A three-dimensional inverse method for the design of sails

Show simple item record

dc.contributor.author Pilate, JP en
dc.contributor.author Gerhardt, FC en
dc.contributor.author Norris, Stuart en
dc.contributor.author Flay, Richard en
dc.date.accessioned 2017-03-13T01:39:04Z en
dc.date.issued 2016-12-01 en
dc.identifier.citation Transactions of the Royal Institution of Naval Architects Part B International Journal of Small Craft Technology 158(B2):73-87 01 Dec 2016 URL en
dc.identifier.issn 1740-0694 en
dc.identifier.uri http://hdl.handle.net/2292/32154 en
dc.description.abstract This paper investigates an inverse process for the design of yacht sails. The method is described and then applied to the design of optimal sails for a specific yacht. The proposed inverse method generates the three-dimensional shapes of a headsail and mainsail from prescribed loading (i.e. differential pressure) distributions, accounts for the effect of the sea surface, and also simulates the twist and shear of the incoming flow. The uncoupled iterative routine solves a sequence of analysis steps so that the sail shapes are deformed in such a way that their updated loading distributions converge to the specified target distributions. During each iteration equations derived from two-dimensional Thin Aerofoil Theory, calculate a geometry correction from the difference between the current and target loading distributions. This correction is applied to the sail geometry, and a vortex lattice method code calculates the updated three-dimensional differential pressure distributions, which are again compared to the target distributions. Usually only five iterations are required to converge to sail shapes that have the target loading distributions. The inverse method has been validated by inverting the traditional way of analysing sails, i.e. a set of sails with known geometry has been analysed and the loading distributions on the headsail and mainsail were calculated. These distributions were then used as an input for the inverse code. It was found that the difference in camber between the original sails and the calculated geometry is less than 0.01% of camber at the mid-span of the sails. The second part of the paper presents two methods for the design of optimal sails for a yacht. One of the methods uses the more traditional analysis approach, while the other employs the inverse method described in this paper. The optimisation is performed for a Transpac 52 yacht in 12 knots (6.5 m/s) of true wind speed to obtain the best velocity made good. Results from both methods are presented and discussed and it is found that the results in terms of boat speed are similar although the trims differ slightly. However, the new inverse method is approximately nine times faster than the traditional analysis approach. en
dc.publisher Royal Institution of Naval Architects en
dc.relation.ispartofseries Transactions of the Royal Institution of Naval Architects Part B International Journal of Small Craft Technology en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.relation.replaces 2292/30967 en
dc.relation.replaces http://hdl.handle.net/2292/30967 en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.title A three-dimensional inverse method for the design of sails en
dc.type Journal Article en
dc.identifier.doi 10.3940/rina.ijsct.2016.b2.156 en
pubs.issue B2 en
pubs.begin-page 73 en
pubs.volume 158 en
dc.rights.holder Copyright: Royal Institution of Naval Architects en
pubs.author-url https://www.rina.org.uk/IJSCT_156.html en
pubs.end-page 87 en
pubs.merge-from 2292/30967 en
pubs.merge-from http://hdl.handle.net/2292/30967 en
pubs.publication-status Published en
dc.rights.accessrights http://purl.org/eprint/accessRights/RestrictedAccess en
pubs.subtype Article en
pubs.elements-id 544678 en
pubs.org-id Engineering en
pubs.org-id Mechanical Engineering en
pubs.record-created-at-source-date 2016-11-05 en


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics