A Comparative Discussion of Distance Transforms and Simple Deformations in Image Processing

Show simple item record

dc.contributor.author Klette, Gisela en
dc.date.accessioned 2008-08-21T01:57:39Z en
dc.date.available 2008-08-21T01:57:39Z en
dc.date.issued 2003 en
dc.identifier.citation Communication and Information Technology Research Technical Report 124, (2003) en
dc.identifier.issn 1178-3621 en
dc.identifier.uri http://hdl.handle.net/2292/2842 en
dc.description You are granted permission for the non-commercial reproduction, distribution, display, and performance of this technical report in any format, BUT this permission is only for a period of 45 (forty-five) days from the most recent time that you verified that this technical report is still available from the original CITR web site; http://citr.auckland.ac.nz/techreports/ under terms that include this permission. All other rights are reserved by the author(s). en
dc.description.abstract Algorithms for transformations of digital images into reconstructible subsets of the original image, and algorithms for deformations of digital images into topologically equivalent images are subjects of hundreds of publications. Two images are topologically equivalent if their adjacency trees are isomorphic. Skeletonization is a transformation of components of a digital image into a subset of the original component. There are different categories of skeletonization methods: one category is based on distance transforms, and a specified subset of the transformed image is called distance skeleton. The original component can be reconstructed from the distance skeleton. But the result is not a topologically equivalent image. A different category is defined by thinning approaches, and the result of skeletonization using thinning algorithms should be a topologically equivalent image. Thinning algorithms are one-way simple deformations, which mean object points are transferred into background points without destroying the topology of the image. Two-way simple deformations transfer object points into background points and vice versa without destroying the topology of the image. This report reviews contributions in this area with respect to properties of algorithms and characterizations of simple points, and informs about a few new results. en
dc.publisher CITR, The University of Auckland, New Zealand en
dc.relation.ispartofseries Communication and Information Technology Research (CITR) Technical Report Series en
dc.rights Copyright CITR, The University of Auckland. You are granted permission for the non-commercial reproduction, distribution, display, and performance of this technical report in any format, BUT this permission is only for a period of 45 (forty-five) days from the most recent time that you verified that this technical report is still available from the original CITR web site under terms that include this permission. All other rights are reserved by the author(s). en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.source.uri http://citr.auckland.ac.nz/techreports/2003/CITR-TR-124.pdf en
dc.title A Comparative Discussion of Distance Transforms and Simple Deformations in Image Processing en
dc.type Technical Report en
dc.subject.marsden Fields of Research::280000 Information, Computing and Communication Sciences en


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics