Dynamic Response of Unbonded Post-tensioned Concrete Walls for Seismic Resilient Structures

Show simple item record

dc.contributor.advisor Henry, R en
dc.contributor.author Twigden, Kimberley en
dc.date.accessioned 2016-02-24T20:10:00Z en
dc.date.issued 2016 en
dc.identifier.citation 2016 en
dc.identifier.uri http://hdl.handle.net/2292/28286 en
dc.description.abstract The research in this thesis was conducted with the primary aim of advancing the current state of knowledge of unbonded Post-Tensioned (PT) precast concrete rocking walls. Emphasis was placed on systematically investigating both the static and dynamic experimental response of Single Rocking Wall (SRW) and Precast Wall with End Columns (PreWEC) systems. Using the experimental data generated, simple numerical modelling techniques were investigated and the Direct Displacement Based Design (DDBD) process was verified. The experimental programme consisted of component tests on modified energy dissipating Oconnectors and pseudo-static cyclic, snap back, and shake table testing on a selection of SRW and PreWEC systems. The unique experimental investigation into the cyclic response of an improved O-connector confirmed the suitability of the O-connector as a cost effective energy dissipater that is able to demonstrate stable hysteretic behaviour while being easy to install and replace. The focus of the wall tests was on assessing the general wall response and design, the influence of the O-connectors on the wall panel, initial stiffness and fundamental frequency, equivalent viscous damping and residual drifts from different loading types. During the wall tests only minor damage and negligible residual drifts were observed which confirmed the desirable seismic behaviour of SRW and PreWEC systems under both static and dynamic loads. An investigation was performed using a simple single degree of freedom numerical model to provide recommendations on appropriate damping schemes that are able to emulate the seismic response of SRW and PreWEC systems that were validated using the shake table test results. The numerical analyses indicated that good estimation of the seismic response could be attained when using 2% tangent stiffness proportional damping in combination with a hysteretic behaviour calibrated to the cyclic hysteresis. Lastly, an assessment of current methods used for determining the equivalent viscous damping for unbonded PT walls systems in the current DDBD framework was performed. A current method based on the weighted contribution of an unbonded PT only system and a purely dissipative system was found to produce good results when used with the proposed bilinear force-displacement idealisation based on an effective stiffness. en
dc.publisher ResearchSpace@Auckland en
dc.relation.ispartof PhD Thesis - University of Auckland en
dc.relation.isreferencedby UoA99264837790802091 en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/nz/ en
dc.title Dynamic Response of Unbonded Post-tensioned Concrete Walls for Seismic Resilient Structures en
dc.type Thesis en
thesis.degree.discipline Civil Engineering en
thesis.degree.grantor The University of Auckland en
thesis.degree.level Doctoral en
thesis.degree.name PhD en
dc.rights.holder Copyright: The Author en
dc.rights.accessrights http://purl.org/eprint/accessRights/OpenAccess en
pubs.elements-id 523465 en
pubs.record-created-at-source-date 2016-02-25 en
dc.identifier.wikidata Q112931764


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics