Seismic analysis and design of post-tensioned concrete masonry walls

Show simple item record

dc.contributor.advisor Dr. J.M. Ingham en
dc.contributor.author Laursen, Peter (Peter Thorup) en
dc.date.accessioned 2009-01-13T03:37:42Z en
dc.date.available 2009-01-13T03:37:42Z en
dc.date.issued 2002 en
dc.identifier.citation Thesis (PhD--Civil and Environmental Engineering)--University of Auckland, 2002. en
dc.identifier.uri http://hdl.handle.net/2292/3330 en
dc.description.abstract This thesis explores the seismic analysis and design of post-tensioning concrete masonry (PCM) walls. Using unbonded post-tensioning, walls are vertically prestressed by means of strands or bars which are passed through vertical ducts inside the walls. As the walls are subjected to lateral displacements (in-plane loading), gaps form at the horizontal joints, reducing the system stiffness. As long as the prestressing strands are kept within the elastic limit, or at least maintain a considerable amount of the initial prestressing force, they can provide a restoring force, which will return the walls to their original alignment upon unloading. The key feature in this behaviour is attributable to the tendons being unbonded over the entire wall height, allowing for distribution of tendon strain over the entire length of the tendon. An extensive literature review found that post-tensioning of masonry has had limited application in seismic areas and that there currently are no specific code requirements for it’s use for ductile seismic design, largely as a consequence of little knowledge about the ductility capacity and energy dissipation characteristics. It was concluded that structural testing of PCM walls and concrete masonry creep and shrinkage testing were essential to advance the understanding of this construction type. Creep and shrinkage experiments confirmed that long term prestress losses are considerable in both grouted and ungrouted concrete masonry, and must be taken into account in design. It was concluded that it is essential to use high strength steel for prestressing of PCM in order to reduce long term losses. Structural testing confirmed that fully grouted unbonded post-tensioned concrete masonry is a competent material combination for ductile structural wall systems. In particular, PCM walls strengthened in the flexural compression zones with confining plates are expected to successfully withstand severe ground shaking from an earthquake. It was suggested that partially and ungrouted PCM walls may suitably be used in strength design (non-ductile). The proposed prediction method for wall in-plane behaviour was validated by experimental results. Good correlation between predictions and results was found. Displacement spectra were developed for ductile seismic design of PCM walls. These can be used to accurately estimate the displacement demand imposed on multi-storey PCM cantilever walls. en
dc.format Scanned from print thesis en
dc.language.iso en en
dc.publisher ResearchSpace@Auckland en
dc.relation.ispartof PhD Thesis - University of Auckland en
dc.relation.isreferencedby UoA1145431 en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.title Seismic analysis and design of post-tensioned concrete masonry walls en
dc.type Thesis en
thesis.degree.discipline Civil and Environmental Engineering en
thesis.degree.grantor The University of Auckland en
thesis.degree.level Doctoral en
thesis.degree.name PhD en
dc.subject.marsden Fields of Research::290000 Engineering and Technology en
dc.rights.holder Copyright: The author en
pubs.local.anzsrc 0905 - Civil Engineering en
pubs.org-id Faculty of Engineering en
dc.identifier.wikidata Q112857788


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics