Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants

Show simple item record

dc.contributor.author Qasim, M en
dc.contributor.author Farinella, G en
dc.contributor.author Zhang, Ju en
dc.contributor.author Li, X en
dc.contributor.author Yang, L en
dc.contributor.author Eastell, R en
dc.contributor.author Viceconti, Marco en
dc.date.accessioned 2016-10-18T00:57:27Z en
dc.date.issued 2016-09 en
dc.identifier.citation Osteoporosis International 27(9):2815-2822 Sep 2016 en
dc.identifier.issn 0937-941X en
dc.identifier.uri http://hdl.handle.net/2292/30785 en
dc.description.abstract Summary A finite element modelling pipeline was adopted to predict femur strength in a retrospective cohort of 100 women. The effects of the imaging protocol and the meshing technique on the ability of the femur strength to classify the fracture and the control groups were analysed. Introduction The clinical standard to estimate the risk of osteoporotic hip fracture is based on the areal bone mineral density (aBMD). A few retrospective studies have concluded that finite element (FE)-based femoral strength is a better classifier of fracture and control groups than the aBMD, while others could not find significant differences. We investigated the effect of the imaging protocol and of the FE modelling techniques on the discriminatory power of femoral strength. Methods A retrospective cohort of 100 post-menopausal women (50 with hip fracture, 50 controls) was examined. Each subject received a dual-energy absorptiometry (DXA) exam and a computed tomography (CT) scan of the proximal femur region. Each case was modelled a number of times, using different modelling pipelines, and the results were compared in terms of accuracy in discriminating the fracture and the control cases. The baseline pipeline involved local anatomical orientation and mesh morphing. Revised pipelines involved global anatomical orientation using a full-femur atlas registration and an optimised meshing algorithm. Minimum physiological (MPhyS) and pathological (MPatS) strengths were estimated for each subject. Area under the receiver operating characteristic (ROC) curve (AUC) was calculated to compare the ability of MPhyS, MPatS and aBMD to classify the control and the cases. Results Differences in the modelling protocol were found to considerably affect the accuracy of the FE predictors. For the most optimised protocol, logistic regression showed aBMDNeck, MPhyS and MPatS to be significantly associated with the facture status, with AUC of 0.75, 0.75 and 0.79, respectively. Conclusion The study emphasized the necessity of modelling the whole femur anatomy to develop a robust FE-based tool for hip fracture risk assessment. FE-strength performed only slightly better than the aBMD in discriminating the fracture and control cases. Differences between the published studies can be explained in terms of differences in the modelling protocol and cohort design. en
dc.publisher Springer Verlag (Germany) en
dc.relation.ispartofseries Osteoporosis International en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.title Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants en
dc.type Journal Article en
dc.identifier.doi 10.1007/s00198-016-3597-4 en
pubs.issue 9 en
pubs.begin-page 2815 en
pubs.volume 27 en
dc.identifier.pmid 27108118 en
pubs.end-page 2822 en
dc.rights.accessrights http://purl.org/eprint/accessRights/RestrictedAccess en
pubs.subtype Article en
pubs.elements-id 526671 en
dc.identifier.eissn 1433-2965 en
pubs.record-created-at-source-date 2016-10-18 en
pubs.online-publication-date 2016-04-23 en
pubs.dimensions-id 27108118 en


Files in this item

There are no files associated with this item.

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics