Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form
READING LAPITA IN NEAR OCEANIA:
INTERTIDAL AND SHALLOW-WATER POTTERY
SCATTERS, ROVIANA LAGOON, NEW GEORGIA,
SOLOMON ISLANDS

MATTHEW WALTER FELGATE

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Anthropology, University of Auckland, 2003
ABSTRACT

Lapita is the name given by archaeologists to a material culture complex distributed from Papua New Guinea to Samoa about 3000 years ago, which marks major economic changes in Near Oceania and the first settlement by humans of Remote Oceania. Those parts of Solomon Islands that lie in Near Oceania, together with Bougainville, comprise a large gap in the recorded distribution of Lapita, which the current research seeks to explain. At Roviana Lagoon, centrally located in this gap, scatters of pottery, stone artefacts, and other stone items are found in shallow water in this sheltered, landlocked lagoon, initially thought to be late derivatives of Lapita. This research seeks method and theory to aid in the interpretation of this type of archaeological record.

Intensive littoral survey discovered a wider chronological range of pottery styles than had previously been recorded, including materials attributable directly to the Lapita material culture complex. A study of vessel brokenness and completeness enabled sample evaluation, estimation of a parent population from which the sample derived, assessment of the state of preservation of the sample, and systematic choice of unit of quantification. Studies of wave exposure of collection sites and taphonomic evidence from sherds concluded that the cultural formation process of these sites was stilt house settlement (as found elsewhere in Near Oceania for Lapita) over deeper water than today. Falling relative sea levels and consequent increasing effects of swash-zone processes have resulted in high archaeological visibility and poor state of preservation at Roviana Lagoon.

Analysis of ceramic and lithic variability and spatial analysis allowed the construction of a provisional chronology in need of further testing. Indications are that there is good potential to construct a robust, high-resolution ceramic chronology by focussing on carefully controlled surface collection from this sort of location, ceramic seriation and testing/calibration using direct dating by AMS radiocarbon and Thermoluminescence.

Data on preservation and archaeological visibility of stilt house settlements along a sheltered emerging coastline allows preservation and visibility for this type of settlement to be modeled elsewhere. When such a model is applied to other areas of the Lapita gap, which are predominantly either less favourable for preservation or less favourable for archaeological visibility, the gap in the distribution of Lapita can be seen to be an area of low probability of detection by archaeologists, meaning there is currently no evidence for absence of settlement in the past, and good reason to think that Lapita was continuously distributed across Near Oceania as a network of stilt village settlement. This finding highlights the need for explicit models of probability of detection to discover or read the Lapita archaeological record.

Keywords: pottery; Lapita; formation processes; surface archaeology; tidal archaeology; Oceania
ACKNOWLEDGEMENTS

Primary supervisor, Dr. Peter Sheppard, got the New Georgia Archaeological Survey off the ground (and into the sea), an achievement that made this research possible. As a supervisor he gave me a lot of rope, as well as the occasional well-timed tug back to the topic, and has always been available when needed. Peter was instrumental in obtaining institutional financial support in the form of a University of Auckland Doctoral Scholarship, and a research stipend from the Marsden Fund. Field expenses and substantial analytical expenses were funded primarily from grants to the NGAS by the University of Auckland, National Geographic Research and the Marsden Fund. Peter has also been a steady companion and mentor in the field and at all stages of the research, and he and Debbie have made my family and I welcome in their home on numerous occasions.

This research in effect continues an academic program begun in the 1970s by Professor Roger C. Green, as the Southeast Solomons Culture History Project, which eventually brought Peter Sheppard to this part of the world to work on Lapita lithics from Solomon Islands. It was Roger Green who first focused my attention on Oceanic prehistory, initially with an ample shirt emblazoned with pacific canoes, and later through an intense series of lectures on Oceanic Prehistory, capped by his last 3-week fieldschool before retirement from active fieldwork in the mid 1980s. Roger predicted in 1978 that Lapita would be found at New Georgia, and like Peter Sheppard, has been a mentor throughout. He also organized and personally funded petrographic analysis of ceramic tempers, and made his extensive personal library available.

Dr. Simon Holdaway generously accepted the task of secondary supervision in mid-research when the rules changed, and has, through suggestions in the lab, comments on drafts, and by convening an archaeology theory reading group, contributed substantially to the outcome.

Material and moral support from family were essential to successful completion of the research, especially from my parents, who largely financed the final years, and elder brother, who was always ready to help pack up the house and store incredible accumulations of household effects every time we decamped to the Solomons, and is still doing so.

In Solomon Islands, support and encouragement from Mr Lawrence Foanoata, Director of the National Museum has been constant and essential. Permissions from the Research committee of the Ministry of Education, and from the Western Province Administration were key to the success of the research. Mr John Keopo of the National Museum was instrumental in the smooth running of the first field season. Rhys and Margaret Richards provided hospitality in Honiara on more than one occasion, and Rhys was instrumental as the New Zealand High Commissioner in obtaining a residence permit during extended fieldwork.
Mr Kenneth Roga, Western Province Field Archaeologist, has been a primary architect of fieldwork throughout. Unflagging energy in the field, his encyclopaedic network of wantok which has ensured a warm welcome on so many occasions, commitment to archaeology despite difficult political circumstances, and a range of talents too numerous to mention have been invaluable. A rock-steady figure at the helm of a canoe over many long journeys through sometimes dangerous seas, his and Janet Roga’s hospitality in Gizo on so many occasions is deeply appreciated.

At Roviana Lagoon, permission for research was received from the late Chief Johnathan Roni. Chief Joseph Kama of Kaliuqoungu and Chief Nathan Kera of Saikile each consented to research in areas under their jurisdiction. Thanks are also due to Mr. Solomon Roni and his family, especially all at Miho in Sasavele: Sam Roni and Waring, Martha Roni, Aggie Roni and Abel Kae, my father-in-law Sale Maebule and late mother-in-law Mabelo Roni, Sitiveni, my wife Noseduri, and many of the next generation too numerous to mention. Thanks also are due to members of the Elelo community who helped out in so many ways during our extended stay, especially Hetti Lanni, Barrie and Selina Ford and George and Visa Sapolo. The late Mr Phillip Lanni generously assisted with his time during a visit to Gharanga, despite ill health. In Munda, thanks are due to David Kera and family, Dave and Mariana Cook, and Trevor and Zahi Cumberland, for assistance with communications and travel on many occasions. In Saikile, John Kororo and family abetted us on our search for pottery at Mbaraulu, and Sae Oka was a prime mover in the survey for pottery on Ndora Island.

During analysis and writeup at Auckland many individuals contributed their skills: Dilys Johns and Dr Rod Wallace supplied technical and conservation advice, Hamish Mc Donald and Tim Mackrell took all the artefact photographs (or at least all the good ones), Joan Lawrence illustrated the pottery and lithic artefacts, Dr Simon Bickler collaborated on the problem of sample interpretation, and wrote a simulation program to estimate parent population of vessels. Dr Robin Parker of the Geology Department provided thin section descriptions of lithics. Barry Curnham, also in Geology, showed me how to make epoxy-impregnated ceramic thin sections. Peter Sheppard examined chert thin sections. Bill Dickinson of the University of Arizona analysed and reported on ceramic thin sections, and collaborated on a paper writing up the results. Jim Feathers of the Anthropology Department, University of Washington, did the thermoluminescence analysis and was generous with his time in discussing progress and results. Dr Christine Prior of the Rafter Radiocarbon Lab organized AMS dating of samples from Honiavasa and Hoghoi, including some careful experimentation with the Honiavasa sample. Professor Jim Allen gave permission to cite the 1984 and 1985 Lapita Homeland Project Field Reports. Discussions with Dr Stuart Bedford, Moira Doherty, Dr Simon Best and Dr Simon Bickler, contributed to the research and identified several errors. Stuart, Simon Best and Moira provided useful comments on parts of the manuscript. Stuart and Carolyn made me welcome in their home during the final stages of writing.
Contents:

CHAPTER 1:
RESEARCH QUESTIONS AND METHODOLOGY 1
Introduction: .. 1
The Research Region: .. 6
The Roviana Early Ceramic Archaeological Record: 14
Research Questions: .. 15
Approaches to Ceramic Classification and Analysis: 21
Quantification: ... 34
Seriation Theory: a Review: 43
Form and Function: a Review: 57
Chapter summary and conclusions: 70

CHAPTER 2:
A REVIEW OF CONSTRUCTIONS OF LAPITA TEMPORAL VARIABILITY .. 77
Introduction: .. 77
Green’s 1978 Lapita Ceramic Series: 79
Anson’s Early Far Western Lapita: 85
Mussau: ... 88
The “Changing” Face of Lapita: 89
Summerhayes, West New Britain, Anir, and a Three-stage Lapita Ceramic Series: .. 93
The Watom Lapita Series: ... 103
Wahome’s Seriation of Admiralties Pottery Assemblages: 107
Specht on Buka: ... 109
Wickler on Buka: .. 111
Vanuatu: ... 116
New Caledonia: .. 119
The View from the East: Fiji and Tonga: 123
CHAPTER 3:

SCALE AND METHOD OF FIELD SURVEY REQUIRED TO GENERATE A SAMPLE OF LAPITA SITES FOR SERIATION IN THE NEW GEORGIA REGION

Introduction: ... 133
Review of Near-oceanic Survey Methods and Results: 139
Sampling Theory and the Roviana/Kaliquongu Survey Regions: 158
Survey Methods: .. 163
Results: ... 188
Discussion and Conclusions: the Two Surveys. 190

CHAPTER 4:

CERAMICS: UNITS OF DESCRIPTION 193
Introduction: ... 193
Database Structure: .. 195
Thickness, Form and Decoration of Various Vessel Parts Represented on Sherds: .. 202
Vessel Form: ... 205
Decoration: .. 219
Transforming Relational Data into a Flat Table: 242
Chapter Summary and Conclusions: .. 244

CHAPTER 5:

SAMPLE EVALUATION AND QUANTIFYING SAMPLE SIZE. . . 247
Introduction ... 247
Methods for Establishing Vessel Brokenness and Completeness: . . . 248
Simulation Approach: .. 253
Statistical Approaches: ... 257
Simulation Results: .. 259
Statistical Results: ... 262
CHAPTER 9:

CERAMIC DECORATIVE CLASSIFICATION AND DECORATION/FORM VARIABILITY: 359

Introduction: 359
Classification of Linear Motifs: 360
Part Representation in the Potsherd Sample: 361
Covariation Between Vessel Part and Decoration: 364
Summary of Decorative Structure Across the Vessel: 371
Interpretation of Decorative Co-variation by Vessel Part: 373
Attribute Frequencies: 374
Variability of Impressed Lips: 375
Decorative Attributes and Vessel Form: 383
Chapter Summary: 391

CHAPTER 10:

LITHICS 395
Introduction: 395
Review: 398
Roviana Lithic Artefacts: 401
Chert Flakes/Fragments: 411
Analysis of Hoghoi Water-rounded and Fractured Volcanic Manuports:
Chapter Summary: ... 417

CHAPTER 11:
INTRASITE SPATIAL STRUCTURE OF CERAMIC AND LITHIC VARIABILITY: 421
Introduction: ... 421
Selection of Sites for Intrasite Spatial Analysis: 423
Objectives: ... 423
Method: ... 425
Zangana: ... 428
Hoghoi: ... 438
Honiavasa: ... 443
Chapter Summary and Conclusions. 447

CHAPTER 12:
CHRONOLOGY ... 451
Introduction: ... 451
AMS Radiocarbon Dates on Potsherds: 453
Thermoluminescence (TL) Dates from Quartz-Calcite Sherds: 458
Roviana TL Data: ... 463
Seriation: ... 465
Discussion of Correspondence Analyses: the Alternatives: 478
Conclusions: Integrating 14C, TL and Seriation: 480

CHAPTER 13:
SUMMARY AND CONCLUSIONS .. 483
Introduction: ... 483
Summary: ... 484
External Comparisons: .. 498
The Lapita Gap as an Area of Low Probability of Detection: 503
Intertidal-Zone and Shallow-Water Archaeology: 504
Table 1: Sampling, assemblage richness, and the Jaccard coefficient (p=present, a=absent).

Table 2: Reef/Santa Cruz motif counts as given in Anson 1983.

Table 3: Sherd counts and MNI assembled from various tables in Parker (1981).

Table 4: Relative proportions of dentate and incised, recalculated from data presented by Donovan (1973).

Table 5: Summary of a review of survey methods and Lapita results.

Table 6: Site densities by period for Roviana and Kaliquongu surveys.

Table 7: Structure of master record for each sherd.

Table 8: Classes of mineral identified at 10x magnification in reflected light.

Table 9: Examples of descriptive syntax for tempers.

Table 10: Temper groupings after Dickinson 2000.

Table 11: Data structure of table of thicknesses for each part of the sherd.

Table 12: Data structure for the table of records of sherd form attributes by vessel part.

Table 13: Data structure for decoration records.

Table 14: Decorative techniques.

Table 15: Decoration pattern definitions.

Table 16: Decorative elements.

Table 17: Data structure for flat table of summary data of sherd properties.

Table 18: Variation in lip brokenness between sites.

Table 19: Selection of sample for estimating vessel completeness.

Table 20: Breakage population estimate for the combined Roviana highly decorated lip sample using the statistic of Chao 1984.

Table 21: Fetch measurements for collection sites as an indicator of wave exposure.

Table 22: Total sherd count and average sherd area by collection site, resulting from combined effects of collection intensity and wave exposure.

Table 23: Ratio of lip-rim sherds to body sherds as a measure of collector effect.
Table 24: Ratios of plain to decorated sherds, controlled by vessel part (lips, rims, necks and shoulders).

Table 25: Body sherd to neck sherd ratio as an index of sherd skipping.

Table 26: Counts of vessel form classes.

Table 27: The attribute “even/not even” by site.

Table 28: Relative abundance of “hard neck” interior profiles to “not hard”.

Table 29: Relative abundance of even interiors with hard neck interior profiles to even interiors without hard profile.

Table 30: Sherd restriction factor comparison of site samples.

Table 31: Preservational bias of vessel parts as an explanation for differences in sherd restriction factor (data has the form average thickness (count) standard deviation).

Table 32: Part representation, all sherds including necked sherds but excluding carinated and/or inverted-rim sherds.

Table 33: Part representation for inverted-rim sherds (no neck corner point expected from morphology of sherd).

Table 34: Carinated sherds (excluding carinated sherds with inverted rims).

Table 35: Form strength variation for different pottery styles and the effect on part representation.

Table 36: Lip decoration and rim decoration.

Table 37: Lip decoration and neck decoration.

Table 38: Cross-tabulation of lip decoration with shoulder decoration.

Table 39: Cross-tabulation of rim decoration and neck decoration.

Table 40: Cross-tabulation of rim decoration and shoulder decoration.

Table 41: Cross-tabulation of neck decoration and shoulder decoration.

Table 42: Counts of occurrences of decorative attributes.

Table 43: Petrographic descriptions of lithic artefacts.

Table 44: Petrographic classification of manuports collected at Hoghoi.

Table 45: Size comparisons between petrographic classes of lithic manuports.

Table 46: Radiocarbon determinations from pottery (calibrated using OxCal 3.5, Stuiver et al. 1998 atmospheric data).
Table 47: Thermoluminescence dating results. Precision shown is at confidence limits of one standard deviation. .. 464

Table 48: Definitions of attribute codes used in seriation tables and plots. 465

Table 49: Relative contribution of first and second components of CA using all attributes and forms. ... 468

Table 50: CA diagnostics by attribute, all attributes included. 468

Table 51: CA diagnostics by site, all attributes included (*=inertia outlier). 470

Table 52: Eigenvalues and contributions to intertia of CA components, for data excluding form-correlated attributes. .. 473

Table 53: CA diagnostic table for attributes, form-correlated attributes omitted (*=inertia outlier). .. 473

Table 54: CA diagnostics by site, form-correlated attributes omitted (*=inertia outlier). .. 475

Table 55: CA diagnostics for attributes, omitting Honiavasa data and form-correlated attributes. .. 477

Table 56: CA diagnostics by site, omitting Honiavasa data and form-correlated attributes. .. 477

Table 57: CA eigenvalues and component contributions to inertia omitting Honiavasa data and form-correlated attributes 477

Table 58: Summary of variability ... 479
List of Figures:

Figure 1: Near Oceania, Remote Oceania and Solomon Islands, showing the location of the New Georgia Group. ... 3

Figure 2: Map of New Georgia Group showing principal geological formations (after Coulson, Dunkerly, Hughes and Ridgeway 1987). 9

Figure 3: The author providing scale for solution notches in Plio-Pleistocene limestone cliff near Saikile passage, Roviana Lagoon (photograph courtesy of Peter Sheppard) ... 14

Figure 4: Paniavile at low tide, looking north, with several inhabited islets and the New Georgia mainland in the distance. ... 16

Figure 5: Processes of formation of the Archaeological record (After Felgate and Bickler n.d., adapted from De Boer 1983): inferring a breakage population from an archaeological sample. ... 44

Figure 6: Roviana and Kaliquonugu surveys as samples of the New Georgia lagoon and barrier island system. ... 158

Figure 7: Slab-built carinated vessels from Honiavasa initially assigned to the Lapita period (this assignment is examined in more detail in Chapters 8 and 9): the solid vertical line in HV.2.464 represents an estimated location of the central vertical avis (CVA) of the pot. ... 167

Figure 8: Carinated vessels from Honiavasa, showing double-line markes on some design zones, bands of nubbins at the neck in two cases, and a band of fingernail impression in one case (top). ... 168

Figure 9: HV.4.202 has an incised motif laid out in double lines; HV.1.314 is dentate-stamped, with similar design structure and a double carination; HV.2.341 is carinated, with the design laid out in applied fillets, bounded horizontally by decorated lap joins between slabs; HV.2.297 and HV.4.379 have bands of single fingernail impressions and nubbins at the neck respectively. 169

Figure 10: Incised rims with opposed-pinchnail impressed band at the neck, diagnostic of the Miho subgroup of Post-Lapita styles. 171

Figure 11: Miho-style post-Lapita sherds. .. 172

Figure 12: Miho-style post-Lapita sherds with incised shoulders. 172
Figure 13: Miho-style post-Lapita sherds with CVA measurements shown (MH290 was measured at two locations on the profile; at the interior of the neck orifice and the exterior shoulder).

Figure 14: Miho-style post-Lapita sherds; dashed CVA lines are measurements based on non-circular (uneven) curvature at the profile locations indicated by arrows.

Figure 15: Gharanga-style post-Lapita sherds. (Gharanga is a short-rim subgroup of Gharanga-Kopo which may have multiple bands of opposed-pincheck fingernail impression on the shoulder.

Figure 16: Gharanga-style post-Lapita sherds.

Figure 17: Gharanga/Kopo style post-Lapita sherds (top) and a large Gharanga-style sherd (bottom) (four measurement points used as arrowed to estimate CVA.

Figure 18: Intermediate between Gharanga and Kopo styles: all post-Lapita.

Figure 19: Kopo-style post-Lapita rim sherds.

Figure 20: Another large Gharanga-style post-Lapita sherd from an unrestricted vessel form.

Figure 21: Gharanga-style small-orifice post-Lapita sherd showing rolled rim and thin wall common to this style.

Figure 22: Kopo-Style post-Lapita sherd (taller, less everted rim than Gharanga style) from a large-orifice vessel, with bands of impressions along both inner and outer edges of the lip.

Figure 23: Less decorated variant of Gharanga-Kopo post-Lapita style, without a strong corner point in vertical section at the neck.

Figure 24: Large-orifice Gharanga/Kopo-style sherd with deformation of the lip into a wave pattern.

Figure 25: Large Gharanga-style post-Lapita sherd with typical decoration, including a band of impressions along the inner edge of the lip.

Figure 26: Gharanga/Kopo-style post-Lapita vessels: most are weakly restricted at the neck, with short, heavily everted rims. Punctate band at the neck is the most common decoration in this group, while multiple bands of fingernail pinch are common on the short-rim examples. One sherd (MH.33) had exotic quartz-calcite
hybrid temper (see Chapter 4). ..180

Figure 27: Locations mentioned in the text in relation to Roviana and Kaliquongu surveys. ...183

Figure 28: Kaliquongu survey transects: the unfilled symbols represent sites discovered by informant-prospection during the Roviana survey.189

Figure 29: Data structure for each sherd record; each sherd can have many records in the detail tables pertaining to the various parts of the vessel represented.195

Figure 30: Major vessel form variants showing part terminology; L=lip, R=rim, N=neck, S=shoulder, C=carination, B=body; inverted or unrestricted vessels have no neck, while for restricted vessels with everted rims (the first seven) the only distinction in neck types is between the double neck (top centre) and the single neck (including all unlabelled). ...203

Figure 31: Lip form variants showing database codes207

Figure 33: Measurement of rim depth, rim V curve, neck angle and neck V curve at different levels of brokenness. ...212

Figure 34: Shoulder form measurement ...213

Figure 35: Derivation of conical/cannister (C) and spheroidal (G) sherds from various body forms. ..216

Figure 36: Form codes for vessel interiors.217

Figure 37: Possible conical base sherds from robust vessels.218

Figure 38: Examples of applied decoration.223

Figure 39: Examples of applied decoration.223

Figure 40: Applied decoration on compound rims.224

Figure 41: Examples of deformation of the lip into a discontinuous band.224

Figure 42: Horizontal deformation of the lip into a continuous band in a wave pattern. ...225

Figure 43: Examples of discontinuous deformation.225

Figure 44: Excision of outer lip to form a band of notches.226

Figure 45: Compound rims from Nusa Roviana. NR.34 has excised lines forming the triangle pattern on the upper rim.226

Figure 46: Impressions on the top of the lip; and spatula impressions on the neck, thought to indicate forming of the neck using a tool.227
Figure 47: Excision by rotation: one end of a small twig or rod has been poked into the clay and the other end moved in a circle, leaving a conical hole. 227

Figure 48: Perforation (upper hole). .. 227

Figure 49: Examples of wavy stamping and an example of dentate-stamping. ... 228

Figure 50: Applied decoration (in combination with incised decoration) with detachment scars indicating a v-pattern, and also possible attached disc. 228

Figure 51: A band of fingernail impressions (opposed pinch), each of which is oriented diagonal to the CVA rather than vertically, or parallel to the CVA. 230

Figure 52: Deformation, perforation, and the “bnd” incomplete pattern example. .. 230

Figure 53: “cf” (Crow’s foot) pattern on the vessel rim above a band of pinching. .. 230

Figure 54: Examples of lip impression in pattern “bpi” (band parallel inner-edge of lip). .. 231

Figure 55: Examples of lip impressions laid out in pattern “bpo” (band parallel outer-edge). .. 231

Figure 56: Fragmented examples with lip impressions assigned to “band parallel outer” pattern. .. 232

Figure 57: Examples of lip impressions/incision laid out in patterns “bot” (band opposing top), “bdt” (band diagonal top) and “bpt” (band parallel top), which were regarded as equivalent in analysis due to non-exclusive nature of these descriptions. .. 232

Figure 58: Pattern expressed using linear arrangements of fingernail pinching. .. 233

Figure 59: Miscellaneous incised patterns: MH360 is middle row, left-hand column. GW258 is bottom-right. 233

Figure 60: Examples of applied nubbins and some bounded incised patterns (MH259 is an unbounded pattern). .. 234

Figure 61: Decorated sherds with quartz-calcite hybrid granitic temper. 234

Figure 62: Unbounded incised patterns. .. 235

Figure 63: Thin incised rims from Hoghoi. .. 235

Figure 64: Unbounded incised pattern on the shoulder from Paniavile. 235

Figure 65: An example of “chv” pattern, a band of unbounded linear triangles filled by
alternating fields of parallel lines. ..236

Figure 66: Example of “chv” pattern on tall rim (pinching at neck).236

Figure 67 Curvilinear incised patterns. ..237

Figure 68: Crow’s foot mark, probably post-deposition scratching.237

Figure 69: Example of cross-hatch pattern “ct3” ...237

Figure 70: Cross hatch pattern “cvh”. ...238

Figure 71: Example of pattern “gm5”. ...238

Figure 72: Sole example of pattern “rl1”, a double-line arrangement of single repeated
fingernail impressions. ..238

Figure 73 Roviana vessel completeness against sampling fraction, sampling fraction
against vessel representation fraction; random assignment of shreds to vessels;
mean EVE of 5.78%. ..260

Figure 74: Roviana vessel completeness against vessel representation fraction; random
assignment of sherds to vessels; mean EVE of 5.78%.261

Figure 76: Effect of sherd thickness on sherd strength (controlled for temper variation by
using placered volcanic tempered sherds only).306

Figure 77: Body sherd size for the various temper classes.306

Figure 78: Histogram of body sherd size classes by site.308

Figure 79: Initial classification of vessel forms. ..321

Figure 80: Examples of unrestricted Form 2 variants: Form 2a (top); Form 2b (upper
middle); Form 2c (lower middle); and Form 2d (bottom).325

Figure 81: Additional Form 2a Sherds (top 6); the two decorated gambrelled vessels from
Nusa Roviana are a short-rim variant of Form 2a; the lower sherd is transitional
between Form 2a and Form 2d, being unrestricted.326

Figure 82: Form 3 inverted restricted vessels. ..329

Figure 83: Form 3 or Form 4 (top left) and another example of a short-rim variant of
Form 2a (top right); the sole example of Form 3 with loop handle(s) (2nd to top);
the only confirmed Form 4 carinated bowl, in exotic temper (2nd to bottom) and a
large base sherd or frying pan, Form 5 (bottom).330

Figure 84: External neck radius, all sites, size intervals 10mm.331

Figure 85: All sites, sherds >25cm², neck Hcurve intervals 10mm.332

Figure 86: Form 6 “Neck Hcurve” variation; the two top sherds are too small to get a
hand into (Form 6a), while the two lower sherds have head-sized or larger orifices (Form 6b).

Figure 87: Relationship between rim angle and rim height for two sites, all measurements shown.

Figure 88: Rim angle and rim depth, all sites, filtered so that EVE is greater than 9%, to reduce the effects of measurement error.

Figure 89: Body sherd curvature measurements, showing spheroidal sherds (diagonal alignment) and other canister/conical forms (e.g. s-shaped pattern of Honiavasa sherd measurements).

Figure 90: Comparison of body sherd curvature measurements by site.

Figure 91: Robust base sherds and cannister-shaped large body sherd (the latter having exotic quartz-calcite temper).

Figure 92: Curvature of robust body sherds (thicker than 14mm).

Figure 93: Hard interior neck profile and even interior body/shoulder profile (top); a softer neck interior profile (middle) and uneven interior profile (bottom).

Figure 94: Hard shoulder variants of Form 6 (top and middle) as distinct from the more common soft shoulder form (bottom).

Figure 95: Tall, fragile everted excursive rims.

Figure 96: Lip impression, single band on outer edge of lip, labeled by mark section: u=u-shaped, v=v-shaped, o=oblique v, w=w-shaped, s=flat-bottomed groove.

Figure 97: Lip impression, single band on inner edge of lip, labeled by mark section: u=u-shaped section, etc.

Figure 98: Lip impression, single band on top face of lip, labeled by mark section: u=u-shaped, etc.

Figure 99: Lip impression, bands on both edges of the lip. Labeled by mark section: u=u-shaped, etc.

Figure 100: Calculation of lip orientation angle.

Figure 101: Lip orientation and location of impressions.

Figure 102: Rim depth by decorative class.

Figure 103: Rim depth and rim angle of undecorated lip-rim-neck sherds.

Figure 104: Location of bands of lip impression in relation to rim form variability.
Figure 105: Neck thickness comparison of Gharanga/Kopo and Miho styles/types. .. 389

Figure 106: Neck V curve for Gharanga/Kopo decoration, Miho Decoration, and plain rim-plain neck-plain shoulder sherds. .. 390

Figure 107: Planilateral sectioned adze from Hoghoi initial surface collection (top), plano-convex-sectioned type V adze from Zangana (middle), and planilateral adze fragment from Zangana (bottom). ... 402

Figure 108: Images of the adzes shown in the preceding illustration. 403

Figure 109: Green “type VI” or “type VIII” triangular-section adze fragment from Miho (top); butt-end of a plano-lateral-sectioned adze from Zangana South (middle) and a fragment of a trapezoidal-sectioned Green “type IV” adze from Zangana. .. 404

Figure 110: Images of adzes illustrated on previous page. 405

Figure 111: Canarium hammerstone from H5 ceramic findspot (top) (a similar artefact was found at Hoghoi); waisted sandstone slab from Zangana (middle); and chert flakes from Hoghoi (bottom). .. 406

Figure 112: Artefacts photographed from Oka collection and reported to be from the Paniavile site: shell and stone adzes (top); stone adzes (middle) and waisted tools/weapons and a pineapple club (bottom). ... 409

Figure 113: Waisted axes photographed from the Lanni collection, courtesy of the late Mr. Phillip Lanni, found in the vicinity of Gharanga Stream. 410

Figure 114: Un-ground adze preform photographed from Lanni collection courtesy of the late Mr. Phillip Lanni, reportedly found at the Gharanga site. 411

Figure 115: Water-rounded lithic manuports, cortex complete. 416

Figure 116: Size distribution of fractured lithic manuports, either with some cortex or without. .. 416

Figure 117: Intertidal collection units at Zangana: numbers are values in “unit” column in table “Flat.db” appended on CD. Units without numbers are those which yielded no sherds. .. 427

Figure 118: Spatial distribution of the sherd sample at Zangana. 428

Figure 119: Across-shore size sorting at Zangana. 429

Figure 120: Possible linear settlement patterning in the distribution of large sherds at
Figure 121: Initial point-provenanced collection of decorated sherds at Zangana (subsequent collection transects shown for spatial reference).

Figure 122: Lip deformation into a wave present in both Zangana-North and Zangana-South.

Figure 123: Bands of punctuation were restricted to Zangana-North.

Figure 124: Unbounded linear incision or necks banded with pinching at Zangana.

Figure 125: Distribution of temper classes at Zangana.

Figure 126: Detail of distribution of temper classes at Zangana-North.

Figure 127: Distribution of the sherd sample at Hoghoi.

Figure 128: Lack of sherd size variation at Hoghoi, except at 35-40m (n=4).

Figure 129: Larger average manuport mass from 25m to 60m at Hoghoi.

Figure 130: Large unfractured stones and small fractured stones concentrated between 25m and 75m at Hoghoi, with small rounded stones more widely distributed.

Figure 131: Size-sorting of manuport petrographic classes at Hoghoi, suggestive of different size-procurement patterns by source.

Figure 132: Distribution of potsherd temper classes at Hoghoi.

Figure 133: Distribution of the sherd sample at Honiavasa.

Figure 134: Effects of wave refraction (and collection intensity?) on sherd size at Honiavasa: the western margin is exposed to waves from Honiavasa channel, which expend their energy in a swash zone at about the centre of the site at low tide.

Figure 135: Distribution of pottery tempers at Honiavasa.

Figure 136: Co-joining sherds from deeper western margin of Honiavasa.

Figure 137: Distribution of pottery decorative attributes at Honiavasa.

Figure 138: A method of identifying sub-fossil organic inclusions? (Image supplied by Rafter Radiocarbon Lab)

Figure 139: Calibration of radiocarbon determination from a charcoal inclusion in a sherd from Paniavile.

Figure 140: Calibration of a radiocarbon determination from smoke-derived carbon on a
sherd from Hoghoi. .. 456

Figure 141: AMS sample taken from blackened sherd at far left, found on the surface of unit 12 at Hoghoi. The sherd to the right, found in a subsurface test of unit 15 at Hoghoi, may be from the same vessel, and also has a sooted surface. 457

Figure 142: Vessel with surface sooting from Hoghoi dated by AMS radiocarbon. ... 458

Figure 143: Attributes used in seriations, groupings explained in chapter conclusions. ... 467

Figure 144: Correspondence plot (attributes) using all attributes and forms. 469

Figure 145: Correspondence plot (sites) using all attributes and forms. 471

Figure 146: Correspondence plot (attributes) excluding form-correlated attributes ... 474

Figure 147: Correspondence plot (sites) excluding form-correlated attributes. 475

Figure 148: Correspondence plot (sites), Honiavasa sample and form-correlated attributes omitted from data-set. .. 478