The mapping class group of powers of the long ray and other non-metrisable spaces

Show simple item record Baillif, M en Deo, S en Gauld, David en 2012-03-16T03:37:08Z en 2010 en
dc.identifier.citation Topology and its Applications 157(8):1314-1324 2010 en
dc.identifier.issn 0166-8641 en
dc.identifier.uri en
dc.description.abstract We identify the mapping class group, ie the space of homeomorphisms modulo isotopy, of powers of the long ray and long line as well as generalisations of the long plane obtained by taking copies of the first octant of the long plane and identifying them along their boundaries. We show that every countable group is the mapping class group of such a space. We also consider homotopy classes of continuous functions between these spaces. en
dc.description.uri en
dc.publisher Elsevier Inc en
dc.relation.ispartofseries Topology and Its Applications en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. Details obtained from en
dc.rights.uri en
dc.subject Long line, long ray, group of homeomorphisms, mapping class group, isotopy, torsion, $\omega$-bounded, Type I, homotopy class, directed graph en
dc.title The mapping class group of powers of the long ray and other non-metrisable spaces en
dc.type Journal Article en
dc.identifier.doi 10.1016/j.topol.2009.07.018 en
pubs.issue 8 en
pubs.begin-page 1314 en
pubs.volume 157 en
dc.rights.holder Copyright: Elsevier B.V. en
pubs.end-page 1324 en
dc.rights.accessrights en
pubs.subtype Article en
pubs.elements-id 88655 en
pubs.record-created-at-source-date 2010-09-01 en

Files in this item

There are no files associated with this item.

Find Full text

This item appears in the following Collection(s)

Show simple item record


Search ResearchSpace