Structure function studies on lectin nucleotide phosphohydrolases (LNPs)

Show simple item record

dc.contributor.advisor Dr Vickery Arcus en
dc.contributor.advisor Dr Nick Roberts en
dc.contributor.author Chen, Chunhong en
dc.date.accessioned 2009-02-03T21:28:30Z en
dc.date.available 2009-02-03T21:28:30Z en
dc.date.issued 2008 en
dc.identifier.citation Thesis (PhD--Biological Sciences)--University of Auckland, 2008. en
dc.identifier.uri http://hdl.handle.net/2292/3369 en
dc.description.abstract Lectin nucleotide phosphohydrolases (LNPs) are proteins which possess both apyrase catalytic activity (E.C. 3.6.1.5) and specific carbohydrate binding properties, and these are linked. To investigate the structural and functional properties for these proteins, two putative soluble plant LNPs, 4WC and 7WC (from white clover), and a putative soluble plant apyrase 6RG (from ryegrass) were chosen. Rabbit polyclonal antibodies for each plant apyrase were generated using highly purified, overexpressed recombinant 4WC or 7WC. In the case of 6RG, the C-terminal half of the protein constituted the best antigen for generating polyclonal antibodies. These antibodies showed high specificity and sensitivity. Active, recombinant 4WC and 6RG were overexpressed and purified using the baculoviral insect cell expression system (4WCbac-sup and 6RG:Hisbac), while 7WC (7WCcoli) was produced from E. coli inclusion bodies and subsequently refolded to give active enzyme. In course of overexpression, recombinant 4WC was localised in both the cellular fraction (4WCbac) and in the media supernatant (4WCbac-sup), while recombinant 6RG:Hisbac was only found in the cellular fraction (6RG:Hisbac) indicating that it was not secreted during insect cell growth. Secretion of 4WCbac was found to be dependent on N-glycosylation at N313 but not at N85 and elimination of one or both of these sites appeared to have little influence on apyrase activity. In addition, both 4WCbac and 6RG:Hisbac from the cellular fraction were fully functional. These results were compared with similar work performed on the animal ecto-apyrases which have different specific N-glycosylation sites required for secretion and activity. The 4WCbac-sup, 7WCcoli and 6RG:Hisbac proteins all showed apyrase activity, that is they catalysed the hydrolysis of nucleotide tri- and/or di-phosphates to their corresponding nucleotide monophosphates, and released inorganic phosphate in a divalent cation-dependent manner. However, the proteins exhibited different activities, substrate specificities, pH profiles and influence of inhibitors: 4WCbac-sup had a preference for NDPs with a pH optimum ≥9.5; 7WCcoli had a modest preference for NTPs with a pH optimum at 8.5; 6RG:Hisbac was almost exclusively an NTPase with a pH optimum at 6.5. Contrary to predictions based on phylogeny the proteins all bound to sulphated disaccharides and their catalytic activities were influenced both positively and negatively by the binding of specific chitosans. The data indicates that all three soluble plant apyrases investigated here were LNPs, in contrast to predictions from the literature. In order to pinpoint the regions responsible for determining substrate specificity and chitosan binding, chimeras were made using the N- and C-terminal halves of 4WC and 6RG. This resulted in fully functional reciprocal chimeras. Comparison of the apyrase activity for parents and chimeras, substrate specificity, optimal pH, influence of inhibitors on activity and effects of chitosans indicated that the C-terminus was responsible for determining substrate specificity. However, the influence of specific chitosans on the chimeras appeared to be dependent on both the N- and C-terminal portions of the proteins. In addition, chimeras were found to bind to the same sulphated disaccharides as the parent proteins. Preliminary crystal screening experiments were performed with highly purified preparations of 7WCcoli and 6RG:Hisbac. Under specific conditions 7WCcoli was found to form cube-like crystalline arrangements while 6RG:Hisbac formed hexagonal-like crystalline structures. A potential model for carbohydrate binding by LNPs is proposed and the possible biological roles of plant LNPs are discussed. en
dc.language.iso en en
dc.publisher ResearchSpace@Auckland en
dc.relation.ispartof PhD Thesis - University of Auckland en
dc.relation.isreferencedby UoA1829350 en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.subject Apyrase en
dc.subject lectin en
dc.subject prokaryotic and eukaryotic protein expression en
dc.subject chimeras en
dc.subject glycosylation en
dc.title Structure function studies on lectin nucleotide phosphohydrolases (LNPs) en
dc.type Thesis en
thesis.degree.discipline Biological Sciences en
thesis.degree.grantor The University of Auckland en
thesis.degree.level Doctoral en
thesis.degree.name PhD en
dc.subject.marsden Fields of Research::270000 Biological Sciences en
dc.subject.marsden Fields of Research::270000 Biological Sciences::270100 Biochemistry and Cell Biology::270108 Enzymes en
dc.rights.holder Copyright: The author en
pubs.local.anzsrc 06 - Biological Sciences en
pubs.org-id Faculty of Science en
dc.identifier.wikidata Q112191348


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics