss decomposition for 0-1 loss and derived the exact quan-
titative relationships between the ensemble loss components, thus revealing the exact
numerical form of the accuracy-diversity trade-off under 0-1 loss. This held valuable
insights into ensemble behavior and helped explain some unexpected experimental
results regarding the performance of ensemble methods.

Under squared loss, member accuracy and diversity are necessary and sufficient
conditions for an ensemble to outperform its members. Using consistent definitions
for accuracy and diversity, we found that under 0-1 loss accuracy and diversity are
still necessary conditions for an ensemble to outperform its members but no longer
sufficient ones. Thus, this difference in ensemble behavior appears to arise directly
from the choice of 0-1 loss as the performance measure.

In Section 5.5 we proved general upper and lower bounds for the expected ensemble
loss L in terms of the expected mean member loss L and the expected diversity D.
The lower bound holds for any transitive loss function. The upper bound holds for
any loss function which is both transitive and symmetric.

Given the nature of the accuracy-diversity trade-off, the question arises whether
Bagging can be improved upon by ensemble methods which place the emphasis either
on more accurate or on more diverse ensembles. Experimental results show indeed
that simple variations of the sampling scheme can frequently lower (or increase)
the expected ensemble loss drastically. The optimal trade-off is dependent on both
properties of the base learner and properties of the problem domain.

Faced with a particular problem domain, a practitioner has to choose a good en-
semble learning method appropriate for this domain. One approach to this is to test
several methods with different parameter settings and choose the one that performs
best. This approach is not always feasible, however, for reasons of both computa-
tional complexity and statistical validity. In Chapter 6 we showed how the ensemble
loss decomposition can de used to reduce the number of ensemble methods and
parameter settings that must be experimentally tried.

7.2 Further Research

The following problems remain open and subject to further research:

7.2.1 Weighted Ensembles

An immediate practical application of the ensemble loss decomposition from Chap-
ter 5 would arise from solving the following optimization problem for certain loss
functions: Given a set of member classifiers with given member losses and diversities,
find a set of weights that minimizes the expected ensemble loss.
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7.2.2 Other Ensemble Learning Methods

Besides Bagging and Cragging, there exist many more single-stage ensemble meth-
ods which work by iterative resampling. These can all be analyzed under the loss
decomposition framework proposed here. In each case we would seek an answer to
questions such as How does the performance of the ensemble method relate to accu-
racy and diversity of the ensemble members? and How do domain properties and
method parameters affect accuracy and diversity of the ensemble members?

In doing so, we would seek confirmation (or disproof) of the following hypotheses:

• that member accuracy and diversity are essentially what makes single-stage
voting ensembles ’tick’;

• that those two properties can be quantified and put into a mathematical rela-
tion with each other; as well as with ensemble performance;

• that those two are contradictory goals and therefore a trade-off has to be made;

• that “similar” parameter settings for the ensemble learning methods will lead
to similar accuracy-diversity trade-offs

• that the best trade-off point depends very much of properties of the dataset
at hand; and

• that equivalence relations can be found between different ensemble learning
methods in the sense that, given a dataset, method A with parameters a and
method B with parameters b will induce ensembles with the same accuracy
and diversity, and hence the same ensemble performance.

Specifically, we would like to investigate theoretically and experimentally the fol-
lowing methods:

• Recent work in the statistical community ([11, 12, 13, 30]) has come up with
subagging (subsample aggregating), another iterative sampling scheme similar
to Bagging and Cragging. In each iteration, subagging draws a bootstrap
sample without replacement, with a subsample size |Si| := α |S|, where |S| is
the size of the original training sample, and α is a parameter to the learning
method. Theoretical results in [11] suggest that, under squared loss, subagging
may improve on both Bagging and Cragging.

• Instead of re-sampling over the instances, one can also re-sample over the set of
features. Or one can re-sample simultaneously over both features and instances
([54, 81, 42]). Experiments showed promising performance improvements over
“standard” Bagging.

• Two alternatives to Bagging are Boosting ([71] and Randomization ([16]). It
seems possible to construct a unifying theoretical framework by viewing them
all as iterative sampling from some space of candidate classifiers.
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• Another approach to iteratively generating accurate yet diverse classifiers, in-
stead of re-sampling, is to add some specified amount of random noise to the
training data itself. This approach has the advantage that it is very general,
i.e. it is applicable to a wide range of problem domains, loss functions, and
base learners. It is also simple enough to be theoretically analyzable, and the
amounts of member accuracy lost and diversity gained are controllable to a
very fine degree.

7.2.3 Other Loss Functions

We would also like to see the unified decomposition instantiated for loss functions
other than 0-1 loss and squared loss. In particular, there are many classification and
regression problems where some types of mistakes are more costly than others. For
those problems, asymmetric performance measures are more appropriate than sym-
metric ones. This makes asymmetric performance measures a difficult but attractive
research target.

An alternative promising route to asymmetric performance measures could be to
focus on ensembles which are distribution classifiers, i.e., ensembles which return as
output a belief distribution over the outcome space, together with an appropriate
performance measure. Theoretical results from [38] suggest that using log loss or
Kullback-Leibler Divergence as performance measures might lead to simpler (and
therefore more intuitive and easier to analyze) ensemble loss decompositions.

The first step on this route could be to investigate how ensemble performances under
those two different paradigms relate to each other.

7.2.4 Other Voting Functions

There are voting functions which are not covered by the definition of democratic
voting as in Definition 5.1, such as aristocratic or progressive voting. Those voting
schemes are not covered by our particular instantiation of the decomposition for
democratic voting schemes under 0-1 loss (Equation 5.30).

The decomposition could be instantiated for those voting schemes as well, by substi-
tuting the voting function Vdem(ŷ(x),w) accordingly. However, results in [6] suggest
that this may not be a fruitful route to pursue.

7.2.5 Other Base Learners

The goal of the experiments conducted for this thesis was to compare different
ensemble methods with each other, therefore all experiments where conducted using
the same base learning algorithm, J4.8, for consistency. The choice of J4.8 as the
base learner was motivated by the fact that it is one of the most popular learning
algorithms readily available. Furthermore, it has been frequently observed that J4.8
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is a good choice as a base learner for ensemble methods (e.g. [16, 59, 66]), as its
high instability (“variance”) will lead to member classifiers which are both accurate
(at least on the training data) and highly diverse.

The theoretical results in Chapter 5 are completely independent of the choice of
the base learner. All our experimental results are consistent with those theoretical
results. We would therefore expect similar experimental results if the experiments
were repeated using other base learners, such as e.g. Naive Bayes or simple Decision
Stumps. However, those learning algorithms choose their model from an effectively
smaller model search space, resulting in lower variance (less instability) than the
unpruned decision trees used in this thesis. Therefore, while we still would expect
the same effects as those observed here, we would also expect these effects to become
less pronounced.

Ideally, we would like a theory that tells us in advance which ensemble learning
method with which parameters will perform best for a given problem domain. This
is a challenging research question which remains open, even for the case of comparing
some simple Bagging variants.

In this thesis, in-depth theoretical analysis of Bagging and Cragging was hindered
in part by the fact that the base classifier inducer itself (C4.5) is inherently complex
and enigmatic. The use of simpler base classifier inducers will probably not give
immediate practical performance results, but could lead to further useful theoretic
insights.

A good candidate for investigation is an random brute-force approach, that is,
the base classifier inducer returns a randomly selected classifier out of some pre-
determined set of candidate classifiers, and the set of candidate classifiers is deter-
mined before any training instances have been seen.

7.2.6 Multi-Stage Ensembles

Multi stage-ensembles (Stacking, Cascading, Serial Combination etc.) are not cov-
ered in this thesis. They are more difficult to analyze than single-stage ensembles,
as the outputs of some ensemble members are inherently dependent on the outputs
of other ensemble members.

Some multi-stage ensembles can be transformed into equivalent single-stage voting
ensembles. The extension of the framework of Chapter 5 to multi-stage ensembles
requires the introduction of a variable X̂ for the member input space and an input
transformation function T : X− > X̂ |C|.

However, the promise of this venture is questionable, as member accuracy and di-
versity are probably not the only factors influencing the performance of multi-stage
ensembles. Other analysis frameworks look more promising. For example, just as a
decision tree is a multi-stage ensemble of decision stumps, Cascading, Stacking, etc.
could be analyzed as a decision tree with complicated node functions.
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7.3 Conclusions

We can imagine a powerful, general theoretical framework that encompasses many
of the ensemble learning methods currently in use, either as special cases or via
proofs of equivalence. We would like to see a theoretical framework that can explain
ensemble behavior qualitatively and quantitatively. Ideally, such a theoretical model
would provide information about expected ensemble performance in advance for
a given data sample, without actually going through the process of training and
testing an ensemble. The form of the information provided could be absolute (“On
this problem, Method A with parameters a will achieve performance p”) or relative
(”On this problem, Method A will perform better than Method B”).

Having such a framework would not only be of immediate practical relevance, it
very likely would also lead to improved ensemble learning methods and to a better
understanding of machine learning in general. We can only hope that our work may
have provided another tiny step towards this worthy goal.
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A. Dataset Providers

We are grateful to the following individuals and organizations for providing the
datasets used in the experiments.

Dataset: Creator / Donor Acknowledgments:

anneal David Sterling and Wray Buntine

audiology Prof. Jergen at Baylor College of Medicine / Bruce Porter (Uni-
versity of Texas)

autos Jeffrey C. Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu)

balance Tim Hume (hume@ics.uci.edu)

breastc M. Zwitter and M. Soklic (University Medical Centre, Institute of
Oncology, Ljubljana)

breastw William H. Wolberg (Wisconsin Hospitals, Madison, Wisconsin,
USA) / Olvi Mangasarian (mangasarian@cs.wisc.edu)

colic Mary McLeish and Matt Cecile (Department of Com-
puter Science, University of Guelph, Canada) / Will Taylor
(taylor@pluto.arc.nasa.gov)

credita Ross Quinlan (quinlan@cs.su.oz.au)

creditg Hans Hofmann (Institut für Statistik und Ökonometrie, Universität
Hamburg)

diabetes National Institute of Diabetes and Digestive and Kidney Diseases
/ Vincent Sigillito (vgs@aplcen.apl.jhu.edu)

glass B. German (Home Office Forensic Science Service) / Vina Spiehler
(Diagnostic Products Corporation)

heartc Robert Detranoi (Long Beach and Cleveland Clinic Foundation)

hearth Andras Janosi (Hungarian Institute of Cardiology, Budapest)

hearts William Steinbrunn (University Hospital, Zurich)

heartv Robert Detrano and V.A. Medical Center

hepatitis G. Gong (Carnegie-Mellon University) and Bojan Cestnik (Jozef
Stefan Institute, Ljubljana)

hypo Garavan Institute and Ross Quinlan (New South Wales Institute,
Sydney)

ionosphere Vince Sigillito (Space Physics Group, Applied Physics Laboratory,
Johns Hopkins University)
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Dataset: Creator / Donor Acknowledgments:

iris R.A. Fisher / Michael Marshall (marshall@pluto.arc.nasa.gov)

krk Michael Bain and Arthur van Hoff (Turing Institute, Glasgow, UK)

krkp Alen Shapiro / Rob Holte and Peter Clark (Turing Institute,
Glasgow)

labor Industrial Relations Information Service, Ottawa, Ontario, Canada
/ Stan Matwin (Computer Science Dept, University of Ottawa)

letter David J. Slate (Odesta Corporation, Evanston, IL)

lymph M. Zwitter and M. Soklic (University Medical Centre, Institute of
Oncology, Ljubljana) / Igor Kononenko (University E.Kardelj) and
Bojan Cestnik (Jozef Stefan Institute, Ljubljana)

phoneme Dominique Van Cappel and Thomson-Sintra (Sophia Antipolis
Cedex, France)

primary M. Zwitter and M. Soklic (University Medical Centre, Institute of
Oncology, Ljubljana) / Igor Kononenko (University E.Kardelj) and
Bojan Cestnik (Jozef Stefan Institute, Ljubljana)

satimage Karen Hall (Centre for Remote Sensing, University of New South
Wales) and Alistair Sutherland (Statistics Dept., Strathclyde Uni-
versity, Glasgow) / Ashwin Srinivasan (Department of Statistics
and Modeling Science, University of Strathclyde, Glasgow)

segment Carla Brodley (Vision Group, University of Massachusetts)

shuttle NASA / Jason Catlett (University of Sydney)

sick Garavan Institute and Ross Quinlan (New South Wales Institute,
Sydney)

sonar Terry Sejnowski (Salk Institute and the University of California at
San Diego) and R. Paul Gorman (Allied-Signal Aerospace Technol-
ogy Center) / Scott E. Fahlman

splice Genbank (genbank.bio.net) / G. Towell, M. Noordewier, and J.
Shavlik

vehicle Pete Mowforth and Barry Shepherd (Turing Institute, Glasgow)
/ Alistair Sutherland (Statistics Dept., Strathclyde University,
Glasgow)

voting Congressional Quarterly Almanac / Jeff Schlimmer

waveform Wadsworth International Group, Belmont, California / David Aha
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B. Performance of Base Classifier

Dataset L
anneal 0.14±0.07
audiology 18.88±0.97
autos 17.53±1.30
balance 21.95±0.69
breastc 34.35±1.99
breastw 6.22±0.35
colic 16.58±0.75
credita 19.48±0.77
creditg 31.98±0.81
diabetes 26.47±0.91
glass 32.17±1.68
heartc 25.42±1.97
hearth 22.12±0.88
hearts 68.73±2.87
heartv 26.11±1.83
hepatitis 22.00±2.24
hypo 0.37±0.06
ionosphere 9.92±0.46
iris 6.13±0.69
krk 17.99±0.14
krkp 0.38±0.11
labor 18.50±2.46
letter 11.53±0.16
lymph 23.57±2.29
phoneme 13.63±0.24
primary 62.99±1.38
satimage 14.17±0.31
segment 3.02±0.27
shuttle 0.02±0.00
sick 1.38±0.09
sonar 26.71±2.20
soybean 8.18±0.67
splice 5.45±0.09
vehicle 26.69±1.40
voting 5.52±0.43
waveform 25.08±0.44
G. Mean 9.49

Table B.1: Performance of base classifier.
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C. Error curves for Cragging(n; 1)
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Figure C.1: Error curves for Cragging(n; 1). (continued on next page)
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Figure D.1: κ-Error Diagrams for B(0.5; 30), B(1; 30), and B(2; 30).
Pairs of classifiers in the lower left corner are more accurate
and more diverse.
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Figure D.2: κ-Error Diagrams for C (2; 15), C (3; 10), and C (30; 1).
Pairs of classifiers in the lower left corner are more accurate
and more diverse. (continued on next page)
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E. Cumulative Margin

Distributions

Cumulative Margin Distributions for Bagging(0.5; 30)
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Figure E.1: Cumulative margin distributions on training (—) and test
(—) data for B(0.5; 30) (continued on next page)
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Figure E.1: Cumulative margin distributions on training (—) and test
(—) data for B(0.5; 30) (continued on next page)
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Figure E.1: Cumulative margin distributions on training (—) and test
(—) data for B(0.5; 30)
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Cumulative Margin Distributions for Bagging(1; 30)
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Figure E.2: Cumulative margin distributions on training (—) and test
(—) data for B(1; 30) (continued on next page)
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Figure E.2: Cumulative margin distributions on training (—) and test
(—) data for B(1; 30) (continued on next page)
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Figure E.2: Cumulative margin distributions on training (—) and test
(—) data for B(1; 30)
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Cumulative Margin Distributions for Bagging(2; 30)
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Figure E.3: Cumulative margin distributions on training (—) and test
(—) data for B(2; 30) (continued on next page)
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Figure E.3: Cumulative margin distributions on training (—) and test
(—) data for B(2; 30) (continued on next page)
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Figure E.3: Cumulative margin distributions on training (—) and test
(—) data for B(2; 30)
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Cumulative Margin Distributions for Cragging(2; 15)
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Figure E.4: Cumulative margin distributions on training (—) and test
(—) data for C (2; 15) (continued on next page)
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Figure E.4: Cumulative margin distributions on training (—) and test
(—) data for C (2; 15) (continued on next page)
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Figure E.4: Cumulative margin distributions on training (—) and test
(—) data for C (2; 15)
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Cumulative Margin Distributions for Cragging(3; 10)

anneal

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

audiology

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

autos

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

balance

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

breastc

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

breastw

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

colic

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

credita

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

creditg

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

diabetes

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

glass

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

heartc

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

hearth

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

hearts

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

heartv

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure E.5: Cumulative margin distributions on training (—) and test
(—) data for C (3; 10) (continued on next page)
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Figure E.5: Cumulative margin distributions on training (—) and test
(—) data for C (3; 10) (continued on next page)
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Figure E.5: Cumulative margin distributions on training (—) and test
(—) data for C (3; 10)
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Cumulative Margin Distributions for Cragging(30; 1)
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Figure E.6: Cumulative margin distributions on training (—) and test
(—) data for C (30; 1) (continued on next page)
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Figure E.6: Cumulative margin distributions on training (—) and test
(—) data for C (30; 1) (continued on next page)
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Figure E.6: Cumulative margin distributions on training (—) and test
(—) data for C (30; 1)
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Cumulative Margin Distributions for the Base Clas-

sifier
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Figure E.7: Cumulative margin distributions on training (—) and test
(—) data for the base classifier (continued on next page)
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Figure E.7: Cumulative margin distributions on training (—) and test
(—) data for the base classifier (continued on next page)
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Figure E.7: Cumulative margin distributions on training (—) and test
(—) data for the base classifier

123



F. Bias-Variance Decomposition

Results

Dataset Loss Bias Var VarU VarB
anneal 0.79±0.28 0.33±0.27 0.45±0.25 0.54±0.19 0.09±0.09
audiology 24.12±4.10 19.45±4.61 4.67±1.53 7.08±1.64 2.41±0.75
autos 24.27±3.69 16.05±3.84 8.22±2.13 10.14±1.81 1.92±0.64
balance 19.46±1.86 17.42±1.93 2.03±0.66 4.92±0.70 2.89±0.38
breastc 33.55±3.74 30.83±5.30 2.72±2.48 9.15±1.69 6.43±1.15
breastw 4.53±1.04 4.29±1.12 0.24±0.32 1.01±0.20 0.77±0.30
colic 15.61±2.05 14.40±2.30 1.21±1.12 2.88±0.70 1.67±0.62
credita 15.23±1.99 13.48±2.65 1.75±1.05 4.02±0.64 2.27±0.51
creditg 26.98±1.70 23.30±1.84 3.68±0.70 8.26±0.57 4.58±0.35
diabetes 25.72±1.74 23.44±1.86 2.28±0.92 6.25±0.66 3.96±0.39
glass 29.54±4.37 24.68±3.78 4.87±1.58 9.44±1.07 4.58±1.25
heartc 20.90±3.38 18.52±3.81 2.38±1.20 6.33±1.04 3.94±0.80
hearth 21.60±2.83 21.78±2.60 -1.81±1.66 4.60±1.39 4.79±1.04
hearts 65.26±3.74 62.50±6.50 2.76±3.85 12.14±2.64 9.38±1.81
heartv 21.22±2.89 18.89±3.54 2.33±1.79 6.43±0.93 4.10±1.24
hepatitis 18.65±4.27 17.33±4.53 1.32±1.46 4.77±1.17 3.45±1.24
hypo 0.46±0.15 0.34±0.17 0.11±0.07 0.17±0.05 0.05±0.04
ionosphere 8.17±2.27 6.56±2.34 1.62±0.61 2.28±0.59 0.66±0.33
iris 6.04±3.31 5.33±3.44 0.71±0.67 1.00±0.54 0.29±0.23
krk 22.60±0.20 16.58±0.32 6.02±0.24 9.46±0.17 3.44±0.13
krkp 0.73±0.14 0.44±0.18 0.29±0.14 0.42±0.10 0.13±0.06
labor 15.76±4.43 14.00±6.70 1.76±2.56 4.80±1.30 3.04±1.64
letter 7.92±0.26 5.19±0.26 2.73±0.17 3.70±0.16 0.97±0.05
lymph 20.19±3.28 16.81±4.18 3.38±1.90 7.42±1.09 4.03±0.98
phoneme 11.27±0.56 9.81±0.69 1.46±0.29 3.44±0.17 1.98±0.21
primary 63.13±3.26 56.93±3.86 6.19±1.50 10.14±1.45 3.95±0.57
satimage 10.04±0.65 8.78±0.57 1.26±0.18 2.65±0.18 1.39±0.07
segment 3.43±0.39 2.64±0.44 0.79±0.23 1.41±0.21 0.62±0.13
shuttle 0.04±0.01 0.03±0.01 0.01±0.01 0.02±0.01 0.01±0.00
sick 1.47±0.25 1.22±0.25 0.25±0.11 0.54±0.11 0.29±0.09
sonar 24.75±2.72 21.12±4.75 3.63±2.64 9.63±1.61 6.00±1.70
soybean 9.81±2.03 8.05±2.80 1.75±1.18 3.39±0.70 1.63±0.74
splice 6.56±0.41 5.89±0.40 0.67±0.31 1.24±0.30 0.57±0.12
vehicle 27.00±2.20 25.55±2.96 1.45±1.44 7.58±0.97 6.13±0.73
voting 5.10±1.82 3.22±1.55 1.88±0.52 2.10±0.65 0.21±0.20
waveform 17.84±1.07 15.60±1.26 2.24±0.32 5.58±0.24 3.34±0.23

Mean 17.49 15.30 2.19 4.86 2.67

Table F.1: Results of bias-variance decomposition for Bagging(1; 30):
absolute values.
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Dataset Loss Bias Var VarU VarB
anneal 0.93 1.50 0.73 0.79 1.53
audiology 0.97 0.96 1.02 0.93 0.79
autos 0.90 1.06 0.69 0.71 0.83
balance 0.89 0.91 0.77 0.80 0.82
breastc 0.92 0.98 0.56 0.68 0.75
breastw 0.71 0.97 0.12 0.32 0.64
colic 0.87 0.96 0.41 0.52 0.65
credita 0.78 0.93 0.35 0.47 0.66
creditg 0.83 0.87 0.63 0.57 0.53
diabetes 0.87 1.01 0.37 0.49 0.59
glass 0.85 0.96 0.52 0.64 0.84
heartc 0.83 0.95 0.43 0.56 0.68
hearth 0.95 1.10 -1.94 0.60 1.00
hearts 0.95 1.07 0.27 0.61 1.00
heartv 0.82 0.91 0.44 0.57 0.69
hepatitis 0.83 0.90 0.43 0.60 0.71
hypo 0.83 1.00 0.54 0.64 1.02
ionosphere 0.76 0.92 0.44 0.43 0.41
iris 0.94 1.00 0.65 0.66 0.68
krk 0.91 1.02 0.70 0.78 0.95
krkp 0.93 1.27 0.66 0.79 1.42
labor 0.88 1.00 0.46 0.59 0.70
letter 0.56 0.89 0.32 0.39 0.85
lymph 0.82 0.86 0.66 0.66 0.67
phoneme 0.78 0.97 0.34 0.48 0.69
primary 0.95 0.97 0.78 0.83 0.92
satimage 0.65 0.92 0.21 0.32 0.57
segment 0.78 1.17 0.37 0.52 1.14
shuttle 1.04 1.13 0.86 0.92 1.06
sick 0.93 1.07 0.56 0.69 0.86
sonar 0.84 1.13 0.34 0.56 0.91
soybean 0.87 1.02 0.51 0.64 0.88
splice 1.06 1.01 1.88 1.17 0.81
vehicle 0.90 1.00 0.31 0.61 0.79
voting 0.81 0.78 0.87 0.77 0.37
waveform 0.69 0.92 0.25 0.37 0.56

Mean 0.86 1.00 0.54 0.63 0.80

Table F.2: Results of bias-variance decomposition for Bagging(1; 30): ratios
relative to the base classifier.
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Dataset Loss Bias Var VarU VarB
anneal 1.15±0.33 0.78±0.46 0.37±0.24 0.57±0.13 0.20±0.16
audiology 25.57±4.10 19.45±5.55 6.12±2.34 7.96±1.74 1.84±1.03
autos 27.21±3.15 18.52±3.24 8.68±1.74 11.14±1.49 2.46±0.65
balance 17.66±1.86 13.90±2.27 3.76±1.38 5.77±0.99 2.01±0.57
breastc 32.73±3.31 28.71±4.52 4.02±1.70 10.04±1.47 6.02±1.14
breastw 4.50±1.02 4.01±1.11 0.49±0.25 1.03±0.20 0.54±0.28
colic 15.35±1.94 13.87±2.61 1.47±0.93 2.74±0.57 1.26±0.50
credita 14.86±1.80 13.77±2.14 1.09±0.70 3.15±0.49 2.06±0.40
creditg 26.96±1.84 23.80±2.50 3.16±1.20 7.64±0.82 4.48±0.56
diabetes 24.96±1.77 23.30±1.81 1.66±0.74 5.37±0.57 3.72±0.35
glass 29.58±4.32 25.09±5.32 4.49±1.69 8.56±1.34 4.07±1.33
heartc 19.14±3.02 16.86±3.57 2.28±1.37 5.46±1.03 3.17±0.85
hearth 20.28±3.14 20.45±3.07 -1.83±1.73 4.13±1.40 4.30±1.04
hearts 63.57±4.24 60.77±6.53 2.80±3.36 12.05±2.73 9.24±1.59
heartv 19.69±2.56 15.19±2.54 4.51±0.98 6.91±0.84 2.41±0.79
hepatitis 18.29±4.84 17.33±6.07 0.96±1.68 4.20±1.20 3.24±1.45
hypo 0.51±0.18 0.40±0.20 0.11±0.06 0.18±0.04 0.07±0.05
ionosphere 8.16±2.50 7.13±2.72 1.04±0.72 1.87±0.51 0.83±0.44
iris 6.24±3.21 6.00±3.31 0.24±0.84 0.84±0.46 0.60±0.51
krk 24.63±0.20 19.50±0.30 5.13±0.20 9.22±0.14 4.10±0.13
krkp 0.85±0.19 0.66±0.30 0.19±0.16 0.36±0.10 0.17±0.07
labor 16.08±4.55 12.33±7.03 3.74±2.95 6.13±1.78 2.39±1.68
letter 7.94±0.27 5.52±0.33 2.43±0.18 3.43±0.15 1.01±0.07
lymph 19.67±3.58 14.86±3.43 4.82±1.64 7.71±1.36 2.89±0.83
phoneme 12.27±0.57 10.99±0.71 1.27±0.30 3.24±0.20 1.96±0.19
primary 61.97±3.14 56.63±3.55 5.34±1.23 9.41±1.16 4.07±0.78
satimage 10.23±0.68 9.26±0.62 0.97±0.26 2.38±0.20 1.41±0.12
segment 3.74±0.31 3.03±0.29 0.71±0.21 1.39±0.22 0.68±0.09
shuttle 0.05±0.01 0.05±0.01 0.00±0.00 0.01±0.00 0.01±0.00
sick 1.56±0.28 1.51±0.31 0.05±0.10 0.40±0.08 0.35±0.10
sonar 24.54±3.19 24.02±5.48 0.52±2.90 7.30±1.25 6.78±2.04
soybean 10.01±2.03 8.06±2.43 1.95±1.01 3.35±0.76 1.40±0.42
splice 7.01±0.49 6.77±0.47 0.24±0.15 1.01±0.15 0.77±0.10
vehicle 26.96±1.88 26.02±2.10 0.95±1.50 6.91±1.19 5.96±0.49
voting 4.32±1.55 3.22±1.23 1.10±0.55 1.44±0.63 0.35±0.26
waveform 17.25±1.01 15.44±1.15 1.81±0.36 5.05±0.23 3.24±0.27

Mean 17.37 15.20 2.18 4.68 2.50

Table F.3: Results of bias-variance decomposition for Bagging(0.5; 30):
absolute values.
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Dataset Loss Bias Var VarU VarB
anneal 1.36 3.50 0.60 0.84 3.53
audiology 1.03 0.96 1.34 1.04 0.60
autos 1.01 1.23 0.73 0.78 1.06
balance 0.81 0.72 1.42 0.94 0.57
breastc 0.90 0.91 0.82 0.75 0.70
breastw 0.70 0.90 0.25 0.33 0.45
colic 0.86 0.93 0.50 0.50 0.49
credita 0.76 0.95 0.22 0.37 0.59
creditg 0.83 0.89 0.54 0.53 0.52
diabetes 0.85 1.00 0.27 0.42 0.56
glass 0.85 0.98 0.48 0.58 0.75
heartc 0.76 0.87 0.41 0.48 0.54
hearth 0.90 1.04 -1.94 0.54 0.90
hearts 0.92 1.04 0.27 0.61 0.99
heartv 0.76 0.73 0.85 0.62 0.41
hepatitis 0.82 0.90 0.31 0.53 0.66
hypo 0.92 1.15 0.52 0.68 1.28
ionosphere 0.76 1.00 0.28 0.35 0.52
iris 0.97 1.12 0.22 0.56 1.42
krk 0.99 1.20 0.60 0.76 1.13
krkp 1.08 1.91 0.43 0.68 1.93
labor 0.90 0.88 0.98 0.75 0.55
letter 0.56 0.95 0.29 0.36 0.88
lymph 0.80 0.76 0.94 0.69 0.48
phoneme 0.85 1.08 0.29 0.45 0.69
primary 0.93 0.97 0.67 0.77 0.95
satimage 0.66 0.97 0.16 0.28 0.58
segment 0.85 1.35 0.33 0.52 1.25
shuttle 1.33 1.87 0.26 0.77 1.81
sick 0.99 1.33 0.12 0.51 1.03
sonar 0.83 1.28 0.05 0.42 1.03
soybean 0.88 1.02 0.57 0.64 0.76
splice 1.13 1.16 0.68 0.95 1.09
vehicle 0.89 1.02 0.21 0.56 0.77
voting 0.69 0.78 0.51 0.53 0.60
waveform 0.66 0.91 0.20 0.34 0.55

Mean 0.88 1.12 0.48 0.59 0.91

Table F.4: Results of bias-variance decomposition for Bagging(0.5; 30):
ratios relative to the base classifier.

127



Dataset Loss Bias Var VarU VarB
anneal 0.82±0.27 0.22±0.23 0.60±0.25 0.64±0.22 0.04±0.06
audiology 24.36±4.03 20.30±5.21 4.06±2.12 7.04±1.61 2.98±1.31
autos 24.13±3.72 15.07±3.54 9.05±2.31 11.05±2.01 2.00±0.76
balance 20.55±1.79 18.70±1.92 1.85±0.43 4.95±0.45 3.11±0.43
breastc 34.27±3.63 31.49±4.50 2.78±1.76 9.74±1.42 6.96±0.84
breastw 4.89±0.89 4.01±0.88 0.89±0.43 1.62±0.34 0.74±0.23
colic 15.90±1.95 14.13±2.36 1.77±0.97 3.52±0.67 1.76±0.53
credita 16.06±1.96 14.06±2.51 2.00±0.91 4.66±0.48 2.66±0.56
creditg 27.64±1.66 24.00±2.22 3.64±1.07 8.78±0.65 5.15±0.61
diabetes 26.33±1.94 23.57±1.85 2.76±0.73 7.04±0.43 4.28±0.49
glass 30.73±4.13 25.13±4.82 5.60±2.10 10.37±1.43 4.78±1.27
heartc 21.85±3.39 19.51±4.57 2.35±1.54 6.77±1.07 4.42±1.11
hearth 22.09±2.90 20.09±3.00 2.00±2.05 6.18±1.73 4.18±0.91
hearts 66.66±3.97 63.27±6.41 3.39±3.19 13.37±2.05 9.98±1.65
heartv 23.14±2.81 20.74±3.40 2.40±1.39 7.12±0.94 4.73±0.90
hepatitis 19.84±4.46 16.67±5.21 3.17±0.97 6.28±1.17 3.11±1.15
hypo 0.50±0.14 0.34±0.17 0.15±0.06 0.20±0.03 0.05±0.04
ionosphere 7.99±2.06 6.27±2.00 1.72±0.48 2.59±0.60 0.87±0.40
iris 6.02±3.26 5.33±3.44 0.69±0.74 1.07±0.54 0.38±0.34
krk 22.47±0.20 15.81±0.27 6.65±0.20 9.93±0.18 3.28±0.09
krkp 0.73±0.13 0.34±0.16 0.38±0.14 0.47±0.11 0.09±0.05
labor 15.66±4.62 14.00±6.70 1.66±2.71 4.87±1.36 3.21±1.84
letter 8.69±0.23 5.07±0.25 3.62±0.18 4.60±0.17 0.98±0.05
lymph 21.72±3.11 18.86±4.37 2.86±2.11 7.81±1.34 4.95±0.93
phoneme 11.08±0.54 8.94±0.48 2.14±0.24 4.05±0.20 1.90±0.14
primary 64.36±3.16 57.51±3.83 6.85±2.06 10.78±1.80 3.93±0.86
satimage 10.35±0.63 8.81±0.60 1.53±0.13 3.04±0.13 1.50±0.11
segment 3.40±0.39 2.38±0.42 1.02±0.25 1.58±0.23 0.56±0.10
shuttle 0.04±0.01 0.02±0.01 0.02±0.00 0.02±0.01 0.00±0.00
sick 1.47±0.24 1.17±0.32 0.31±0.20 0.61±0.14 0.31±0.11
sonar 25.04±2.91 20.14±4.41 4.89±2.74 10.75±2.00 5.86±1.39
soybean 10.34±2.06 8.20±2.57 2.14±1.28 3.92±0.90 1.78±0.74
splice 7.29±0.57 5.92±0.40 1.37±0.50 2.11±0.51 0.75±0.15
vehicle 26.94±2.35 24.01±3.12 2.93±1.12 8.75±0.77 5.82±0.79
voting 5.61±1.96 3.91±1.71 1.71±0.76 2.20±0.75 0.50±0.26
waveform 18.46±1.03 16.12±1.22 2.34±0.28 6.10±0.18 3.76±0.27

Mean 17.98 15.39 2.59 5.41 2.81

Table F.5: Results of bias-variance decomposition for Bagging(2; 30):
absolute values.
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Dataset Loss Bias Var VarU VarB
anneal 0.97 1.00 0.96 0.94 0.73
audiology 0.98 1.00 0.89 0.92 0.98
autos 0.89 1.00 0.76 0.77 0.86
balance 0.94 0.98 0.70 0.80 0.89
breastc 0.94 1.00 0.57 0.72 0.81
breastw 0.77 0.90 0.46 0.52 0.61
colic 0.89 0.94 0.60 0.64 0.68
credita 0.82 0.97 0.40 0.55 0.77
creditg 0.85 0.90 0.62 0.61 0.60
diabetes 0.89 1.01 0.45 0.55 0.64
glass 0.88 0.98 0.60 0.70 0.88
heartc 0.87 1.00 0.42 0.59 0.76
hearth 0.98 1.02 0.69 0.80 0.87
hearts 0.97 1.08 0.33 0.68 1.07
heartv 0.89 1.00 0.45 0.63 0.80
hepatitis 0.89 0.87 1.02 0.79 0.64
hypo 0.90 1.00 0.73 0.76 0.88
ionosphere 0.74 0.88 0.47 0.49 0.55
iris 0.94 1.00 0.63 0.71 0.89
krk 0.90 0.97 0.78 0.81 0.91
krkp 0.93 1.00 0.87 0.89 0.97
labor 0.88 1.00 0.43 0.59 0.74
letter 0.61 0.87 0.43 0.48 0.86
lymph 0.88 0.97 0.56 0.70 0.82
phoneme 0.76 0.88 0.49 0.56 0.66
primary 0.97 0.98 0.86 0.88 0.92
satimage 0.67 0.92 0.26 0.36 0.61
segment 0.77 1.06 0.47 0.58 1.03
shuttle 0.99 0.87 1.23 1.07 0.74
sick 0.93 1.02 0.69 0.79 0.91
sonar 0.85 1.07 0.46 0.62 0.89
soybean 0.91 1.04 0.63 0.74 0.96
splice 1.17 1.01 3.85 2.00 1.06
vehicle 0.89 0.94 0.64 0.71 0.75
voting 0.89 0.95 0.79 0.81 0.86
waveform 0.71 0.95 0.26 0.41 0.63

Mean 0.88 0.97 0.71 0.73 0.81

Table F.6: Results of bias-variance decomposition for Bagging(2; 30): ratios
relative to the base classifier.
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Dataset Loss Bias Var VarU VarB
anneal 0.90±0.29 0.33±0.27 0.57±0.18 0.64±0.16 0.07±0.07
audiology 23.95±4.03 19.01±5.04 4.94±1.73 7.01±1.47 2.07±1.04
autos 25.28±3.25 17.05±3.72 8.23±2.11 10.55±1.72 2.32±0.74
balance 18.41±1.86 16.94±2.20 1.47±0.95 4.51±0.72 3.04±0.51
breastc 33.24±3.30 28.72±4.62 4.52±2.41 10.43±1.85 5.91±1.15
breastw 4.57±0.99 4.15±1.19 0.42±0.49 1.11±0.32 0.69±0.29
colic 15.58±1.91 13.86±2.34 1.72±0.88 2.97±0.70 1.25±0.41
credita 15.27±1.92 13.91±2.40 1.35±0.78 3.65±0.52 2.29±0.35
creditg 27.37±1.47 24.50±2.06 2.87±1.05 7.84±0.69 4.97±0.56
diabetes 24.79±1.72 23.57±1.48 1.22±0.64 5.14±0.41 3.92±0.55
glass 29.58±4.16 23.68±5.42 5.90±1.99 9.91±1.48 4.01±1.33
heartc 19.46±3.10 16.54±3.54 2.92±1.30 6.13±1.21 3.21±0.62
hearth 21.29±3.08 21.79±2.86 -1.49±1.42 4.21±1.28 4.71±1.16
hearts 65.79±3.48 61.60±6.86 4.19±4.53 12.62±2.86 8.43±2.25
heartv 20.54±2.64 17.04±3.05 3.51±1.68 6.75±1.16 3.25±1.07
hepatitis 18.73±4.89 17.33±6.07 1.40±1.62 4.26±1.18 2.86±1.32
hypo 0.47±0.15 0.32±0.16 0.15±0.06 0.19±0.06 0.04±0.03
ionosphere 8.49±2.52 7.13±2.26 1.36±0.82 2.18±0.77 0.82±0.40
iris 5.96±3.28 5.33±3.44 0.62±0.67 0.89±0.54 0.27±0.19
krk 23.52±0.20 18.15±0.36 5.37±0.22 9.17±0.15 3.80±0.15
krkp 0.81±0.18 0.56±0.25 0.24±0.13 0.38±0.09 0.14±0.06
labor 16.41±4.79 12.33±7.03 4.08±2.71 6.52±1.78 2.44±1.47
letter 8.06±0.25 5.50±0.30 2.56±0.18 3.59±0.15 1.03±0.07
lymph 20.14±3.36 15.48±4.42 4.67±1.99 7.85±1.12 3.18±1.16
phoneme 12.56±0.59 11.38±0.74 1.18±0.29 3.23±0.17 2.06±0.19
primary 62.48±3.01 56.64±3.09 5.84±1.21 9.81±1.20 3.97±0.67
satimage 10.20±0.65 9.03±0.61 1.17±0.13 2.56±0.13 1.39±0.11
segment 3.58±0.34 2.73±0.37 0.85±0.24 1.44±0.21 0.59±0.11
shuttle 0.05±0.01 0.04±0.01 0.00±0.00 0.01±0.00 0.01±0.00
sick 1.49±0.26 1.35±0.30 0.14±0.13 0.46±0.10 0.32±0.11
sonar 23.55±2.89 20.67±4.04 2.88±2.26 8.91±1.46 6.03±1.44
soybean 9.66±2.03 8.05±2.78 1.61±1.08 3.20±0.70 1.60±0.63
splice 6.33±0.35 6.24±0.57 0.09±0.34 0.77±0.26 0.67±0.17
vehicle 26.71±2.06 25.55±2.45 1.17±1.31 7.23±1.03 6.06±0.63
voting 4.48±1.70 2.99±1.54 1.49±0.58 1.64±0.64 0.15±0.21
waveform 17.64±0.99 16.06±1.09 1.58±0.18 5.05±0.16 3.47±0.24

Mean 17.43 15.15 2.27 4.80 2.53

Table F.7: Results of bias-variance decomposition for Cragging(2; 15):
absolute values.
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Dataset Loss Bias Var VarU VarB
anneal 1.07 1.50 0.92 0.94 1.20
audiology 0.96 0.94 1.08 0.92 0.68
autos 0.94 1.13 0.69 0.74 1.01
balance 0.84 0.88 0.55 0.73 0.87
breastc 0.91 0.91 0.92 0.77 0.69
breastw 0.72 0.94 0.21 0.35 0.57
colic 0.87 0.93 0.59 0.54 0.48
credita 0.78 0.96 0.27 0.43 0.66
creditg 0.84 0.92 0.49 0.54 0.58
diabetes 0.84 1.01 0.20 0.40 0.59
glass 0.85 0.92 0.64 0.67 0.74
heartc 0.78 0.85 0.53 0.54 0.55
hearth 0.94 1.10 -1.83 0.55 0.98
hearts 0.96 1.05 0.40 0.64 0.90
heartv 0.79 0.82 0.66 0.60 0.55
hepatitis 0.84 0.90 0.45 0.53 0.58
hypo 0.84 0.92 0.71 0.71 0.72
ionosphere 0.79 1.00 0.37 0.41 0.52
iris 0.93 1.00 0.57 0.59 0.63
krk 0.95 1.11 0.63 0.75 1.05
krkp 1.03 1.64 0.55 0.72 1.51
labor 0.92 0.88 1.06 0.80 0.56
letter 0.57 0.95 0.30 0.37 0.90
lymph 0.82 0.79 0.91 0.70 0.53
phoneme 0.87 1.12 0.27 0.45 0.72
primary 0.94 0.97 0.73 0.80 0.93
satimage 0.66 0.95 0.20 0.30 0.57
segment 0.81 1.21 0.40 0.53 1.09
shuttle 1.20 1.60 0.38 0.73 1.45
sick 0.94 1.19 0.30 0.59 0.96
sonar 0.80 1.10 0.27 0.52 0.91
soybean 0.85 1.02 0.47 0.61 0.87
splice 1.02 1.06 0.26 0.73 0.96
vehicle 0.89 1.00 0.25 0.58 0.78
voting 0.71 0.72 0.69 0.60 0.27
waveform 0.68 0.94 0.18 0.34 0.58

Mean 0.86 1.03 0.50 0.60 0.78

Table F.8: Results of bias-variance decomposition for Cragging(2; 15): ratios
relative to the base classifier.
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Dataset Loss Bias Var VarU VarB
anneal 0.77±0.29 0.22±0.35 0.55±0.22 0.60±0.18 0.06±0.09
audiology 24.19±4.21 18.99±4.58 5.20±1.35 7.38±1.59 2.18±0.74
autos 24.64±3.46 15.07±3.33 9.57±1.91 11.28±1.83 1.71±0.62
balance 19.63±1.81 18.06±2.41 1.57±0.75 4.64±0.58 3.07±0.54
breastc 33.71±3.57 30.46±4.63 3.25±1.47 9.83±1.39 6.58±0.59
breastw 4.73±0.91 4.00±1.00 0.72±0.32 1.41±0.20 0.69±0.29
colic 15.84±1.97 13.86±2.25 1.98±1.08 3.39±0.73 1.41±0.58
credita 16.02±1.88 14.06±2.56 1.97±0.93 4.40±0.58 2.43±0.48
creditg 28.00±1.71 24.50±2.02 3.50±0.96 8.74±0.50 5.24±0.66
diabetes 25.64±1.94 24.48±1.78 1.16±0.76 5.73±0.56 4.57±0.53
glass 30.08±4.27 25.13±5.39 4.95±2.88 9.62±2.07 4.67±1.34
heartc 20.68±3.27 16.20±3.29 4.48±1.99 7.48±1.68 3.00±0.71
hearth 21.57±2.93 21.78±2.60 -1.79±1.21 4.78±1.44 4.99±0.85
hearts 66.57±3.20 60.77±7.09 5.81±5.02 14.31±3.20 8.50±2.27
heartv 21.78±2.52 17.78±3.00 4.00±1.66 7.46±1.08 3.46±0.91
hepatitis 19.84±4.61 18.00±5.62 1.84±1.35 5.15±1.34 3.31±1.34
hypo 0.48±0.14 0.32±0.16 0.17±0.08 0.20±0.07 0.04±0.03
ionosphere 8.73±2.35 7.13±2.54 1.61±0.66 2.49±0.52 0.89±0.44
iris 6.20±3.25 5.33±3.44 0.87±0.77 1.16±0.62 0.29±0.26
krk 22.75±0.20 16.61±0.23 6.14±0.12 9.61±0.13 3.47±0.10
krkp 0.76±0.14 0.44±0.18 0.32±0.14 0.44±0.11 0.12±0.06
labor 16.23±4.60 14.00±6.70 2.23±2.68 5.70±1.50 3.47±1.66
letter 8.54±0.26 5.31±0.23 3.23±0.17 4.23±0.16 1.00±0.04
lymph 20.55±3.19 15.48±4.13 5.07±1.46 8.51±0.78 3.44±0.86
phoneme 12.16±0.58 10.49±0.68 1.67±0.28 3.66±0.20 1.99±0.18
primary 63.57±3.26 57.51±4.02 6.05±1.66 10.08±1.43 4.02±0.82
satimage 10.33±0.65 8.86±0.57 1.47±0.23 2.93±0.20 1.46±0.12
segment 3.47±0.38 2.55±0.47 0.92±0.25 1.51±0.20 0.59±0.16
shuttle 0.04±0.01 0.03±0.01 0.01±0.01 0.02±0.00 0.01±0.00
sick 1.50±0.25 1.30±0.30 0.20±0.13 0.53±0.08 0.33±0.12
sonar 23.63±2.94 19.24±5.16 4.40±3.10 10.05±2.08 5.65±1.68
soybean 10.02±2.06 8.20±2.77 1.82±1.19 3.61±0.75 1.78±0.79
splice 6.17±0.33 5.86±0.39 0.30±0.26 0.91±0.21 0.60±0.14
vehicle 26.95±2.21 25.90±2.51 1.04±0.96 7.56±0.75 6.51±0.60
voting 5.31±1.91 3.45±1.65 1.87±0.71 2.15±0.72 0.28±0.22
waveform 18.14±1.02 16.20±1.22 1.94±0.27 5.63±0.23 3.69±0.21

Mean 17.76 15.21 2.55 5.20 2.65

Table F.9: Results of bias-variance decomposition for Cragging(3; 10):
absolute values.
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Dataset Loss Bias Var VarU VarB
anneal 0.91 1.00 0.88 0.89 1.00
audiology 0.97 0.94 1.14 0.97 0.71
autos 0.91 1.00 0.80 0.79 0.74
balance 0.90 0.94 0.59 0.75 0.88
breastc 0.93 0.97 0.66 0.73 0.77
breastw 0.74 0.90 0.37 0.45 0.57
colic 0.89 0.93 0.68 0.62 0.55
credita 0.82 0.97 0.39 0.52 0.70
creditg 0.86 0.92 0.60 0.60 0.61
diabetes 0.87 1.05 0.19 0.45 0.68
glass 0.86 0.98 0.53 0.65 0.86
heartc 0.83 0.83 0.81 0.66 0.52
hearth 0.95 1.10 -1.93 0.62 1.04
hearts 0.97 1.04 0.56 0.72 0.91
heartv 0.84 0.86 0.76 0.66 0.58
hepatitis 0.89 0.94 0.59 0.64 0.68
hypo 0.88 0.92 0.80 0.78 0.70
ionosphere 0.81 1.00 0.44 0.47 0.56
iris 0.97 1.00 0.80 0.76 0.68
krk 0.91 1.02 0.72 0.79 0.96
krkp 0.97 1.27 0.73 0.83 1.35
labor 0.91 1.00 0.58 0.70 0.80
letter 0.60 0.92 0.38 0.44 0.88
lymph 0.83 0.79 0.99 0.76 0.57
phoneme 0.84 1.03 0.38 0.51 0.70
primary 0.96 0.98 0.76 0.82 0.94
satimage 0.67 0.93 0.25 0.35 0.60
segment 0.79 1.13 0.43 0.56 1.09
shuttle 1.03 1.20 0.67 0.81 1.10
sick 0.95 1.14 0.45 0.67 0.96
sonar 0.80 1.03 0.41 0.58 0.86
soybean 0.88 1.04 0.53 0.68 0.97
splice 0.99 1.00 0.85 0.86 0.86
vehicle 0.89 1.01 0.23 0.61 0.84
voting 0.85 0.83 0.87 0.79 0.49
waveform 0.70 0.95 0.22 0.38 0.62

Mean 0.87 0.99 0.58 0.66 0.79

Table F.10: Results of bias-variance decomposition for Cragging(3; 10): ratios
relative to the base classifier.
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Dataset Loss Bias Var VarU VarB
anneal 0.86±0.32 0.11±0.18 0.75±0.23 0.75±0.23 0.00±0.00
audiology 24.77±3.88 20.30±5.21 4.48±2.17 7.58±1.66 3.10±1.26
autos 26.21±3.37 14.60±3.47 11.62±2.59 13.61±2.33 2.00±0.71
balance 21.73±1.64 18.70±2.23 3.02±0.97 6.22±0.74 3.19±0.38
breastc 35.98±3.22 33.57±4.26 2.41±2.27 11.39±1.68 8.97±0.86
breastw 6.11±0.83 4.29±1.01 1.82±0.43 2.90±0.34 1.09±0.30
colic 17.52±1.88 15.77±2.63 1.75±1.18 4.65±0.66 2.90±0.73
credita 19.03±1.53 15.22±2.67 3.82±1.40 7.38±0.85 3.56±0.67
creditg 30.86±1.37 25.50±2.70 5.36±1.45 12.46±0.85 7.10±0.82
diabetes 27.97±1.69 23.82±2.13 4.14±0.83 10.16±0.42 6.02±0.65
glass 34.14±3.52 26.13±3.75 8.01±1.81 13.46±1.19 5.44±1.02
heartc 24.36±2.90 19.47±3.26 4.89±1.88 10.49±1.31 5.60±1.11
hearth 22.68±2.83 20.40±2.27 2.28±1.73 7.21±1.80 4.93±0.77
hearts 68.44±3.30 60.77±5.91 7.68±4.82 17.24±3.56 9.57±1.88
heartv 25.37±2.35 20.37±2.66 5.00±1.40 10.56±0.93 5.56±0.80
hepatitis 21.92±4.16 19.88±6.90 2.04±3.07 7.26±1.53 5.21±2.20
hypo 0.55±0.14 0.32±0.16 0.23±0.08 0.27±0.06 0.04±0.04
ionosphere 10.14±2.07 6.84±2.26 3.30±0.90 4.59±0.72 1.29±0.49
iris 6.47±3.23 5.33±3.44 1.13±0.74 1.51±0.57 0.38±0.34
krk 24.48±0.19 16.27±0.28 8.21±0.19 11.80±0.16 3.59±0.10
krkp 0.78±0.13 0.34±0.17 0.44±0.16 0.53±0.12 0.09±0.06
labor 17.57±4.11 14.00±6.70 3.57±3.59 7.62±1.96 4.06±2.10
letter 12.73±0.31 5.60±0.26 7.13±0.32 8.24±0.30 1.10±0.07
lymph 24.33±3.03 18.81±4.32 5.52±2.51 11.17±1.62 5.65±1.09
phoneme 13.22±0.53 9.72±0.68 3.50±0.43 5.91±0.26 2.41±0.25
primary 65.74±3.48 57.81±4.35 7.93±1.67 11.98±1.33 4.04±1.02
satimage 12.81±0.62 9.21±0.73 3.60±0.22 5.62±0.15 2.02±0.18
segment 4.11±0.41 2.47±0.60 1.64±0.52 2.28±0.38 0.64±0.22
shuttle 0.04±0.01 0.03±0.01 0.01±0.01 0.02±0.01 0.01±0.00
sick 1.55±0.25 1.14±0.29 0.41±0.15 0.74±0.13 0.33±0.09
sonar 27.70±2.37 18.31±4.51 9.39±2.90 15.52±1.82 6.13±1.79
soybean 11.08±1.98 8.19±2.52 2.89±1.26 4.82±0.88 1.94±0.76
splice 6.19±0.29 5.86±0.34 0.33±0.19 1.02±0.19 0.69±0.10
vehicle 29.41±2.03 25.55±2.48 3.86±1.69 11.24±1.30 7.38±0.75
voting 6.24±2.01 4.13±1.77 2.11±0.73 2.67±0.70 0.56±0.31
waveform 21.65±0.90 16.50±1.19 5.15±0.33 9.99±0.15 4.84±0.33

Mean 19.58 15.70 3.87 7.25 3.37

Table F.11: Results of bias-variance decomposition for Cragging(30; 1):
absolute values.
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Dataset Loss Bias Var VarU VarB
anneal 1.01 0.50 1.20 1.10 0.00
audiology 1.00 1.00 0.98 0.99 1.01
autos 0.97 0.97 0.97 0.95 0.87
balance 1.00 0.97 1.14 1.01 0.91
breastc 0.99 1.07 0.49 0.85 1.05
breastw 0.96 0.97 0.93 0.92 0.90
colic 0.98 1.05 0.60 0.84 1.12
credita 0.97 1.05 0.76 0.87 1.03
creditg 0.95 0.96 0.92 0.86 0.82
diabetes 0.95 1.02 0.68 0.79 0.90
glass 0.98 1.02 0.86 0.91 1.00
heartc 0.97 1.00 0.88 0.92 0.96
hearth 1.00 1.03 0.78 0.94 1.03
hearts 0.99 1.04 0.74 0.87 1.02
heartv 0.97 0.98 0.94 0.94 0.94
hepatitis 0.98 1.03 0.66 0.91 1.06
hypo 0.99 0.92 1.10 1.04 0.80
ionosphere 0.94 0.96 0.89 0.87 0.81
iris 1.01 1.00 1.04 1.00 0.89
krk 0.98 1.00 0.96 0.97 0.99
krkp 1.00 1.00 1.00 1.00 1.00
labor 0.99 1.00 0.93 0.93 0.93
letter 0.89 0.97 0.85 0.86 0.97
lymph 0.99 0.97 1.07 1.00 0.93
phoneme 0.91 0.96 0.81 0.82 0.84
primary 0.99 0.99 1.00 0.98 0.94
satimage 0.83 0.97 0.60 0.67 0.82
segment 0.93 1.10 0.76 0.85 1.18
shuttle 1.00 1.07 0.87 0.96 1.15
sick 0.98 1.00 0.92 0.95 0.98
sonar 0.94 0.98 0.88 0.90 0.93
soybean 0.98 1.04 0.84 0.92 1.05
splice 1.00 1.00 0.93 0.97 0.98
vehicle 0.98 1.00 0.84 0.91 0.95
voting 0.99 1.00 0.98 0.98 0.97
waveform 0.83 0.97 0.57 0.67 0.81

Mean 0.97 0.99 0.87 0.91 0.93

Table F.12: Results of bias-variance decomposition for Cragging(30; 1):
ratios relative to the base classifier.
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Dataset Loss Bias Var VarU VarB
anneal 0.85±0.31 0.22±0.23 0.62±0.28 0.68±0.23 0.06±0.09
audiology 24.88±3.94 20.30±5.21 4.58±2.12 7.64±1.68 3.06±1.22
autos 27.03±3.42 15.07±3.33 11.96±2.42 14.27±2.22 2.31±0.73
balance 21.83±1.60 19.18±2.03 2.65±0.84 6.15±0.74 3.50±0.30
breastc 36.38±3.09 31.48±4.85 4.90±2.50 13.46±1.65 8.56±1.13
breastw 6.38±0.84 4.44±1.14 1.94±0.46 3.15±0.29 1.20±0.36
colic 17.88±2.04 14.95±2.74 2.92±0.93 5.51±0.56 2.59±0.62
credita 19.53±1.47 14.49±2.46 5.03±1.46 8.49±0.89 3.46±0.67
creditg 32.55±1.12 26.70±2.32 5.85±1.47 14.48±0.76 8.64±0.90
diabetes 29.43±1.49 23.31±2.30 6.12±1.07 12.80±0.59 6.68±0.77
glass 34.92±3.44 25.63±4.00 9.29±1.94 14.74±1.36 5.45±1.04
heartc 25.04±2.83 19.48±3.19 5.55±1.55 11.38±1.11 5.83±0.92
hearth 22.64±2.80 19.74±2.53 2.90±1.13 7.70±1.55 4.80±0.61
hearts 68.86±3.13 58.46±7.00 10.40±5.91 19.76±4.14 9.36±2.22
heartv 26.04±2.27 20.74±2.92 5.30±1.34 11.22±0.77 5.93±0.78
hepatitis 22.35±4.01 19.25±7.00 3.10±3.28 8.00±1.73 4.90±2.17
hypo 0.55±0.14 0.34±0.17 0.21±0.08 0.26±0.06 0.05±0.04
ionosphere 10.81±1.97 7.13±2.16 3.68±0.70 5.27±0.50 1.59±0.50
iris 6.42±3.23 5.33±3.44 1.09±0.81 1.51±0.58 0.42±0.40
krk 24.87±0.19 16.30±0.29 8.57±0.20 12.20±0.16 3.62±0.10
krkp 0.78±0.13 0.34±0.17 0.44±0.16 0.53±0.12 0.09±0.06
labor 17.83±3.98 14.00±6.70 3.83±3.77 8.19±2.06 4.36±2.26
letter 14.24±0.30 5.80±0.20 8.44±0.30 9.58±0.28 1.14±0.06
lymph 24.62±3.08 19.48±4.50 5.14±2.61 11.19±1.65 6.05±1.19
phoneme 14.50±0.42 10.16±0.56 4.34±0.33 7.20±0.19 2.86±0.23
primary 66.36±3.54 58.40±4.60 7.97±1.94 12.26±1.51 4.29±1.05
satimage 15.49±0.56 9.54±0.63 5.95±0.31 8.40±0.26 2.45±0.17
segment 4.41±0.40 2.25±0.48 2.16±0.42 2.70±0.36 0.54±0.16
shuttle 0.04±0.01 0.03±0.01 0.01±0.00 0.02±0.00 0.01±0.00
sick 1.58±0.24 1.14±0.29 0.44±0.16 0.78±0.13 0.34±0.10
sonar 29.41±1.97 18.76±3.99 10.65±3.01 17.26±2.13 6.61±1.42
soybean 11.33±1.93 7.90±2.45 3.42±1.25 5.27±0.91 1.84±0.72
splice 6.22±0.29 5.86±0.34 0.36±0.19 1.06±0.19 0.70±0.09
vehicle 30.16±1.98 25.55±2.66 4.61±1.72 12.36±1.30 7.75±0.81
voting 6.29±2.02 4.13±1.77 2.15±0.75 2.73±0.72 0.58±0.32
waveform 26.00±0.74 17.00±1.28 9.00±0.62 14.95±0.31 5.95±0.41

Mean 20.24 15.64 4.60 8.14 3.54

Table F.13: Results of bias-variance decomposition for the base classifier:
absolute values.
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G. Proofs

G.1 Proof of Theorem 5.1

Theorem 5.1 (Page 56): Let C := 〈n, c,w, V 〉 be an ensemble of classifiers such that
Y = Ŷ = R, Ŷc = {P (R)} for all c ∈ {1, . . . , n}, and V = Vdem. Then, for squared loss,
the ensemble loss L(x, y) can be written as

L(x, y) = fl(L(x, y), D(x)) = L(x, y) − D(x).

Proof.

L(x, y) (G.1)

= l2(ŷ(x), y) (G.2)

= (y − ŷ(x))2 (G.3)

= (y − ŷ(x))2 ∗ 1 (G.4)

= (y − ŷ(x))2 ∗
n∑

c=1

wc (G.5)

= (y − ŷ(x))2 ∗
n∑

c=1

wc ∗ 1 (G.6)

= (y − ŷ(x))2
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x) dy′ (G.7)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)(ŷ(x) − y)2 dy′ (G.8)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)(ŷ(x) − y)2 dy′ − 0 (G.9)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)(ŷ(x) − y)2 dy′ − 2(ŷ(x) − y) ∗ 0 (G.10)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)(ŷ(x) − y)2 dy′

− 2(ŷ(x) − y)

[
ŷ(x) −

n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)y′ dy′

]
(G.11)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)(ŷ(x) − y)2 dy′

− 2(ŷ(x) − y)ŷ(x) + 2(ŷ(x) − y)
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)y′ dy′ (G.12)
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=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)(ŷ(x) − y)2 dy′

− 2(ŷ(x) − y)ŷ(x) ∗ 1 + 2(ŷ(x) − y)
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)y′ dy′ (G.13)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)(ŷ(x) − y)2 dy′

− 2(ŷ(x) − y)ŷ(x)
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x) dy′

+
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)2(ŷ(x) − y)y′ dy′ (G.14)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)(ŷ(x) − y)2 dy′

−
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)2(ŷ(x) − y)ŷ(x) dy′

+
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)2(ŷ(x) − y)y′ dy′ (G.15)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)(ŷ(x) − y)2 dy′

−
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)2(ŷ(x) − y)(ŷ(x) − y′) dy′ (G.16)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)
[
(ŷ(x) − y)2 − 2(ŷ(x) − y)(ŷ(x) − y′)

]
dy′ (G.17)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)
[
(ŷ(x) − y)(ŷ(x) − y − 2ŷ(x) + 2y′)

]
dy′ (G.18)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)
[
(ŷ(x) − y)(2y′ − ŷ(x) − y)

]
dy′ (G.19)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)
[
(y′ − y)2 − (y′ − ŷ(x))2

]
dy′ (G.20)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)(y′ − y)2 dy′

−
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)(y′ − ŷ(x))2 dy′ (G.21)

= L(x, y) − D(x). (G.22)

G.11 equals G.10 because ŷ(x) =
∑n

c=1 wc

∫
y′∈Y p̂c(y

′|x)y′ dy′ from Equation 5.11.
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G.2 Proof of Theorem 5.2

Theorem 5.2 (Page 56): Let C := 〈n, c,w, V 〉 be an ensemble of classifiers such that
Y = Ŷ = R, Ŷc = R for all c ∈ {1, . . . , n}, and V = Vdem. Then, for squared loss, the
ensemble loss L(x, y) can be written as

L(x, y) = fl(L(x, y), D(x)) = L(x, y) − D(x).

Proof.

L(x, y) (G.23)

= l2(ŷ(x), y) (G.24)

= (y − ŷ(x))2 (G.25)

= (y − ŷ(x))2
n∑

c=1

wc (G.26)

=
n∑

c=1

wc(y − ŷ(x))2 (G.27)

=

[
n∑

c=1

wc(ŷ(x) − y)2
]
− 2(ŷ(x) − y) ∗ 0 (G.28)

=

[
n∑

c=1

wc(ŷ(x) − y)2
]
− 2(ŷ(x) − y)

[
ŷ(x) −

n∑

c=1

wcŷc(x)

]
(G.29)

=
n∑

c=1

wc

[
(ŷ(x) − y)2 − 2(ŷ(x) − y)(ŷ(x) − ŷc(x))

]
(G.30)

=
n∑

c=1

wc [(ŷ(x) − y)(ŷ(x) − y − 2ŷ(x) + 2ŷc(x))] (G.31)

=
n∑

c=1

wc [(ŷ(x) − y)(2ŷc(x) − ŷ(x) − y)] (G.32)

=
n∑

c=1

wc

[
(ŷc(x) − y)2 − (ŷc(x) − ŷ(x))2

]
(G.33)

=
n∑

c=1

wc(ŷc(x) − y)2 −
n∑

c=1

wc(ŷc(x) − ŷ(x))2 (G.34)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)(y′ − y)2 dy′

−
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)(y′ − ŷ(x))2 dy′ (G.35)

= L(x, y) − D(x). (G.36)

G.26 equals G.25 because
∑n

c=1 wc = 1.
G.29 equals G.28 because ŷ(x) =

∑n
c=1 wcŷc(x) from Equation 5.7 and therefore

ŷ(x) −
∑n

c=1 wcŷc(x) = 0.
G.35 equals G.34 because, with Ŷc = R, p̂c(y

′|x) := I(y′ = ŷc(x)) and therefore ŷc(x) can
be written as ŷc(x) =

∫
y′∈Y p̂c(y

′|x)y′ dy′.
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G.3 Proof of Theorem 5.3

Theorem 5.3 (Page 56): For ensembles 〈n, c,w, Vdem〉 and squared loss, the expected
ensemble loss over the domain is

L = L − D.

Proof.

L = EP (X,Y ) [L(x, y)] (G.37)

=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉 (G.38)

=

∫

X×Y
(L(x, y) − D(x))p(x, y) d〈x, y〉 (G.39)

=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉 −

∫

X×Y
D(x)p(x, y) d〈x, y〉 (G.40)

=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉 −

∫

X

D(x)p(x) dx (G.41)

= EP (X,Y ) [L(x, y)] − EP (X)

[
D(x)

]
(G.42)

= L − D. (G.43)

Equation G.41 equals Equation G.40 because

∫

X×Y
D(x)p(x, y) d〈x, y〉 =

∫

X

∫

Y
D(x)p(x, y) dy dx (G.44)

=

∫

X

∫

Y
D(x)p(y|x)p(x) dy dx (G.45)

=

∫

X

D(x)p(x)

∫

Y
p(y|x) dy dx (G.46)

=

∫

X

D(x)p(x) ∗ 1 dx (G.47)

=

∫

X

D(x)p(x) dx. (G.48)
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G.4 Proof of Theorem 5.4

Theorem 5.4 (Page 57): For ensembles 〈n, c,w, Vdem〉 and 0-1 loss in two-class problems,
the ensemble loss L(x, y) can be written as

L(x, y) = fl(L(x, y), D(x)) = L(x, y) + zD(x)

with z = −1 iff ŷ(x) = y, and z = 1 iff ŷ(x) 6= y.

Proof. Case 1: ŷ(x) = y. To show: L(x, y) = L(x, y) − D(x).

L(x, y)

= l01(ŷ(x), y) = 0 (G.49)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, y) dy′

−
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, ŷ(x)) dy′ (G.50)

= L(x, y) − D(x). (G.51)

Case 2: ŷ(x) 6= y. To show: L(x, y) = L(x, y) + D(x).

L(x, y)

= l01(ŷ(x), y) = 1 (G.52)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x) dy′ (G.53)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)I(y′ 6= y) dy′

+
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)I(y′ = y) dy′ (G.54)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)I(y′ 6= y) dy′

+
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)I(y′ 6= ŷ(x)) dy′ (G.55)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, y) dy′

+
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, ŷ(x)) dy′ (G.56)

= L(x, y) + D(x). (G.57)

G.55 equals G.54 because there are only two classes and ŷ(x) 6= y, therefore it holds
y′ 6= ŷ(x) ⇔ y′ = y.
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G.5 Proof of Theorem 5.5

Theorem 5.5 (Page 57): Under 0-1 loss, the expected diversity D can be written as

D = (1 − L)DT + LDF .

Proof.

D = EP (X)

[
D(x)

]
(G.58)

=

∫

X

D(x)p(x) dx (G.59)

=

∫

X×Y
D(x)p(x, y) d〈x, y〉 (G.60)

=

∫

T
D(x)p(x, y) d〈x, y〉 +

∫

F
D(x)p(x, y) d〈x, y〉 (G.61)

=

∫

T
D(x)p(x, y)p(〈x, y〉 ∈ T ) d〈x, y〉

+

∫

F
D(x)p(x, y)p(〈x, y〉 ∈ F ) d〈x, y〉 (G.62)

=

∫

T
D(x)p(〈x, y〉 ∧ 〈x, y〉 ∈ T ) d〈x, y〉

+

∫

F
D(x)p(〈x, y〉 ∧ 〈x, y〉 ∈ F ) d〈x, y〉 (G.63)

= p(〈x, y〉 ∈ T )

∫

T
D(x)

p(〈x, y〉 ∧ 〈x, y〉 ∈ T )

p(〈x, y〉 ∈ T )
d〈x, y〉

+ p(〈x, y〉 ∈ F )

∫

F
D(x)

p(〈x, y〉 ∧ 〈x, y〉 ∈ F )

p(〈x, y〉 ∈ F )
d〈x, y〉 (G.64)

= p(〈x, y〉 ∈ T )

∫

T
D(x)p(〈x, y〉|〈x, y〉 ∈ T ) d〈x, y〉

+ p(〈x, y〉 ∈ F )

∫

F
D(x)p(〈x, y〉|〈x, y〉 ∈ F ) d〈x, y〉 (G.65)

= (1 − L)DT + LDF . (G.66)
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G.6 Proof of Theorem 5.6

Theorem 5.6 (Page 58): For ensembles 〈n, c,w, Vdem〉 and 0-1 loss in two-class problems,
the expected ensemble loss over the domain can be written as

L =
L − D

1 − 2DF

. (G.67)

Proof. We will show that L(1−2DF ) = L−D, from which Equation G.67 can be obtained
by a simple rearrangement of the terms.

L(1 − 2DF ) = L − 2LDF (G.68)

=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉

− 2L

∫

F
D(x)p(〈x, y〉 | 〈x, y〉 ∈ F ) d〈x, y〉 (G.69)

=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉

− 2p(〈x, y〉 ∈ F )

∫

F
D(x)p(〈x, y〉 | 〈x, y〉 ∈ F ) d〈x, y〉 (G.70)

=

∫

T
L(x, y)p(x, y) d〈x, y〉 +

∫

F
L(x, y)p(x, y) d〈x, y〉

− 2p(〈x, y〉 ∈ F )

∫

F
D(x)p(〈x, y〉 | 〈x, y〉 ∈ F ) d〈x, y〉 (G.71)

=

∫

T
L(x, y)p(x, y) d〈x, y〉 +

∫

F
L(x, y)p(x, y) d〈x, y〉

− 2p(〈x, y〉 ∈ F )

∫

F
D(x)

p(〈x, y〉 ∧ 〈x, y〉 ∈ F )

p(〈x, y〉 ∈ F )
d〈x, y〉 (G.72)

=

∫

T
L(x, y)p(x, y) d〈x, y〉 +

∫

F
L(x, y)p(x, y) d〈x, y〉

− 2

∫

F
D(x)p(x, y) d〈x, y〉 (G.73)

=

∫

T
(L(x, y) − D(x))p(x, y) d〈x, y〉

+

∫

F
(L(x, y) + D(x))p(x, y) d〈x, y〉

− 2

∫

F
D(x)p(x, y) d〈x, y〉 (G.74)

=

∫

T
L(x, y)p(x, y) d〈x, y〉 +

∫

F
L(x, y)p(x, y) d〈x, y〉

−
∫

T
D(x)p(x, y) d〈x, y〉 −

∫

F
D(x)p(x, y) d〈x, y〉 (G.75)

=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉 −

∫

X×Y
D(x)p(x, y) d〈x, y〉 (G.76)

= L − D. (G.77)
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G.7 Proof of Theorem 5.7

Theorem 5.7 (Page 58): For ensembles 〈n, c,w, Vdem〉 and 0-1 loss in two-class problems,
the expected ensemble loss over the domain can be written as

L =
L − DT

1 − DT − DF

(G.78)

Proof. We will show that L = L − (1 − L)DT + LDF , from which Equation G.78 can be
obtained by a simple rearrangement of the terms.

L = EP (X,Y ) [L(x, y)] (G.79)

=

∫

XxY
L(x, y)p(x, y) d〈x, y〉 (G.80)

=

∫

T
(L(x, y) − D(x))p(x, y) d〈x, y〉 +

∫

F
(L(x, y) + D(x))p(x, y) d〈x, y〉(G.81)

=

∫

T
L(x, y)p(x, y) d〈x, y〉 +

∫

F
L(x, y)p(x, y) d〈x, y〉

−
∫

T
D(x)p(x, y) d〈x, y〉 +

∫

F
D(x)p(x, y) d〈x, y〉 (G.82)

=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉

− p(〈x, y〉 ∈ T )

∫

T
D(x)p(〈x, y〉 | 〈x, y〉 ∈ T ) d〈x, y〉

+ p(〈x, y〉 ∈ F )

∫

F
D(x)p(〈x, y〉 | 〈x, y〉 ∈ F ) d〈x, y〉 (G.83)

= L − p(〈x, y〉 ∈ T )DT + p(〈x, y〉 ∈ F )DF (G.84)

= L − (1 − L)DT + LDF . (G.85)
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G.8 Proof of Theorem 5.8

Theorem 5.8 (Page 58): For ensembles 〈n, c,w, Vdem〉 and 0-1 loss, the ensemble loss
L(x, y) can be written as

L(x, y) = fl(L(x, y), D(x)) = L(x, y) + zD(x),

with z = −1 iff ŷ(x) = y, and z =

∑n

c=1
wcp̂c(y|x)

1−
∑n

c=1
wcp̂c(ŷ(x)|x)

iff ŷ(x) 6= y.

Proof. Case 1: ŷ(x) = y. To show: L(x, y) = L(x, y) − D(x).

L(x, y)

= l01(ŷ(x), y) = 0 (G.86)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, y) dy′

−
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, ŷ(x)) dy′ (G.87)

= L(x, y) − D(x). (G.88)

Case 2: ŷ(x) 6= y. To show: L(x, y) = L(x, y) +

∑n

c=1
wcp̂c(y|x)

1−
∑n

c=1
wcp̂c(ŷ(x)|x)

D(x).

L(x, y)

= l01(ŷ(x), y) = 1 (G.89)

= 1 −
n∑

c=1

wcp̂c(y|x) +
n∑

c=1

wcp̂c(y|x) (G.90)

= 1 −
n∑

c=1

wcp̂c(y|x)

+
(
∑n

c=1 wcp̂c(y|x))

1 −
∑n

c=1 wcp̂c(ŷ(x)|x)

[
1 −

n∑

c=1

wcp̂c(ŷ(x)|x)

]
(G.91)

= 1 −
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)I(y′ = y) dy′

+

∑n
c=1 wcp̂c(y|x)

1 −
∑n

c=1 wcp̂c(ŷ(x)|x)

[
1 −

n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)I(y′ = ŷ(x)) dy′

]
(G.92)

= 1 −
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)
[
1 − I(y′ 6= y)

]
dy′

+

∑n
c=1 wcp̂c(y|x)

1 −
∑n

c=1 wcp̂c(ŷ(x)|x)
∗

[
1 −

n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)
[
1 − I(y′ 6= ŷ(x))

]
dy′

]
(G.93)
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= 1 −
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x) dy′ +
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)I(y′ 6= y) dy′

+

∑n
c=1 wcp̂c(y|x)

1 −
∑n

c=1 wcp̂c(ŷ(x)|x)
∗

[
1 −

n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x) dy′ +
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)I(y′ 6= ŷ(x)) dy′

]
(G.94)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)I(y′ 6= y) dy′

+

∑n
c=1 wcp̂c(y|x)

1 −
∑n

c=1 wcp̂c(ŷ(x)|x)
(

n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)I(y′ 6= ŷ(x)) dy′) (G.95)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, y) dy′

+

∑n
c=1 wcp̂c(y|x)

1 −
∑n

c=1 wcp̂c(ŷ(x)|x)
(

n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, ŷ(x)) dy′) (G.96)

= L(x, y) +

∑n
c=1 wcp̂c(y|x)

1 −
∑n

c=1 wcp̂c(ŷ(x)|x)
D(x). (G.97)

G.95 equals G.94 because
∫
y′∈Y p̂c(y

′|x) dy′ = 1 for all x ∈ X and
∑n

c=1 wc = 1, therefore
∑n

c=1 wc

∫
y′∈Y p̂c(y

′|x) dy′ = 1 and therefore
[
1 −

∑n
c=1 wc

∫
y′∈Y p̂c(y

′|x) dy′
]

= 0 for all

x ∈ X.
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G.9 Proof of Theorem 5.9

Theorem 5.9 (Page 59): For ensembles 〈n, c,w, Vdem〉 and 0-1 loss, the expected ensemble
loss over the domain can be written as

L =
L − D

1 − DP − DF

(G.98)

Proof. We will show that L(1 − DP − DF ) = L − D, from which Equation G.98 can be
obtained by a simple rearrangement of the terms.

L(1 − DP − DF )

= L − LDP − LDF (G.99)

=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉

− p(〈x, y〉 ∈ F )

∫

F
(1 − L(x, y))p(〈x, y〉|〈x, y〉 ∈ F ) d〈x, y〉

− p(〈x, y〉 ∈ F )

∫

F
D(x)p(〈x, y〉|〈x, y〉 ∈ F ) d〈x, y〉 (G.100)

=

∫

T
L(x, y)p(x, y) d〈x, y〉 +

∫

F
L(x, y)p(x, y) d〈x, y〉

− p(〈x, y〉 ∈ F )

∫

F
(1 − L(x, y) + D(x))p(〈x, y〉|〈x, y〉 ∈ F ) d〈x, y〉 (G.101)

=

∫

T
(L(x, y) − D(x))p(x, y) d〈x, y〉 +

∫

F
L(x, y)p(x, y) d〈x, y〉

− p(〈x, y〉 ∈ F )

∫

F
(1 − L(x, y) + D(x))

p(〈x, y〉 ∧ 〈x, y〉 ∈ F )

p(〈x, y〉 ∈ F )
d〈x, y〉(G.102)

=

∫

T
(L(x, y) − D(x))p(x, y) d〈x, y〉 +

∫

F
L(x, y)p(x, y) d〈x, y〉

−
∫

F
(1 − L(x, y) + D(x))p(x, y) d〈x, y〉 (G.103)

=

∫

T
(L(x, y) − D(x))p(x, y) d〈x, y〉

+

∫

F
(L(x, y) − 1 + L(x, y) − D(x))p(x, y) d〈x, y〉 (G.104)

=

∫

T
(L(x, y) − D(x))p(x, y) d〈x, y〉

+

∫

F
(L(x, y) − D(x))p(x, y) d〈x, y〉 (G.105)

=

∫

T
L(x, y)p(x, y) d〈x, y〉 +

∫

F
L(x, y)p(x, y) d〈x, y〉

−
∫

T
D(x)p(x, y) d〈x, y〉 −

∫

F
D(x)p(x, y) d〈x, y〉 (G.106)

=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉 −

∫

X×Y
D(x)p(x, y) d〈x, y〉 (G.107)

= L − D. (G.108)

G.102 equals G.101 because of Theorem 5.8.
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G.10 Proof of Theorem 5.10

Theorem 5.10 (Page 59): For ensembles 〈n, c,w, Vdem〉 and 0-1 loss, the expected en-
semble loss over the domain can be written as

L =
L − DT

1 − DT − DP

(G.109)

Proof. We will show that L = L − (1 − L)DT + LDP , from which Equation 5.43 can be
obtained by a simple rearrangement of the terms.

L = EP (X,Y ) [L(x, y)] (G.110)

=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉 (G.111)

=

∫

T
L(x, y)p(x, y) d〈x, y〉 +

∫

F
L(x, y)p(x, y) d〈x, y〉 (G.112)

=

∫

T
(L(x, y) − D(x))p(x, y) d〈x, y〉 +

∫

F
1 ∗ p(x, y) d〈x, y〉 (G.113)

=

∫

T
(L(x, y) − D(x))p(x, y) d〈x, y〉

+

∫

F

[
L(x, y) + (1 − L(x, y))

]
p(x, y) d〈x, y〉 (G.114)

=

∫

T
L(x, y)p(x, y) d〈x, y〉 +

∫

F
L(x, y)p(x, y) d〈x, y〉

−
∫

T
D(x)p(x, y) d〈x, y〉 +

∫

F
(1 − L(x, y))p(x, y) d〈x, y〉 (G.115)

=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉

− p(〈x, y〉 ∈ T )

∫

T
D(x)p(〈x, y〉 | 〈x, y〉 ∈ T ) d〈x, y〉

+ p(〈x, y〉 ∈ F )

∫

F
(1 − L(x, y))p(〈x, y〉 | 〈x, y〉 ∈ F ) d〈x, y〉 (G.116)

= L − p(〈x, y〉 ∈ T )DT + p(〈x, y〉 ∈ F )DP (G.117)

= L − (1 − L)DT + LDP . (G.118)

G.113 equals G.112 because of Theorem 5.8.
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G.11 Proof of Theorem 5.11

Theorem 5.11 (Page 63): Let l be any triangular loss function. Then, for any given
democratic ensemble,

L(x, y) ≥ L(x, y) − D(x) (G.119)

and
L ≥ L − D. (G.120)

Proof. From the triangle inequality (5.44) follows that

∀y′, ŷ(x), y ∈ Y : l(y′, ŷ(x)) + l(ŷ(x), y) ≥ l(y′, y)

and therefore
∀y′, ŷ(x), y ∈ Y : l(ŷ(x), y) ≥ l(y′, y) − l(y′, ŷ(x)).

Hence, ∀ 〈x, y〉 ∈ X× Y :

L(x, y) = l(ŷ(x), y) (G.121)

= l(ŷ(x), y)
n∑

c=1

wc (G.122)

= l(ŷ(x), y)
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x) dy′ (G.123)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(ŷ(x), y) dy′ (G.124)

≥
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)
[
l(y′, y) − l(y′, ŷ(x))

]
dy′ (G.125)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, y) dy′

−
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, ŷ(x)) dy′ (G.126)

= L(x, y) − D(x), (G.127)

which proves Equation G.119.

Integrating Equation G.119 over X× Y gives Equation G.120:

L =

∫

X×Y
L(x, y)p(x, y) d〈x, y〉 (G.128)

≥
∫

X×Y
(L(x, y) − D(x))p(x, y) d〈x, y〉 (G.129)

=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉 −

∫

X×Y
D(x)p(x, y) d〈x, y〉 (G.130)

= L − D. (G.131)
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G.12 Proof of Theorem 5.12

Theorem 5.12 (Page 63): Let l be any loss function which is both triangular and sym-
metric. Then, for any given democratic ensemble,

L(x, y) ≤ L(x, y) + D(x) (G.132)

and
L ≤ L + D. (G.133)

Proof. From the triangle inequality (5.44) follows that

∀y, ŷ(x), y′ ∈ Y : l(y, ŷ(x)) ≤ l(y, y′) + l(y′, ŷ(x)).

From the symmetry property (5.45) follows that

∀y, y′ ∈ Y : l(y, y′) = l(y′, y).

Hence, ∀ 〈x, y〉 ∈ X× Y :

L(x, y) = l(ŷ(x), y) (G.134)

= l(y, ŷ(x)) (G.135)

= l(y, ŷ(x))
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x) dy′ (G.136)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y, ŷ(x)) dy′ (G.137)

≤
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)
[
l(y, y′) + l(y′, ŷ(x))

]
dy′ (G.138)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)
[
l(y′, y) + l(y′, ŷ(x))

]
dy′ (G.139)

=
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, y) dy′

+
n∑

c=1

wc

∫

y′∈Y
p̂c(y

′|x)l(y′, ŷ(x)) dy′ (G.140)

= L(x, y) + D(x), (G.141)

which proves (Equation G.132).

Integrating Equation G.132 over X× Y gives Equation G.133:

L =

∫

X×Y
L(x, y)p(x, y) d〈x, y〉 (G.142)

≤
∫

X×Y
(L(x, y) + D(x))p(x, y) d〈x, y〉 (G.143)

=

∫

X×Y
L(x, y)p(x, y) d〈x, y〉 +

∫

X×Y
D(x)p(x, y) d〈x, y〉 (G.144)

= L + D. (G.145)
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H. Loss Decomposition Results by

Method

Dataset L D DT DF DP L L∗

anneal 0.89±0.10 0.67±0.08 0.59±0.08 5.88±4.01 5.88±4.01 0.39±0.20 0.33
audiology 24.04±0.93 14.61±0.48 10.31±0.61 32.86±2.98 11.85±2.68 17.74±1.52 17.63
autos 26.79±0.78 19.61±0.68 16.13±0.72 36.72±2.71 17.51±1.96 16.07±1.12 16.07
balance 22.14±0.31 13.66±0.33 7.19±0.40 39.56±1.13 17.94±0.79 19.96±0.50 19.97
breastc 36.67±1.07 22.11±0.47 19.82±0.59 27.11±0.76 27.11±0.76 31.58±1.80 31.75
breastw 6.25±0.17 4.25±0.15 3.38±0.15 23.32±3.91 23.32±3.91 4.00±0.20 3.91
colic 17.96±0.26 7.74±0.29 6.43±0.34 14.94±1.23 14.94±1.23 14.67±0.56 14.66
credita 19.15±0.35 11.90±0.37 9.66±0.42 25.09±1.12 25.09±1.12 14.54±0.60 14.54
creditg 32.80±0.34 23.27±0.30 20.51±0.45 31.33±0.64 31.33±0.64 25.44±1.09 25.52
diabetes 29.55±0.34 19.44±0.19 16.44±0.34 28.85±0.70 28.85±0.70 23.96±1.07 23.96
glass 34.73±0.43 24.02±0.58 19.73±0.78 36.46±1.33 20.71±1.33 25.05±1.44 25.18
heartc 25.44±0.62 17.41±0.43 14.49±0.64 29.38±1.70 29.38±1.70 19.49±1.15 19.50
hearth 23.52±0.45 12.86±0.48 8.99±0.62 26.73±1.53 26.73±1.53 22.49±0.81 22.60
hearts 68.86±0.80 45.19±0.90 45.66±1.84 45.17±1.03 17.86±1.04 63.68±2.82 63.61
heartv 25.93±0.66 17.59±0.44 14.62±0.37 28.71±1.99 28.71±1.99 20.07±0.92 19.95
hepatitis 21.81±0.73 12.98±0.61 10.03±0.99 24.73±2.55 24.73±2.55 18.23±1.65 18.06
hypo 0.56±0.03 0.33±0.02 0.27±0.02 12.16±3.89 11.65±3.67 0.34±0.06 0.32
ionosphere 11.29±0.45 7.53±0.43 6.11±0.43 22.65±3.16 22.65±3.16 7.50±0.57 7.27
iris 6.56±0.55 2.74±0.52 1.93±0.46 10.29±4.20 10.25±4.25 5.67±0.79 5.27
krk 24.90±0.07 18.37±0.05 14.60±0.08 37.92±0.15 21.74±0.17 16.18±0.18 16.18
krkp 0.76±0.04 0.57±0.05 0.47±0.06 17.15±3.51 17.15±3.51 0.39±0.07 0.35
labor 19.81±1.73 11.69±1.60 9.54±1.43 14.41±2.97 14.41±2.97 15.10±1.73 13.51
letter 14.27±0.05 12.74±0.09 10.23±0.12 54.00±0.40 19.40±0.11 5.74±0.12 5.74
lymph 23.84±0.79 17.03±0.47 13.61±0.84 30.95±3.30 28.05±2.81 17.65±1.95 17.54
phoneme 14.53±0.12 10.17±0.06 8.08±0.09 28.53±0.39 28.53±0.39 10.17±0.16 10.17
primary 66.83±0.68 38.36±0.66 28.82±1.86 44.54±0.67 8.69±0.66 60.77±1.58 60.83
satimage 15.49±0.05 12.08±0.05 9.53±0.07 37.41±0.36 25.41±0.33 9.17±0.15 9.16
segment 4.31±0.09 3.39±0.07 2.67±0.07 34.36±1.75 24.32±1.58 2.26±0.18 2.24
shuttle 0.04±0.00 0.03±0.00 0.02±0.00 16.20±3.31 14.66±3.09 0.02±0.00 0.02
sick 1.55±0.05 1.07±0.04 0.75±0.05 28.37±2.54 28.37±2.54 1.15±0.13 1.13
sonar 30.23±0.67 24.57±0.50 21.40±0.87 36.53±2.00 36.53±2.00 20.90±2.52 20.98
soybean 11.03±0.35 7.50±0.20 5.42±0.19 30.53±2.19 24.27±2.08 7.99±0.46 7.98
splice 6.25±0.08 1.90±0.10 1.15±0.09 13.90±0.90 11.84±1.01 5.86±0.06 5.86
vehicle 29.87±0.31 22.18±0.33 16.62±0.48 39.06±1.05 29.95±0.67 24.85±0.71 24.80
voting 6.02±0.25 3.21±0.14 2.61±0.17 13.91±2.68 13.91±2.68 4.23±0.36 4.09
waveform 26.01±0.15 20.93±0.09 17.91±0.14 35.57±0.31 34.73±0.31 17.10±0.37 17.11

G. Mean 11.50 7.43 5.86 25.67 20.04 8.19 8.03

Table H.1: Loss decomposition results for Bagging(1; 30) with Majority Vote.
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Dataset L D DT DF DP L L∗

anneal 0.89±0.10 0.67±0.08 0.59±0.08 5.88±4.01 5.88±4.01 0.39±0.20 0.33
audiology 24.11±0.92 14.71±0.48 10.51±0.68 32.92±3.01 11.55±2.68 17.56±1.61 17.45
autos 26.87±0.81 19.75±0.65 16.29±0.69 36.67±2.73 17.57±2.02 16.02±1.13 16.00
balance 22.15±0.31 13.67±0.34 7.20±0.40 39.57±1.12 17.94±0.79 19.96±0.50 19.97
breastc 36.69±1.05 22.26±0.47 19.87±0.62 27.48±0.70 27.48±0.70 31.79±1.87 31.95
breastw 6.33±0.18 4.36±0.15 3.49±0.16 23.39±3.94 23.39±3.94 3.98±0.21 3.88
colic 19.27±0.29 9.77±0.24 8.37±0.30 17.61±0.69 17.61±0.69 14.70±0.44 14.72
credita 19.18±0.35 11.97±0.38 9.76±0.37 25.07±1.24 25.07±1.24 14.46±0.53 14.46
creditg 32.80±0.34 23.27±0.30 20.51±0.45 31.33±0.64 31.33±0.64 25.44±1.09 25.52
diabetes 30.44±0.29 20.85±0.19 17.89±0.44 30.04±0.87 30.04±0.87 24.09±1.20 24.10
glass 34.93±0.42 24.31±0.56 20.03±0.81 36.71±1.43 20.89±1.37 25.09±1.46 25.23
heartc 25.45±0.61 17.44±0.44 14.55±0.67 29.33±1.74 29.33±1.74 19.40±1.20 19.41
hearth 23.97±0.41 14.18±0.41 10.02±0.67 28.89±1.50 28.89±1.50 22.69±0.90 22.83
hearts 69.01±0.81 45.85±0.92 46.40±1.63 45.71±1.17 18.05±1.08 63.70±2.94 63.59
heartv 25.93±0.66 17.59±0.44 14.64±0.40 28.70±1.98 28.70±1.98 20.04±0.93 19.93
hepatitis 21.98±0.68 13.62±0.59 10.59±0.92 26.81±2.83 26.81±2.83 18.11±1.36 18.20
hypo 0.58±0.03 0.35±0.03 0.30±0.02 11.76±6.10 11.22±5.82 0.33±0.07 0.31
ionosphere 11.60±0.46 7.89±0.44 6.50±0.40 22.92±3.13 22.92±3.13 7.44±0.59 7.23
iris 6.66±0.55 2.84±0.54 2.13±0.61 9.07±4.21 9.04±4.24 5.47±0.88 5.09
krk 24.90±0.07 18.38±0.05 14.61±0.09 37.93±0.15 21.74±0.19 16.16±0.18 16.16
krkp 0.76±0.04 0.57±0.05 0.47±0.06 17.15±3.51 17.15±3.51 0.39±0.07 0.35
labor 21.15±1.57 13.25±1.38 11.15±1.24 14.95±3.47 14.95±3.47 15.27±1.73 13.52
letter 14.27±0.05 12.74±0.09 10.23±0.12 54.00±0.40 19.40±0.11 5.74±0.12 5.74
lymph 23.84±0.79 17.03±0.47 13.61±0.84 30.95±3.30 28.05±2.81 17.65±1.95 17.54
phoneme 15.68±0.11 11.77±0.08 9.71±0.07 30.38±0.43 30.38±0.43 9.96±0.19 9.96
primary 68.29±0.64 42.05±0.64 33.23±1.60 47.85±0.76 9.03±0.53 60.68±1.29 60.73
satimage 15.52±0.05 12.11±0.05 9.55±0.07 37.47±0.44 25.48±0.39 9.19±0.17 9.19
segment 4.36±0.09 3.44±0.07 2.75±0.07 33.94±1.95 23.84±1.67 2.21±0.18 2.19
shuttle 0.04±0.00 0.03±0.00 0.02±0.00 15.97±3.54 14.43±3.29 0.02±0.00 0.02
sick 1.58±0.05 1.11±0.04 0.79±0.05 28.04±2.27 28.04±2.27 1.13±0.11 1.11
sonar 30.39±0.66 24.77±0.49 21.84±0.91 36.21±2.11 36.21±2.11 20.33±2.57 20.38
soybean 11.46±0.35 7.93±0.20 5.86±0.21 30.79±2.26 24.50±2.05 8.05±0.49 8.04
splice 6.25±0.08 1.90±0.10 1.15±0.09 13.90±0.90 11.84±1.01 5.86±0.06 5.86
vehicle 29.88±0.31 22.23±0.32 16.70±0.47 39.10±1.10 29.92±0.76 24.74±0.57 24.68
voting 6.55±0.25 4.27±0.17 3.43±0.19 19.53±2.98 19.53±2.98 4.25±0.38 4.05
waveform 26.12±0.15 21.06±0.09 18.05±0.12 35.64±0.32 34.80±0.32 17.12±0.35 17.13

G. Mean 11.68 7.74 6.17 26.20 20.41 8.16 8.00

Table H.2: Loss decomposition results for Bagging(1; 30).
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Dataset L D DT DF DP L L∗

anneal 1.62±0.09 1.28±0.12 1.09±0.13 13.23±3.74 12.63±3.48 0.72±0.15 0.62
audiology 30.42±0.72 22.38±0.65 17.21±0.57 43.49±2.99 14.79±1.86 19.41±1.23 19.43
autos 36.28±0.72 29.45±0.92 25.64±0.80 44.27±1.97 20.79±1.95 19.88±1.03 19.86
balance 23.11±0.23 18.02±0.13 12.32±0.45 47.74±0.80 20.33±1.05 16.05±0.99 16.01
breastc 37.42±0.62 25.67±0.59 23.36±0.55 30.96±1.16 30.96±1.16 30.54±1.19 30.78
breastw 6.48±0.23 4.70±0.17 3.77±0.22 23.93±3.74 23.93±3.74 3.93±0.43 3.75
colic 20.15±0.28 11.04±0.37 9.60±0.36 19.07±1.81 19.07±1.81 14.77±0.39 14.79
credita 19.53±0.31 12.89±0.19 10.70±0.49 26.17±1.38 26.17±1.38 13.99±0.98 13.98
creditg 33.32±0.28 24.57±0.23 21.83±0.27 32.64±0.43 32.64±0.43 25.21±0.56 25.24
diabetes 31.10±0.32 22.42±0.34 19.52±0.39 31.68±0.67 31.68±0.67 23.73±0.79 23.73
glass 39.02±0.95 29.95±0.92 25.74±0.99 41.58±1.87 22.41±1.76 25.39±1.88 25.62
heartc 25.86±0.70 18.73±0.45 16.02±0.43 30.83±1.28 30.83±1.28 18.45±1.48 18.52
hearth 23.92±0.31 15.65±0.40 11.81±0.58 30.90±0.99 30.90±0.99 20.89±0.88 21.13
hearts 70.10±0.35 50.45±0.91 50.08±2.16 50.33±0.87 19.55±1.11 64.88±3.27 65.92
heartv 26.17±0.84 19.18±0.59 16.62±0.49 30.63±1.18 30.63±1.18 18.19±1.24 18.11
hepatitis 22.55±0.64 15.30±0.51 12.56±0.80 25.88±4.54 25.88±4.54 16.75±1.81 16.23
hypo 0.81±0.04 0.59±0.05 0.51±0.04 16.20±5.43 14.01±5.44 0.37±0.06 0.35
ionosphere 13.23±0.31 9.40±0.28 8.05±0.19 23.72±3.10 23.72±3.10 7.78±0.49 7.60
iris 7.28±0.41 3.99±0.48 2.86±0.48 13.52±2.64 13.45±2.56 5.87±0.93 5.28
krk 31.84±0.08 25.92±0.06 21.27±0.08 45.05±0.09 24.72±0.12 19.57±0.15 19.58
krkp 1.28±0.08 1.05±0.07 0.84±0.06 27.70±6.09 27.70±6.09 0.65±0.10 0.61
labor 23.99±1.09 18.54±1.36 15.94±1.52 18.29±3.54 18.29±3.54 15.00±2.17 12.24
letter 17.42±0.02 16.01±0.03 13.25±0.07 57.88±0.24 19.42±0.30 6.19±0.08 6.19
lymph 26.16±0.59 20.14±0.72 17.01±1.02 32.31±2.09 29.01±1.58 17.12±1.36 16.95
phoneme 18.77±0.08 14.60±0.13 12.22±0.15 32.38±0.40 32.38±0.40 11.82±0.20 11.82
primary 69.50±0.55 49.94±0.82 40.41±1.75 56.67±1.07 9.98±0.54 58.59±1.57 58.64
satimage 16.50±0.07 13.10±0.07 10.36±0.12 38.86±0.41 25.74±0.31 9.60±0.21 9.60
segment 5.72±0.14 4.69±0.13 3.77±0.18 37.33±1.30 26.92±1.34 2.81±0.18 2.81
shuttle 0.06±0.00 0.04±0.00 0.03±0.00 29.73±2.29 25.40±2.56 0.04±0.00 0.04
sick 1.98±0.05 1.43±0.05 1.06±0.08 28.85±1.53 28.85±1.53 1.31±0.12 1.30
sonar 32.73±0.74 27.11±0.83 24.22±0.98 36.81±1.67 36.81±1.67 22.15±1.83 21.84
soybean 15.31±0.37 12.44±0.36 10.25±0.29 38.24±0.98 27.20±1.36 7.98±0.39 8.08
splice 6.97±0.12 2.89±0.10 1.89±0.12 18.16±1.07 15.53±1.34 6.15±0.29 6.15
vehicle 32.31±0.34 25.61±0.33 19.84±0.58 42.54±0.70 31.26±0.63 25.50±1.28 25.50
voting 6.79±0.26 4.84±0.23 4.11±0.23 17.27±3.93 17.27±3.93 3.73±0.44 3.41
waveform 26.61±0.12 21.90±0.13 19.05±0.15 36.21±0.26 35.29±0.24 16.55±0.37 16.55

G. Mean 13.43 9.79 8.03 30.44 23.24 8.73 8.55

Table H.3: Loss decomposition results for Bagging(0.5; 30).
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Dataset L D DT DF DP L L∗

anneal 0.57±0.15 0.35±0.07 0.32±0.08 2.27±2.10 2.27±2.10 0.28±0.14 0.25
audiology 20.63±1.05 8.55±0.59 4.82±0.68 24.01±2.89 10.36±1.88 18.71±1.65 18.64
autos 20.61±0.99 12.51±0.61 9.13±0.39 29.15±3.39 14.05±2.03 15.15±1.42 14.94
balance 22.08±0.39 9.45±0.32 4.45±0.38 28.18±1.26 11.85±1.20 21.08±0.74 21.07
breastc 35.60±0.99 18.20±0.56 16.26±0.76 22.30±1.05 22.30±1.05 31.44±1.23 31.47
breastw 6.22±0.21 4.09±0.16 3.14±0.13 24.26±3.93 24.26±3.93 4.31±0.30 4.25
colic 18.64±0.25 8.86±0.29 7.55±0.28 16.37±1.18 16.37±1.18 14.50±0.35 14.57
credita 19.20±0.38 10.98±0.38 8.77±0.29 22.91±1.34 22.91±1.34 15.32±0.63 15.27
creditg 32.25±0.31 21.48±0.18 18.62±0.33 29.48±0.32 29.48±0.32 26.21±0.88 26.25
diabetes 30.22±0.32 19.57±0.20 16.60±0.42 28.51±0.61 28.51±0.61 24.82±0.76 24.81
glass 32.18±0.77 19.88±0.54 15.51±0.72 32.28±0.75 19.59±1.12 25.46±0.94 25.69
heartc 26.22±0.77 16.46±0.49 13.33±0.46 27.65±1.60 27.65±1.60 21.85±1.69 21.85
hearth 24.21±0.54 12.06±0.32 8.99±0.31 23.17±1.49 23.17±1.49 22.34±1.07 22.44
hearts 68.78±1.02 40.54±1.07 39.82±2.18 41.28±1.43 16.16±0.86 65.95±2.60 65.78
heartv 26.31±0.59 16.43±0.47 13.21±0.80 27.33±2.13 27.33±2.13 22.07±1.64 22.04
hepatitis 21.89±0.82 12.08±0.66 9.55±0.86 23.14±2.55 23.14±2.55 18.24±0.70 18.33
hypo 0.47±0.04 0.21±0.03 0.18±0.03 7.90±1.90 7.86±1.86 0.34±0.05 0.32
ionosphere 10.60±0.28 6.95±0.29 5.48±0.37 22.71±2.41 22.71±2.41 7.38±0.45 7.14
iris 6.09±0.62 1.73±0.35 1.31±0.18 5.59±3.47 5.59±3.47 5.33±0.77 5.13
krk 20.34±0.13 12.02±0.05 8.88±0.07 29.06±0.18 17.46±0.19 15.55±0.19 15.55
krkp 0.46±0.04 0.24±0.04 0.20±0.04 7.48±3.73 7.48±3.73 0.31±0.08 0.29
labor 19.57±1.83 10.14±1.35 8.53±1.53 11.09±1.83 11.09±1.83 14.77±2.22 13.73
letter 12.46±0.05 10.59±0.06 8.05±0.09 50.05±0.32 19.15±0.24 6.04±0.09 6.04
lymph 22.41±1.07 13.82±0.65 10.66±1.34 26.14±3.48 24.52±3.35 18.31±2.12 18.12
phoneme 13.54±0.09 9.46±0.10 7.63±0.09 27.68±0.71 27.68±0.71 9.15±0.20 9.14
primary 67.82±0.86 34.14±0.70 27.50±1.42 38.28±1.23 7.47±0.52 61.94±1.74 62.01
satimage 14.87±0.13 11.43±0.11 8.93±0.05 36.51±0.60 25.24±0.50 9.02±0.18 9.02
segment 3.52±0.11 2.55±0.10 1.98±0.11 30.69±2.64 21.17±2.20 2.00±0.21 2.00
shuttle 0.03±0.00 0.01±0.00 0.01±0.00 13.20±3.12 12.43±2.47 0.02±0.00 0.02
sick 1.35±0.07 0.81±0.03 0.55±0.03 22.64±2.90 22.64±2.90 1.07±0.11 1.04
sonar 29.31±0.78 22.97±0.77 19.65±1.02 34.84±2.28 34.84±2.28 21.25±2.01 21.22
soybean 10.01±0.23 5.41±0.21 3.59±0.24 25.20±3.01 20.51±2.48 8.45±0.48 8.46
splice 6.73±0.13 2.48±0.18 1.89±0.18 12.45±0.53 10.75±0.67 5.55±0.14 5.54
vehicle 28.23±0.49 19.14±0.43 13.97±0.50 35.14±1.00 27.45±0.83 24.39±1.56 24.35
voting 6.47±0.22 3.64±0.14 2.82±0.11 16.85±3.57 16.85±3.57 4.73±0.41 4.54
waveform 25.98±0.12 20.55±0.06 17.48±0.13 34.96±0.27 34.13±0.29 17.56±0.38 17.57

G. Mean 10.63 6.07 4.70 21.57 17.05 8.13 8.02

Table H.4: Loss decomposition results for Bagging(2; 30).
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Dataset L D DT DF DP L L∗

anneal 1.23±0.07 0.99±0.10 0.86±0.08 10.55±4.31 10.38±4.50 0.51±0.13 0.42
audiology 26.86±0.56 18.61±0.42 14.52±0.65 37.93±3.84 11.79±1.74 16.74±0.87 16.76
autos 31.29±0.69 24.18±0.58 20.82±0.87 39.34±2.49 19.00±2.69 17.20±1.65 17.39
balance 22.41±0.34 16.10±0.29 9.58±0.41 45.47±0.71 20.15±0.72 18.23±0.80 18.26
breastc 37.12±0.79 24.49±0.50 22.36±0.74 29.43±0.85 29.43±0.85 30.49±1.31 30.63
breastw 6.52±0.17 4.55±0.14 3.73±0.18 22.85±4.53 22.85±4.53 3.91±0.35 3.80
colic 19.56±0.23 10.34±0.19 9.03±0.28 17.67±1.43 17.67±1.43 14.40±0.62 14.37
credita 19.45±0.28 12.27±0.22 10.10±0.28 25.12±1.07 25.12±1.07 14.43±0.68 14.43
creditg 33.34±0.32 23.97±0.10 21.08±0.16 32.10±0.35 32.10±0.35 26.16±0.53 26.18
diabetes 31.70±0.27 23.28±0.27 20.29±0.30 32.61±0.49 32.61±0.49 24.18±0.56 24.22
glass 37.14±0.68 27.34±0.64 23.58±0.68 37.86±2.04 21.11±1.48 24.44±1.27 24.51
heartc 25.24±0.61 17.39±0.45 14.85±0.52 28.36±2.07 28.36±2.07 18.32±1.14 18.30
hearth 23.75±0.39 15.36±0.33 10.88±0.91 31.65±1.66 31.65±1.66 22.18±1.72 22.40
hearts 70.19±1.15 48.14±0.71 48.88±1.90 47.51±1.03 18.39±0.85 64.38±3.16 65.10
heartv 25.36±0.87 17.93±0.70 15.34±1.00 29.17±2.17 29.17±2.17 18.11±1.73 18.05
hepatitis 22.07±0.86 14.09±0.50 11.01±0.53 26.42±2.65 26.42±2.65 17.99±0.98 17.67
hypo 0.68±0.04 0.47±0.03 0.41±0.02 14.88±4.96 13.90±5.01 0.34±0.04 0.32
ionosphere 12.48±0.40 8.49±0.31 7.13±0.45 23.46±2.55 23.46±2.55 7.78±0.76 7.71
iris 7.02±0.44 3.48±0.28 2.58±0.33 10.63±3.26 10.53±3.24 5.60±0.64 5.10
krk 28.10±0.07 22.06±0.03 17.78±0.06 41.98±0.10 23.83±0.14 17.69±0.14 17.69
krkp 0.97±0.05 0.76±0.05 0.60±0.05 23.16±5.34 23.16±5.34 0.54±0.07 0.48
labor 23.28±1.34 16.56±1.09 14.21±1.90 17.85±5.20 17.85±5.20 15.63±2.15 13.36
letter 15.63±0.04 14.14±0.07 11.50±0.11 55.74±0.28 19.25±0.22 5.96±0.14 5.96
lymph 24.86±0.88 18.54±0.76 15.44±0.81 32.57±2.20 29.25±2.54 16.92±1.00 17.04
phoneme 19.88±0.07 15.36±0.08 12.87±0.08 32.32±0.23 32.32±0.23 12.80±0.17 12.80
primary 68.95±0.42 46.96±0.49 37.45±1.00 53.45±0.67 9.79±0.54 59.73±1.64 59.71
satimage 15.85±0.08 12.43±0.08 9.78±0.10 38.00±0.41 25.70±0.41 9.41±0.17 9.41
segment 5.03±0.11 4.09±0.08 3.28±0.09 36.26±1.90 26.19±1.73 2.48±0.18 2.47
shuttle 0.05±0.00 0.03±0.00 0.02±0.00 22.26±2.59 19.36±3.22 0.03±0.00 0.03
sick 1.78±0.04 1.29±0.03 0.93±0.05 29.39±1.82 29.39±1.82 1.23±0.13 1.22
sonar 30.75±0.66 25.43±0.59 22.48±0.83 37.51±1.26 37.51±1.26 20.31±1.78 20.67
soybean 13.03±0.27 9.99±0.22 7.91±0.30 34.88±2.43 26.23±1.97 7.71±0.56 7.76
splice 6.03±0.06 2.04±0.06 1.40±0.10 13.19±1.07 10.86±0.99 5.29±0.15 5.28
vehicle 30.99±0.25 24.27±0.39 18.32±0.56 41.64±1.06 32.02±0.61 25.51±0.89 25.51
voting 6.64±0.17 4.66±0.15 4.02±0.15 17.06±4.24 17.06±4.24 3.54±0.27 3.32
waveform 25.97±0.12 20.90±0.11 17.96±0.13 35.39±0.28 34.55±0.27 16.86±0.25 16.87

G. Mean 12.53 8.77 7.14 28.44 21.91 8.37 8.21

Table H.5: Loss decomposition results for Cragging(2; 15).
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Dataset L D DT DF DP L L∗

anneal 0.80±0.12 0.57±0.07 0.56±0.07 1.00±1.76 1.00±1.76 0.26±0.16 0.24
audiology 23.26±0.84 13.49±0.27 9.60±0.46 30.45±3.13 11.47±2.00 17.38±1.20 17.31
autos 25.44±0.69 17.47±0.35 14.57±0.40 31.55±2.82 15.41±1.88 15.49±1.27 15.53
balance 21.80±0.34 12.63±0.30 6.36±0.30 37.66±0.73 16.80±0.72 20.09±0.44 20.09
breastc 36.32±0.74 21.05±0.52 19.11±0.89 25.22±1.34 25.22±1.34 30.86±1.02 30.91
breastw 6.36±0.13 4.28±0.07 3.43±0.18 22.85±2.59 22.85±2.59 4.05±0.28 3.97
colic 19.23±0.31 9.49±0.29 8.36±0.53 15.69±1.37 15.69±1.37 14.34±0.79 14.32
credita 19.28±0.36 11.17±0.37 9.12±0.44 22.79±1.33 22.79±1.33 14.93±1.10 14.93
creditg 33.13±0.17 22.68±0.15 19.71±0.30 30.70±0.40 30.70±0.40 27.02±0.73 27.06
diabetes 31.33±0.24 22.58±0.21 19.65±0.29 31.84±0.30 31.84±0.30 24.03±0.45 24.07
glass 34.95±0.94 24.13±0.59 19.74±0.59 36.48±2.14 21.35±1.77 25.74±1.88 25.81
heartc 25.06±0.41 16.21±0.43 13.66±0.35 26.96±1.27 26.96±1.27 19.18±1.04 19.20
hearth 24.09±0.60 14.14±0.40 9.90±0.68 28.84±1.34 28.84±1.34 23.03±1.47 23.17
hearts 69.95±0.67 43.85±0.98 44.95±1.93 42.98±1.09 16.69±0.83 64.56±1.74 65.18
heartv 24.93±0.51 16.15±0.49 13.37±0.74 27.41±1.15 27.41±1.15 19.56±1.21 19.52
hepatitis 21.87±0.84 12.63±0.62 9.49±0.91 24.67±2.83 24.67±2.83 18.93±1.53 18.80
hypo 0.55±0.04 0.32±0.02 0.27±0.03 11.93±3.54 11.41±3.61 0.33±0.05 0.32
ionosphere 11.82±0.25 7.65±0.27 6.17±0.30 23.59±2.93 23.59±2.93 8.12±0.60 8.04
iris 6.90±0.44 2.84±0.33 1.98±0.37 10.33±3.30 10.27±3.32 6.00±0.44 5.60
krk 23.83±0.10 16.79±0.05 13.17±0.08 35.67±0.20 20.69±0.14 16.11±0.16 16.11
krkp 0.68±0.05 0.48±0.04 0.40±0.03 14.57±3.92 14.57±3.92 0.37±0.06 0.34
labor 21.50±1.95 13.10±1.10 10.85±1.26 16.34±3.11 16.34±3.11 16.13±2.38 14.63
letter 13.75±0.05 12.03±0.05 9.41±0.07 52.46±0.24 19.16±0.23 6.07±0.11 6.08
lymph 23.76±0.93 15.92±0.84 12.57±0.95 29.65±2.39 27.11±2.40 18.49±1.67 18.55
phoneme 18.69±0.09 14.08±0.10 11.72±0.11 31.11±0.20 31.11±0.20 12.19±0.15 12.19
primary 68.26±0.70 40.74±0.62 32.47±0.83 46.11±1.02 8.82±0.53 60.91±1.57 60.97
satimage 15.18±0.07 11.71±0.08 9.13±0.11 36.97±0.48 25.62±0.47 9.27±0.17 9.27
segment 4.21±0.09 3.25±0.09 2.59±0.11 32.51±2.62 22.66±2.43 2.18±0.22 2.16
shuttle 0.04±0.00 0.02±0.00 0.01±0.00 15.42±1.68 14.26±1.82 0.03±0.00 0.03
sick 1.54±0.04 1.03±0.04 0.72±0.07 27.57±2.83 27.57±2.83 1.16±0.16 1.15
sonar 29.27±0.69 23.43±0.62 20.43±0.88 34.64±2.25 34.64±2.25 19.85±2.03 19.66
soybean 11.19±0.29 7.45±0.23 5.28±0.24 30.80±2.35 24.98±2.22 8.45±0.51 8.47
splice 5.53±0.05 1.34±0.09 0.83±0.09 10.62±0.54 8.66±0.60 5.20±0.08 5.20
vehicle 29.29±0.40 22.14±0.22 16.29±0.27 39.80±0.80 31.80±0.82 25.05±1.08 25.05
voting 6.55±0.23 4.27±0.17 3.39±0.18 19.10±4.18 19.10±4.18 4.32±0.48 4.07
waveform 25.59±0.15 20.15±0.09 17.13±0.11 34.63±0.18 33.81±0.19 17.25±0.38 17.25

G. Mean 11.50 7.29 5.77 24.02 18.82 8.22 8.11

Table H.6: Loss decomposition results for Cragging(3; 10).
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Dataset L D DT DF DP L L∗

anneal 0.27±0.16 0.06±0.03 0.06±0.03 0.10±0.32 0.10±0.32 0.21±0.15 0.21
audiology 19.30±1.19 2.63±0.33 1.27±0.24 8.11±1.40 3.28±0.63 18.88±1.41 18.89
autos 17.87±1.34 5.05±0.46 3.31±0.40 13.66±2.06 8.11±1.67 16.50±1.65 16.44
balance 22.07±0.44 4.10±0.35 1.48±0.20 13.33±1.19 5.15±1.01 22.06±0.55 22.05
breastc 34.98±1.13 10.45±0.97 8.55±0.92 13.88±1.85 13.88±1.85 34.02±1.89 34.07
breastw 6.26±0.35 2.51±0.15 1.67±0.15 17.15±2.28 17.15±2.28 5.61±0.61 5.66
colic 18.67±0.30 6.66±0.45 5.46±0.47 12.73±1.71 12.73±1.71 16.14±0.64 16.14
credita 19.53±0.73 5.91±0.23 4.10±0.32 13.81±0.96 13.81±0.96 18.75±1.02 18.79
creditg 32.86±0.59 16.13±0.43 13.22±0.41 22.74±1.20 22.74±1.20 30.63±1.26 30.67
diabetes 30.69±0.26 19.32±0.43 16.74±0.45 27.14±0.80 27.14±0.80 24.82±0.80 24.86
glass 33.41±1.20 12.69±0.68 9.27±0.79 20.23±1.40 14.39±1.30 31.50±1.76 31.63
heartc 25.03±1.18 8.37±1.05 6.29±0.89 14.91±2.01 14.91±2.01 23.78±1.63 23.78
hearth 24.27±0.79 10.22±0.44 7.38±0.87 19.70±2.10 19.70±2.10 23.09±1.65 23.15
hearts 70.22±1.32 27.64±1.44 28.65±2.43 27.21±1.68 10.97±1.20 68.79±2.35 68.85
heartv 25.94±1.00 8.21±0.89 5.97±0.93 14.57±1.94 14.57±1.94 25.11±1.72 25.13
hepatitis 22.55±1.28 6.15±0.89 3.81±0.82 14.73±3.79 14.73±3.79 22.83±1.38 23.00
hypo 0.42±0.04 0.08±0.01 0.06±0.01 3.85±2.64 3.85±2.64 0.38±0.05 0.38
ionosphere 10.87±0.62 4.66±0.59 3.56±0.51 14.98±3.68 14.98±3.68 9.03±1.06 8.98
iris 6.49±0.95 0.96±0.26 0.76±0.21 1.96±1.12 1.96±1.12 6.00±1.18 5.90
krk 18.49±0.19 4.88±0.06 3.06±0.04 13.46±0.27 8.95±0.19 17.54±0.21 17.54
krkp 0.36±0.05 0.06±0.01 0.05±0.01 2.36±1.20 2.36±1.20 0.33±0.06 0.32
labor 19.66±2.36 5.93±0.82 5.28±0.98 5.54±1.52 5.54±1.52 16.63±2.52 16.13
letter 11.68±0.06 7.05±0.26 4.13±0.21 35.40±1.35 15.88±0.56 9.42±0.22 9.44
lymph 22.74±1.90 5.79±0.84 3.80±0.85 12.32±3.40 11.73±3.20 22.40±2.86 22.42
phoneme 17.09±0.28 10.87±0.20 8.84±0.18 25.13±0.50 25.13±0.50 12.48±0.32 12.49
primary 67.59±0.99 23.99±0.60 20.29±1.64 26.24±1.33 5.51±0.43 63.80±1.29 63.76
satimage 14.36±0.16 9.37±0.10 6.73±0.14 31.29±0.68 22.36±0.53 10.76±0.29 10.77
segment 3.17±0.13 1.51±0.10 0.96±0.11 21.87±2.77 16.45±1.99 2.68±0.23 2.68
shuttle 0.02±0.00 0.00±0.00 0.00±0.00 4.11±2.51 4.03±2.54 0.02±0.00 0.02
sick 1.37±0.09 0.31±0.02 0.19±0.02 9.53±1.50 9.53±1.50 1.31±0.10 1.31
sonar 27.60±1.32 12.94±0.99 9.94±0.73 22.08±3.27 22.08±3.27 25.65±2.60 25.98
soybean 9.47±0.41 2.47±0.20 1.72±0.11 10.81±2.64 8.71±2.18 8.62±0.41 8.66
splice 5.34±0.07 0.40±0.05 0.19±0.05 4.00±0.53 3.51±0.56 5.35±0.11 5.35
vehicle 26.88±0.81 13.01±0.53 8.99±0.58 24.70±1.36 21.29±1.12 25.69±1.25 25.66
voting 6.45±0.37 2.16±0.17 1.50±0.11 11.34±2.68 11.34±2.68 5.79±0.41 5.68
waveform 25.29±0.13 17.40±0.26 14.16±0.30 30.51±0.63 29.75±0.65 19.81±0.42 19.83

G. Mean 10.09 3.16 2.24 11.53 9.33 9.14 9.12

Table H.7: Loss decomposition results for Cragging(30; 1).
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I. Loss Decomposition Results by

Variable

Dataset B(.5;30) B(1;30) B(2;30) C(2;15) C(3;10) C(30;1)

anneal 0.72±0.15 0.39±0.20 0.28±0.14 0.51±0.13 0.26±0.16 0.21±0.15
audiology 19.41±1.23 17.56±1.61 18.71±1.65 16.74±0.87 17.38±1.20 18.88±1.41
autos 19.88±1.03 16.02±1.13 15.15±1.42 17.20±1.65 15.49±1.27 16.50±1.65
balance 16.05±0.99 19.96±0.50 21.08±0.74 18.23±0.80 20.09±0.44 22.06±0.55
breastc 30.54±1.19 31.79±1.87 31.44±1.23 30.49±1.31 30.86±1.02 34.02±1.89
breastw 3.93±0.43 3.98±0.21 4.31±0.30 3.91±0.35 4.05±0.28 5.61±0.61
colic 14.77±0.39 14.70±0.44 14.50±0.35 14.40±0.62 14.34±0.79 16.14±0.64
credita 13.99±0.98 14.46±0.53 15.32±0.63 14.43±0.68 14.93±1.10 18.75±1.02
creditg 25.21±0.56 25.44±1.09 26.21±0.88 26.16±0.53 27.02±0.73 30.63±1.26
diabetes 23.73±0.79 24.09±1.20 24.82±0.76 24.18±0.56 24.03±0.45 24.82±0.80
glass 25.39±1.88 25.09±1.46 25.46±0.94 24.44±1.27 25.74±1.88 31.50±1.76
heartc 18.45±1.48 19.40±1.20 21.85±1.69 18.32±1.14 19.18±1.04 23.78±1.63
hearth 20.89±0.88 22.69±0.90 22.34±1.07 22.18±1.72 23.03±1.47 23.09±1.65
hearts 64.88±3.27 63.70±2.94 65.95±2.60 64.38±3.16 64.56±1.74 68.79±2.35
heartv 18.19±1.24 20.04±0.93 22.07±1.64 18.11±1.73 19.56±1.21 25.11±1.72
hepatitis 16.75±1.81 18.11±1.36 18.24±0.70 17.99±0.98 18.93±1.53 22.83±1.38
hypo 0.37±0.06 0.33±0.07 0.34±0.05 0.34±0.04 0.33±0.05 0.38±0.05
ionosphere 7.78±0.49 7.44±0.59 7.38±0.45 7.78±0.76 8.12±0.60 9.03±1.06
iris 5.87±0.93 5.47±0.88 5.33±0.77 5.60±0.64 6.00±0.44 6.00±1.18
krk 19.57±0.15 16.16±0.18 15.55±0.19 17.69±0.14 16.11±0.16 17.54±0.21
krkp 0.65±0.10 0.39±0.07 0.31±0.08 0.54±0.07 0.37±0.06 0.33±0.06
labor 15.00±2.17 15.27±1.73 14.77±2.22 15.63±2.15 16.13±2.38 16.63±2.52
letter 6.19±0.08 5.74±0.12 6.04±0.09 5.96±0.14 6.07±0.11 9.42±0.22
lymph 17.12±1.36 17.65±1.95 18.31±2.12 16.92±1.00 18.49±1.67 22.40±2.86
phoneme 11.82±0.20 9.96±0.19 9.15±0.20 12.80±0.17 12.19±0.15 12.48±0.32
primary 58.59±1.57 60.68±1.29 61.94±1.74 59.73±1.64 60.91±1.57 63.80±1.29
satimage 9.60±0.21 9.19±0.17 9.02±0.18 9.41±0.17 9.27±0.17 10.76±0.29
segment 2.81±0.18 2.21±0.18 2.00±0.21 2.48±0.18 2.18±0.22 2.68±0.23
shuttle 0.04±0.00 0.02±0.00 0.02±0.00 0.03±0.00 0.03±0.00 0.02±0.00
sick 1.31±0.12 1.13±0.11 1.07±0.11 1.23±0.13 1.16±0.16 1.31±0.10
sonar 22.15±1.83 20.33±2.57 21.25±2.01 20.31±1.78 19.85±2.03 25.65±2.60
soybean 7.98±0.39 8.05±0.49 8.45±0.48 7.71±0.56 8.45±0.51 8.62±0.41
splice 6.15±0.29 5.86±0.06 5.55±0.14 5.29±0.15 5.20±0.08 5.35±0.11
vehicle 25.50±1.28 24.74±0.57 24.39±1.56 25.51±0.89 25.05±1.08 25.69±1.25
voting 3.73±0.44 4.25±0.38 4.73±0.41 3.54±0.27 4.32±0.48 5.79±0.41
waveform 16.55±0.37 17.12±0.35 17.56±0.38 16.86±0.25 17.25±0.38 19.81±0.42

G. Mean 8.73 8.16 8.13 8.37 8.22 9.14

Table I.1: Comparison of L.
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Dataset B(.5;30) B(1;30) B(2;30) C(2;15) C(3;10) C(30;1)

anneal 1.62±0.09 0.89±0.10 0.57±0.15 1.23±0.07 0.80±0.12 0.27±0.16
audiology 30.42±0.72 24.11±0.92 20.63±1.05 26.86±0.56 23.26±0.84 19.30±1.19
autos 36.28±0.72 26.87±0.81 20.61±0.99 31.29±0.69 25.44±0.69 17.87±1.34
balance 23.11±0.23 22.15±0.31 22.08±0.39 22.41±0.34 21.80±0.34 22.07±0.44
breastc 37.42±0.62 36.69±1.05 35.60±0.99 37.12±0.79 36.32±0.74 34.98±1.13
breastw 6.48±0.23 6.33±0.18 6.22±0.21 6.52±0.17 6.36±0.13 6.26±0.35
colic 20.15±0.28 19.27±0.29 18.64±0.25 19.56±0.23 19.23±0.31 18.67±0.30
credita 19.53±0.31 19.18±0.35 19.20±0.38 19.45±0.28 19.28±0.36 19.53±0.73
creditg 33.32±0.28 32.80±0.34 32.25±0.31 33.34±0.32 33.13±0.17 32.86±0.59
diabetes 31.10±0.32 30.44±0.29 30.22±0.32 31.70±0.27 31.33±0.24 30.69±0.26
glass 39.02±0.95 34.93±0.42 32.18±0.77 37.14±0.68 34.95±0.94 33.41±1.20
heartc 25.86±0.70 25.45±0.61 26.22±0.77 25.24±0.61 25.06±0.41 25.03±1.18
hearth 23.92±0.31 23.97±0.41 24.21±0.54 23.75±0.39 24.09±0.60 24.27±0.79
hearts 70.10±0.35 69.01±0.81 68.78±1.02 70.19±1.15 69.95±0.67 70.22±1.32
heartv 26.17±0.84 25.93±0.66 26.31±0.59 25.36±0.87 24.93±0.51 25.94±1.00
hepatitis 22.55±0.64 21.98±0.68 21.89±0.82 22.07±0.86 21.87±0.84 22.55±1.28
hypo 0.81±0.04 0.58±0.03 0.47±0.04 0.68±0.04 0.55±0.04 0.42±0.04
ionosphere 13.23±0.31 11.60±0.46 10.60±0.28 12.48±0.40 11.82±0.25 10.87±0.62
iris 7.28±0.41 6.66±0.55 6.09±0.62 7.02±0.44 6.90±0.44 6.49±0.95
krk 31.84±0.08 24.90±0.07 20.34±0.13 28.10±0.07 23.83±0.10 18.49±0.19
krkp 1.28±0.08 0.76±0.04 0.46±0.04 0.97±0.05 0.68±0.05 0.36±0.05
labor 23.99±1.09 21.15±1.57 19.57±1.83 23.28±1.34 21.50±1.95 19.66±2.36
letter 17.42±0.02 14.27±0.05 12.46±0.05 15.63±0.04 13.75±0.05 11.68±0.06
lymph 26.16±0.59 23.84±0.79 22.41±1.07 24.86±0.88 23.76±0.93 22.74±1.90
phoneme 18.77±0.08 15.68±0.11 13.54±0.09 19.88±0.07 18.69±0.09 17.09±0.28
primary 69.50±0.55 68.29±0.64 67.82±0.86 68.95±0.42 68.26±0.70 67.59±0.99
satimage 16.50±0.07 15.52±0.05 14.87±0.13 15.85±0.08 15.18±0.07 14.36±0.16
segment 5.72±0.14 4.36±0.09 3.52±0.11 5.03±0.11 4.21±0.09 3.17±0.13
shuttle 0.06±0.00 0.04±0.00 0.03±0.00 0.05±0.00 0.04±0.00 0.02±0.00
sick 1.98±0.05 1.58±0.05 1.35±0.07 1.78±0.04 1.54±0.04 1.37±0.09
sonar 32.73±0.74 30.39±0.66 29.31±0.78 30.75±0.66 29.27±0.69 27.60±1.32
soybean 15.31±0.37 11.46±0.35 10.01±0.23 13.03±0.27 11.19±0.29 9.47±0.41
splice 6.97±0.12 6.25±0.08 6.73±0.13 6.03±0.06 5.53±0.05 5.34±0.07
vehicle 32.31±0.34 29.88±0.31 28.23±0.49 30.99±0.25 29.29±0.40 26.88±0.81
voting 6.79±0.26 6.55±0.25 6.47±0.22 6.64±0.17 6.55±0.23 6.45±0.37
waveform 26.61±0.12 26.12±0.15 25.98±0.12 25.97±0.12 25.59±0.15 25.29±0.13

G. Mean 13.43 11.68 10.63 12.53 11.50 10.09

Table I.2: Comparison of L.
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Dataset B(.5;30) B(1;30) B(2;30) C(2;15) C(3;10) C(30;1)

anneal 1.28±0.12 0.67±0.08 0.35±0.07 0.99±0.10 0.57±0.07 0.06±0.03
audiology 22.38±0.65 14.71±0.48 8.55±0.59 18.61±0.42 13.49±0.27 2.63±0.33
autos 29.45±0.92 19.75±0.65 12.51±0.61 24.18±0.58 17.47±0.35 5.05±0.46
balance 18.02±0.13 13.67±0.34 9.45±0.32 16.10±0.29 12.63±0.30 4.10±0.35
breastc 25.67±0.59 22.26±0.47 18.20±0.56 24.49±0.50 21.05±0.52 10.45±0.97
breastw 4.70±0.17 4.36±0.15 4.09±0.16 4.55±0.14 4.28±0.07 2.51±0.15
colic 11.04±0.37 9.77±0.24 8.86±0.29 10.34±0.19 9.49±0.29 6.66±0.45
credita 12.89±0.19 11.97±0.38 10.98±0.38 12.27±0.22 11.17±0.37 5.91±0.23
creditg 24.57±0.23 23.27±0.30 21.48±0.18 23.97±0.10 22.68±0.15 16.13±0.43
diabetes 22.42±0.34 20.85±0.19 19.57±0.20 23.28±0.27 22.58±0.21 19.32±0.43
glass 29.95±0.92 24.31±0.56 19.88±0.54 27.34±0.64 24.13±0.59 12.69±0.68
heartc 18.73±0.45 17.44±0.44 16.46±0.49 17.39±0.45 16.21±0.43 8.37±1.05
hearth 15.65±0.40 14.18±0.41 12.06±0.32 15.36±0.33 14.14±0.40 10.22±0.44
hearts 50.45±0.91 45.85±0.92 40.54±1.07 48.14±0.71 43.85±0.98 27.64±1.44
heartv 19.18±0.59 17.59±0.44 16.43±0.47 17.93±0.70 16.15±0.49 8.21±0.89
hepatitis 15.30±0.51 13.62±0.59 12.08±0.66 14.09±0.50 12.63±0.62 6.15±0.89
hypo 0.59±0.05 0.35±0.03 0.21±0.03 0.47±0.03 0.32±0.02 0.08±0.01
ionosphere 9.40±0.28 7.89±0.44 6.95±0.29 8.49±0.31 7.65±0.27 4.66±0.59
iris 3.99±0.48 2.84±0.54 1.73±0.35 3.48±0.28 2.84±0.33 0.96±0.26
krk 25.92±0.06 18.38±0.05 12.02±0.05 22.06±0.03 16.79±0.05 4.88±0.06
krkp 1.05±0.07 0.57±0.05 0.24±0.04 0.76±0.05 0.48±0.04 0.06±0.01
labor 18.54±1.36 13.25±1.38 10.14±1.35 16.56±1.09 13.10±1.10 5.93±0.82
letter 16.01±0.03 12.74±0.09 10.59±0.06 14.14±0.07 12.03±0.05 7.05±0.26
lymph 20.14±0.72 17.03±0.47 13.82±0.65 18.54±0.76 15.92±0.84 5.79±0.84
phoneme 14.60±0.13 11.77±0.08 9.46±0.10 15.36±0.08 14.08±0.10 10.87±0.20
primary 49.94±0.82 42.05±0.64 34.14±0.70 46.96±0.49 40.74±0.62 23.99±0.60
satimage 13.10±0.07 12.11±0.05 11.43±0.11 12.43±0.08 11.71±0.08 9.37±0.10
segment 4.69±0.13 3.44±0.07 2.55±0.10 4.09±0.08 3.25±0.09 1.51±0.10
shuttle 0.04±0.00 0.03±0.00 0.01±0.00 0.03±0.00 0.02±0.00 0.00±0.00
sick 1.43±0.05 1.11±0.04 0.81±0.03 1.29±0.03 1.03±0.04 0.31±0.02
sonar 27.11±0.83 24.77±0.49 22.97±0.77 25.43±0.59 23.43±0.62 12.94±0.99
soybean 12.44±0.36 7.93±0.20 5.41±0.21 9.99±0.22 7.45±0.23 2.47±0.20
splice 2.89±0.10 1.90±0.10 2.48±0.18 2.04±0.06 1.34±0.09 0.40±0.05
vehicle 25.61±0.33 22.23±0.32 19.14±0.43 24.27±0.39 22.14±0.22 13.01±0.53
voting 4.84±0.23 4.27±0.17 3.64±0.14 4.66±0.15 4.27±0.17 2.16±0.17
waveform 21.90±0.13 21.06±0.09 20.55±0.06 20.90±0.11 20.15±0.09 17.40±0.26

G. Mean 9.79 7.74 6.07 8.77 7.29 3.16

Table I.3: Comparison of D.
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Dataset B(.5;30) B(1;30) B(2;30) C(2;15) C(3;10) C(30;1)

anneal 1.09±0.13 0.59±0.08 0.32±0.08 0.86±0.08 0.56±0.07 0.06±0.03
audiology 17.21±0.57 10.51±0.68 4.82±0.68 14.52±0.65 9.60±0.46 1.27±0.24
autos 25.64±0.80 16.29±0.69 9.13±0.39 20.82±0.87 14.57±0.40 3.31±0.40
balance 12.32±0.45 7.20±0.40 4.45±0.38 9.58±0.41 6.36±0.30 1.48±0.20
breastc 23.36±0.55 19.87±0.62 16.26±0.76 22.36±0.74 19.11±0.89 8.55±0.92
breastw 3.77±0.22 3.49±0.16 3.14±0.13 3.73±0.18 3.43±0.18 1.67±0.15
colic 9.60±0.36 8.37±0.30 7.55±0.28 9.03±0.28 8.36±0.53 5.46±0.47
credita 10.70±0.49 9.76±0.37 8.77±0.29 10.10±0.28 9.12±0.44 4.10±0.32
creditg 21.83±0.27 20.51±0.45 18.62±0.33 21.08±0.16 19.71±0.30 13.22±0.41
diabetes 19.52±0.39 17.89±0.44 16.60±0.42 20.29±0.30 19.65±0.29 16.74±0.45
glass 25.74±0.99 20.03±0.81 15.51±0.72 23.58±0.68 19.74±0.59 9.27±0.79
heartc 16.02±0.43 14.55±0.67 13.33±0.46 14.85±0.52 13.66±0.35 6.29±0.89
hearth 11.81±0.58 10.02±0.67 8.99±0.31 10.88±0.91 9.90±0.68 7.38±0.87
hearts 50.08±2.16 46.40±1.63 39.82±2.18 48.88±1.90 44.95±1.93 28.65±2.43
heartv 16.62±0.49 14.64±0.40 13.21±0.80 15.34±1.00 13.37±0.74 5.97±0.93
hepatitis 12.56±0.80 10.59±0.92 9.55±0.86 11.01±0.53 9.49±0.91 3.81±0.82
hypo 0.51±0.04 0.30±0.02 0.18±0.03 0.41±0.02 0.27±0.03 0.06±0.01
ionosphere 8.05±0.19 6.50±0.40 5.48±0.37 7.13±0.45 6.17±0.30 3.56±0.51
iris 2.86±0.48 2.13±0.61 1.31±0.18 2.58±0.33 1.98±0.37 0.76±0.21
krk 21.27±0.08 14.61±0.09 8.88±0.07 17.78±0.06 13.17±0.08 3.06±0.04
krkp 0.84±0.06 0.47±0.06 0.20±0.04 0.60±0.05 0.40±0.03 0.05±0.01
labor 15.94±1.52 11.15±1.24 8.53±1.53 14.21±1.90 10.85±1.26 5.28±0.98
letter 13.25±0.07 10.23±0.12 8.05±0.09 11.50±0.11 9.41±0.07 4.13±0.21
lymph 17.01±1.02 13.61±0.84 10.66±1.34 15.44±0.81 12.57±0.95 3.80±0.85
phoneme 12.22±0.15 9.71±0.07 7.63±0.09 12.87±0.08 11.72±0.11 8.84±0.18
primary 40.41±1.75 33.23±1.60 27.50±1.42 37.45±1.00 32.47±0.83 20.29±1.64
satimage 10.36±0.12 9.55±0.07 8.93±0.05 9.78±0.10 9.13±0.11 6.73±0.14
segment 3.77±0.18 2.75±0.07 1.98±0.11 3.28±0.09 2.59±0.11 0.96±0.11
shuttle 0.03±0.00 0.02±0.00 0.01±0.00 0.02±0.00 0.01±0.00 0.00±0.00
sick 1.06±0.08 0.79±0.05 0.55±0.03 0.93±0.05 0.72±0.07 0.19±0.02
sonar 24.22±0.98 21.84±0.91 19.65±1.02 22.48±0.83 20.43±0.88 9.94±0.73
soybean 10.25±0.29 5.86±0.21 3.59±0.24 7.91±0.30 5.28±0.24 1.72±0.11
splice 1.89±0.12 1.15±0.09 1.89±0.18 1.40±0.10 0.83±0.09 0.19±0.05
vehicle 19.84±0.58 16.70±0.47 13.97±0.50 18.32±0.56 16.29±0.27 8.99±0.58
voting 4.11±0.23 3.43±0.19 2.82±0.11 4.02±0.15 3.39±0.18 1.50±0.11
waveform 19.05±0.15 18.05±0.12 17.48±0.13 17.96±0.13 17.13±0.11 14.16±0.30

G. Mean 8.03 6.17 4.70 7.14 5.77 2.24

Table I.4: Comparison of DT .
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Dataset B(.5;30) B(1;30) B(2;30) C(2;15) C(3;10) C(30;1)

anneal 13.23±3.74 5.88±4.01 2.27±2.10 10.55±4.31 1.00±1.76 0.10±0.32
audiology 43.49±2.99 32.92±3.01 24.01±2.89 37.93±3.84 30.45±3.13 8.11±1.40
autos 44.27±1.97 36.67±2.73 29.15±3.39 39.34±2.49 31.55±2.82 13.66±2.06
balance 47.74±0.80 39.57±1.12 28.18±1.26 45.47±0.71 37.66±0.73 13.33±1.19
breastc 30.96±1.16 27.48±0.70 22.30±1.05 29.43±0.85 25.22±1.34 13.88±1.85
breastw 23.93±3.74 23.39±3.94 24.26±3.93 22.85±4.53 22.85±2.59 17.15±2.28
colic 19.07±1.81 17.61±0.69 16.37±1.18 17.67±1.43 15.69±1.37 12.73±1.71
credita 26.17±1.38 25.07±1.24 22.91±1.34 25.12±1.07 22.79±1.33 13.81±0.96
creditg 32.64±0.43 31.33±0.64 29.48±0.32 32.10±0.35 30.70±0.40 22.74±1.20
diabetes 31.68±0.67 30.04±0.87 28.51±0.61 32.61±0.49 31.84±0.30 27.14±0.80
glass 41.58±1.87 36.71±1.43 32.28±0.75 37.86±2.04 36.48±2.14 20.23±1.40
heartc 30.83±1.28 29.33±1.74 27.65±1.60 28.36±2.07 26.96±1.27 14.91±2.01
hearth 30.90±0.99 28.89±1.50 23.17±1.49 31.65±1.66 28.84±1.34 19.70±2.10
hearts 50.33±0.87 45.71±1.17 41.28±1.43 47.51±1.03 42.98±1.09 27.21±1.68
heartv 30.63±1.18 28.70±1.98 27.33±2.13 29.17±2.17 27.41±1.15 14.57±1.94
hepatitis 25.88±4.54 26.81±2.83 23.14±2.55 26.42±2.65 24.67±2.83 14.73±3.79
hypo 16.20±5.43 11.76±6.10 7.90±1.90 14.88±4.96 11.93±3.54 3.85±2.64
ionosphere 23.72±3.10 22.92±3.13 22.71±2.41 23.46±2.55 23.59±2.93 14.98±3.68
iris 13.52±2.64 9.07±4.21 5.59±3.47 10.63±3.26 10.33±3.30 1.96±1.12
krk 45.05±0.09 37.93±0.15 29.06±0.18 41.98±0.10 35.67±0.20 13.46±0.27
krkp 27.70±6.09 17.15±3.51 7.48±3.73 23.16±5.34 14.57±3.92 2.36±1.20
labor 18.29±3.54 14.95±3.47 11.09±1.83 17.85±5.20 16.34±3.11 5.54±1.52
letter 57.88±0.24 54.00±0.40 50.05±0.32 55.74±0.28 52.46±0.24 35.40±1.35
lymph 32.31±2.09 30.95±3.30 26.14±3.48 32.57±2.20 29.65±2.39 12.32±3.40
phoneme 32.38±0.40 30.38±0.43 27.68±0.71 32.32±0.23 31.11±0.20 25.13±0.50
primary 56.67±1.07 47.85±0.76 38.28±1.23 53.45±0.67 46.11±1.02 26.24±1.33
satimage 38.86±0.41 37.47±0.44 36.51±0.60 38.00±0.41 36.97±0.48 31.29±0.68
segment 37.33±1.30 33.94±1.95 30.69±2.64 36.26±1.90 32.51±2.62 21.87±2.77
shuttle 29.73±2.29 15.97±3.54 13.20±3.12 22.26±2.59 15.42±1.68 4.11±2.51
sick 28.85±1.53 28.04±2.27 22.64±2.90 29.39±1.82 27.57±2.83 9.53±1.50
sonar 36.81±1.67 36.21±2.11 34.84±2.28 37.51±1.26 34.64±2.25 22.08±3.27
soybean 38.24±0.98 30.79±2.26 25.20±3.01 34.88±2.43 30.80±2.35 10.81±2.64
splice 18.16±1.07 13.90±0.90 12.45±0.53 13.19±1.07 10.62±0.54 4.00±0.53
vehicle 42.54±0.70 39.10±1.10 35.14±1.00 41.64±1.06 39.80±0.80 24.70±1.36
voting 17.27±3.93 19.53±2.98 16.85±3.57 17.06±4.24 19.10±4.18 11.34±2.68
waveform 36.21±0.26 35.64±0.32 34.96±0.27 35.39±0.28 34.63±0.18 30.51±0.63

G. Mean 30.44 26.20 21.57 28.44 24.02 11.53

Table I.5: Comparison of DF .
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Dataset B(.5;30) B(1;30) B(2;30) C(2;15) C(3;10) C(30;1)

anneal 12.63±3.48 5.88±4.01 2.27±2.10 10.38±4.50 1.00±1.76 0.10±0.32
audiology 14.79±1.86 11.55±2.68 10.36±1.88 11.79±1.74 11.47±2.00 3.28±0.63
autos 20.79±1.95 17.57±2.02 14.05±2.03 19.00±2.69 15.41±1.88 8.11±1.67
balance 20.33±1.05 17.94±0.79 11.85±1.20 20.15±0.72 16.80±0.72 5.15±1.01
breastc 30.96±1.16 27.48±0.70 22.30±1.05 29.43±0.85 25.22±1.34 13.88±1.85
breastw 23.93±3.74 23.39±3.94 24.26±3.93 22.85±4.53 22.85±2.59 17.15±2.28
colic 19.07±1.81 17.61±0.69 16.37±1.18 17.67±1.43 15.69±1.37 12.73±1.71
credita 26.17±1.38 25.07±1.24 22.91±1.34 25.12±1.07 22.79±1.33 13.81±0.96
creditg 32.64±0.43 31.33±0.64 29.48±0.32 32.10±0.35 30.70±0.40 22.74±1.20
diabetes 31.68±0.67 30.04±0.87 28.51±0.61 32.61±0.49 31.84±0.30 27.14±0.80
glass 22.41±1.76 20.89±1.37 19.59±1.12 21.11±1.48 21.35±1.77 14.39±1.30
heartc 30.83±1.28 29.33±1.74 27.65±1.60 28.36±2.07 26.96±1.27 14.91±2.01
hearth 30.90±0.99 28.89±1.50 23.17±1.49 31.65±1.66 28.84±1.34 19.70±2.10
hearts 19.55±1.11 18.05±1.08 16.16±0.86 18.39±0.85 16.69±0.83 10.97±1.20
heartv 30.63±1.18 28.70±1.98 27.33±2.13 29.17±2.17 27.41±1.15 14.57±1.94
hepatitis 25.88±4.54 26.81±2.83 23.14±2.55 26.42±2.65 24.67±2.83 14.73±3.79
hypo 14.01±5.44 11.22±5.82 7.86±1.86 13.90±5.01 11.41±3.61 3.85±2.64
ionosphere 23.72±3.10 22.92±3.13 22.71±2.41 23.46±2.55 23.59±2.93 14.98±3.68
iris 13.45±2.56 9.04±4.24 5.59±3.47 10.53±3.24 10.27±3.32 1.96±1.12
krk 24.72±0.12 21.74±0.19 17.46±0.19 23.83±0.14 20.69±0.14 8.95±0.19
krkp 27.70±6.09 17.15±3.51 7.48±3.73 23.16±5.34 14.57±3.92 2.36±1.20
labor 18.29±3.54 14.95±3.47 11.09±1.83 17.85±5.20 16.34±3.11 5.54±1.52
letter 19.42±0.30 19.40±0.11 19.15±0.24 19.25±0.22 19.16±0.23 15.88±0.56
lymph 29.01±1.58 28.05±2.81 24.52±3.35 29.25±2.54 27.11±2.40 11.73±3.20
phoneme 32.38±0.40 30.38±0.43 27.68±0.71 32.32±0.23 31.11±0.20 25.13±0.50
primary 9.98±0.54 9.03±0.53 7.47±0.52 9.79±0.54 8.82±0.53 5.51±0.43
satimage 25.74±0.31 25.48±0.39 25.24±0.50 25.70±0.41 25.62±0.47 22.36±0.53
segment 26.92±1.34 23.84±1.67 21.17±2.20 26.19±1.73 22.66±2.43 16.45±1.99
shuttle 25.40±2.56 14.43±3.29 12.43±2.47 19.36±3.22 14.26±1.82 4.03±2.54
sick 28.85±1.53 28.04±2.27 22.64±2.90 29.39±1.82 27.57±2.83 9.53±1.50
sonar 36.81±1.67 36.21±2.11 34.84±2.28 37.51±1.26 34.64±2.25 22.08±3.27
soybean 27.20±1.36 24.50±2.05 20.51±2.48 26.23±1.97 24.98±2.22 8.71±2.18
splice 15.53±1.34 11.84±1.01 10.75±0.67 10.86±0.99 8.66±0.60 3.51±0.56
vehicle 31.26±0.63 29.92±0.76 27.45±0.83 32.02±0.61 31.80±0.82 21.29±1.12
voting 17.27±3.93 19.53±2.98 16.85±3.57 17.06±4.24 19.10±4.18 11.34±2.68
waveform 35.29±0.24 34.80±0.32 34.13±0.29 34.55±0.27 33.81±0.19 29.75±0.65

G. Mean 23.24 20.41 17.05 21.91 18.82 9.33

Table I.6: Comparison of DP .
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J. Sanity Check for Experimental

Results

Throughout this thesis, several analysis methods produce empirical estimates of the ex-
pected performance of classifiers by repeatedly measuring their loss on some data subsam-
ples. To ensure that the reported experimental results are indeed correct and consistent
with each other, we compare here the loss estimates from the various experiments with
each other.

Figure J.1 on pages 165–168 shows the loss estimates for Bagging(0.5; 30), Bagging(1; 30),
and Bagging(2; 30) obtained from the various experiments, while Figure J.2 on pages 168–
172 shows the loss estimates for Cragging(2; 15), Cragging(3; 10), and Cragging(30; 1).

All the experimental results are consistent with each other as far as the relative ordering
of the learning methods according to their performance is concerned.

The loss estimates from the bias-variance decomposition experiments (BVD) are consis-
tently biased upwards, compared to the estimates obtained from the other experiments.
This is a direct result of the experimental methodology: in order to estimate bias and
variance, a further bootstrap sampling procedure is embedded within the 10x10 fold cross-
validation. This results both in an upwards bias as well as a higher variance for the loss
estimates resulting from these experiments.

The results from the other experiments (Error Curves, Margins, Decomposition) are con-
sistent with each other as they lead to the same performance estimates.
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Figure J.1: Loss comparison for Bagging(0.5; 30), Bagging(1; 30),
Bagging(2; 30), and the base classifier. (continued on next page)
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Figure J.1: Loss comparison for Bagging(0.5; 30), Bagging(1; 30),
Bagging(2; 30), and the base classifier. (continued on next page)
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Figure J.1: Loss comparison for Bagging(0.5; 30), Bagging(1; 30),
Bagging(2; 30), and the base classifier. (continued on next page)
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Figure J.1: Loss comparison for Bagging(0.5; 30), Bagging(1; 30),
Bagging(2; 30), and the base classifier.
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Figure J.2: Loss comparison for Cragging(2; 15), Cragging(3; 10),
Cragging(30; 1), and the base classifier. (continued on next page)
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Figure J.2: Loss comparison for Cragging(2; 15), Cragging(3; 10),
Cragging(30; 1), and the base classifier. (continued on next page)
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Figure J.2: Loss comparison for Cragging(2; 15), Cragging(3; 10),
Cragging(30; 1), and the base classifier. (continued on next page)
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Figure J.2: Loss comparison for Cragging(2; 15), Cragging(3; 10),
Cragging(30; 1), and the base classifier. (continued on next page)
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[81] Gabriele Zenobi and Pádraig Cunningham. Using diversity in preparing ensembles
of classifiers based on different feature subsets to minimize generalization error. In
L. De Readt and P. Flach, editors, 12th European Conference on Machine Learning
(ECML 2001), volume 2167 of LNAI, pages 576–587. Springer Verlag, 2001.

178


	coversheetresearchspace.pdf
	Copyright Statement
	General copyright and disclaimer


