Mathematical Tools for Ventricular Analysis using Cardiac MRI

Show simple item record

dc.contributor.advisor Young, A en
dc.contributor.advisor Nash, M en
dc.contributor.author Lam, Hoi en
dc.date.accessioned 2012-03-05T23:04:34Z en
dc.date.issued 2012 en
dc.identifier.uri http://hdl.handle.net/2292/12974 en
dc.description.abstract Non-invasive imaging techniques are now being used routinely for the analysis of cardiac function. The objective of this thesis was to develop mathematical modelling tools for the semi-automatic quantification of cardiac structure and function from magnetic resonance imaging (MRI). Two main problem areas were considered. Firstly, tools were developed to investigate the changes in cardiac function and myofibre structure during the progression of myocardial infarction, and the effect of using angiotensin-converting enzyme inhibitor (ACEI) as a treatment of myocardial infarction. Ex vivo diffusion tensor MRI (DTMRI) could then be compared with in vivo myocardial strain from MRI tissue tagging. These tools were applied to data from four healthy male Sprague Dawley rats, and eight with myocardial infarction induced by ligating the left anterior descending artery. Half of the infarcted rats were treated by ACEI. The results showed that myocyte structure as well as function were altered in myocardial infarction, altering the correlations between structure and function. A positive correlation between strain and fractional isotropy in the control group became negative in the infarct group and did not change with ACEI. Strain was positively correlated with the proportion of left-handed myofibres in the control group. This relationship was not significant in the infarct group but returned in the ACEI group. The results from these preliminary studies indicate that treatment with ACEI helps to restore normal myocardial structure-function relationships. Secondly, a modelling tool was developed for the efficient evaluation of right and left ventricular function in standard cine MRI imaging examinations. The biventricular modelling tool used a human biventricular deformable model, which was developed based on a porcine model, for customisation to cardiac MRI data. The customisation used an interactive guide point modelling technique which was modified to include a `predictor' step using a host mesh fitting algorithm, thereby obtaining a significant decrease in solution time. The tool was applied to cine MRI data of seventeen patients with various types of congenital heart disease. The results were compared against with those obtained from a current gold standard technique. The comparison showed generally good agreement between the two methods, in terms of both the reproducibility of global cardiac function measurements and the reproducibility between analysts. In conclusion, the tools developed in this thesis enabled novel examinations of cardiac structure and function in animal models and humans with cardiac disease. en
dc.publisher ResearchSpace@Auckland en
dc.relation.ispartof PhD Thesis - University of Auckland en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/nz/ en
dc.title Mathematical Tools for Ventricular Analysis using Cardiac MRI en
dc.type Thesis en
thesis.degree.grantor The University of Auckland en
thesis.degree.level Doctoral en
thesis.degree.name PhD en
dc.rights.holder Copyright: The author en
dc.rights.accessrights http://purl.org/eprint/accessRights/OpenAccess en
pubs.elements-id 312787 en
pubs.org-id Medical and Health Sciences en
pubs.org-id Medical Sciences en
pubs.org-id Anatomy and Medical Imaging en
pubs.record-created-at-source-date 2012-03-06 en
dc.identifier.wikidata Q112890345


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics