Modulation of non-specific cellular defence mechanisms by cyclosporin A

Show simple item record

dc.contributor.advisor Associate Professor Ian Simpson en
dc.contributor.advisor Professor Jim Watson en
dc.contributor.author Ormrod, Douglas James en
dc.date.accessioned 2008-12-04T03:27:19Z en
dc.date.available 2008-12-04T03:27:19Z en
dc.date.issued 1990 en
dc.identifier.citation Thesis (PhD--Medicine)--University of Auckland, 1990. en
dc.identifier.uri http://hdl.handle.net/2292/3195 en
dc.description.abstract The immune response modifier Cyclosporin A (CsA) is widely used in the management of organ graft rejection and in the treatment of inflammatory disorders. CsA is a potent suppressor of T-lymphocyte function and it’s biological effects have been defined almost exclusively in these terms. However, recent studies in which the agent was shown to exacerbate a T-lymphocyte independent, experimentally induced bacterial infection of the kidney (pyelonephritis), indicated that CsA had effects on host defence mechanisms other than T-lymphocytes. The present study, using animal models, was undertaken to identify the host defence component modified by CsA. Neutrophils are a key component in the early response to infection and the administration of CsA resulted in an increase in the number of these cells in the circulation. When the effect of CsA on the in vitro metabolic activity of neutrophils and their ability to kill microorganisms was investigated, no changes were observed, but the in vivo ability of neutrophils to emigrate from the vasculature to a sterile inflammatory foci was markedly impaired. A model of localised subcutaneous infection was used to determine the effect of this CsA-associated suppression of neutrophil emigration on the ability of the host to mount a response to an infectious challenge. In CsA treated animals, neutrophil accumulation in E. coli infected, subcutaneously implanted sponges was initially suppressed, allowing bacterial numbers to increase rapidly. By 48 hours this powerful bacterial stimulus overrode the suppressive effects of CsA and led to a substantial increase in the size of the neutrophilic infiltrate. This finding of an initially reduced inflammatory response, followed by an increase in the influx of inflammatory cells, provided a possible explanation for the earlier observation that CsA promoted infection and tissue damage in experimental pyelonephritis. The relationship between the effect of CsA on neutrophil emigration and the pathogenesis of experimental pyelonephritis was therefore investigated. When CsA was administered to animals prior to inducing pyelonephritis, the neutrophilic infiltrate was markedly suppressed in the early stages. As predicted, this led to a logarithmic increase in bacterial numbers, the infiltration of large numbers of neutrophils and, ultimately, an exacerbation of tissue damage. Further studies, examining the effects of CsA on neutrophil-mediated inflammatory mechanisms, identified impaired neutrophil-to-endothelial cell adhesion as the most likely explanation for the observed defect in host defences. The integrated nature of cellular defence mechanisms in infectious disease is highlighted by these investigations. when microorganisms invade tissue, even though the number and function of circulating leucocytes may be normal their effective participation in the host response to infection depends on the ability to emigrate from the blood vessels to the site of infection. In summary, the discovery of additional properties of CsA provide an explanation for the patterns of infectious disease in patients treated with CsA, in whom infection with extracellular pathogens is common. It also seems likely that the ability of CsA to suppress neutrophil emigration may contribute to the effectiveness of the agent in the management of inflammatory diseases, such as rheumatoid arthritis, uveitis and psoriasis. en
dc.format Scanned from print thesis en
dc.language.iso en en
dc.publisher ResearchSpace@Auckland en
dc.relation.ispartof PhD Thesis - University of Auckland en
dc.relation.isreferencedby UoA776857 en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.title Modulation of non-specific cellular defence mechanisms by cyclosporin A en
dc.type Thesis en
thesis.degree.discipline Medicine en
thesis.degree.grantor The University of Auckland en
thesis.degree.level Doctoral en
thesis.degree.name PhD en
dc.subject.marsden Fields of Research::320000 Medical and Health Sciences en
dc.rights.holder Copyright: The author en
pubs.local.anzsrc 11 - Medical and Health Sciences en
pubs.org-id Faculty of Medical & Hlth Sci en
dc.identifier.wikidata Q112853444


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics