A quadratic kernel for computing the hybridization number of multiple trees

Show simple item record

dc.contributor.author van Iersel, Leo en
dc.contributor.author Linz, Simone en
dc.date.accessioned 2015-02-02T23:29:50Z en
dc.date.issued 2013-05 en
dc.identifier.citation Information Processing Letters, 2013, 113 (9), pp. 318 - 323 en
dc.identifier.issn 0020-0190 en
dc.identifier.uri http://hdl.handle.net/2292/24378 en
dc.description.abstract It has recently been shown that the NP-hard problem of calculating the minimum number of hybridization events that is needed to explain a set of rooted binary phylogenetic trees by means of a hybridization network is fixed-parameter tractable if an instance of the problem consists of precisely two such trees. In this paper, we show that this problem remains fixed-parameter tractable for an arbitrarily large set of rooted binary phylogenetic trees. In particular, we present a quadratic kernel. en
dc.relation.ispartofseries Information Processing Letters en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. Details obtained from http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy#accepted-author-manuscript http://www.sherpa.ac.uk/romeo/issn/0020-0190/ en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.title A quadratic kernel for computing the hybridization number of multiple trees en
dc.type Journal Article en
dc.identifier.doi 10.1016/j.ipl.2013.02.010 en
pubs.issue 9 en
pubs.begin-page 318 en
pubs.volume 113 en
dc.description.version AM - Accepted Manuscript en
pubs.end-page 323 en
dc.rights.accessrights http://purl.org/eprint/accessRights/OpenAccess en
pubs.subtype Article en
pubs.elements-id 460392 en
pubs.org-id Science en
pubs.org-id School of Computer Science en
pubs.record-created-at-source-date 2015-02-03 en

Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record


Search ResearchSpace