A thin membrane artificial muscle rotary motor

Show simple item record

dc.contributor.author Anderson, Iain en
dc.contributor.author Hale, T en
dc.contributor.author Gisby, Todd en
dc.contributor.author Inamura, T en
dc.contributor.author McKay, Thomas en
dc.contributor.author O'Brien, Benjamin en
dc.contributor.author Walbran, Scott en
dc.contributor.author Calius, Emilio en
dc.date.accessioned 2012-03-06T01:15:01Z en
dc.date.issued 2009 en
dc.identifier.citation APPL PHYS A-MATER 98(1):75-83 Jan 201 en
dc.identifier.issn 0947-8396 en
dc.identifier.uri http://hdl.handle.net/2292/13041 en
dc.description.abstract Desirable rotary motor attributes for robotics include the ability to develop high torque in a low mass body and to generate peak power at low rotational speeds. Electro-active polymer artificial muscles offer promise as actuator elements for robotic motors. A promising artificial muscle technology for use as a driving mechanism for rotary motion is the dielectric elastomer actuator (DEA). We present a membrane DEA motor in which phased actuation of electroded sectors of the motor membrane impart orbital motion to a central drive that turns a rotor. The motor is inherently scalable, flexible, flat, silent in operation, amenable to deposition-based manufacturing approaches, and uses relatively inexpensive materials. As a membrane it can also form part of the skin of a robot. We have investigated the torque and power of stacked membrane layers. Specific power and torque ratios when calculated using active membrane mass only were 20.8 W/kg and 4.1 Nm/kg, respectively. These numbers compare favorably with a commercially available stepper motor. Multi-membrane fabrication substantially boosts torque and power and increases the active mass of membrane relative to supporting framework. Through finite element modeling, we show the mechanisms governing the maximum torque the device can generate and how the motor can be improved. en
dc.publisher Springer en
dc.relation.ispartofseries Applied Physics A: Materials Science & Processing en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. Details obtained from http://www.sherpa.ac.uk/romeo/issn/0947-8396/ en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.title A thin membrane artificial muscle rotary motor en
dc.type Journal Article en
dc.identifier.doi 10.1007/s00339-009-5434-5 en
pubs.issue 1 en
pubs.begin-page 75 en
pubs.volume 98 en
dc.rights.holder Copyright: Springer en
pubs.end-page 83 en
dc.rights.accessrights http://purl.org/eprint/accessRights/RestrictedAccess en
pubs.subtype Article en
pubs.elements-id 97196 en
pubs.org-id Bioengineering Institute en
pubs.org-id ABI Associates en
pubs.org-id Science en
pubs.org-id Science Research en
pubs.org-id Maurice Wilkins Centre (2010-2014) en
pubs.record-created-at-source-date 2010-09-01 en


Files in this item

There are no files associated with this item.

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics