Coarse Equivalences of Euclidean Buildings

ResearchSpace/Manakin Repository

Show simple item record Kramer, L en Weiss, RM en 2017-07-10T02:56:54Z en 2014-03-01 en
dc.identifier.citation Advances in Mathematics 253:1-49 01 Mar 2014 en
dc.identifier.issn 0001-8708 en
dc.identifier.uri en
dc.description.abstract We prove the following rigidity results. Coarse equivalences between Euclidean buildings preserve spherical buildings at infinity. If all irreducible factors have dimension at least two, then coarsely equivalent Euclidean buildings are isometric (up to scaling factors). If in addition none of the irreducible factors is a Euclidean cone, then the isometry is unique and has finite distance from the coarse equivalence. en
dc.publisher Academic Press en
dc.relation.ispartofseries Advances in Mathematics en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. Details obtained from en
dc.rights.uri en
dc.subject math.MG en
dc.subject math.MG en
dc.subject math.GR en
dc.subject 51E24, 53C24 en
dc.title Coarse Equivalences of Euclidean Buildings en
dc.type Journal Article en
dc.identifier.doi 10.1016/j.aim.2013.10.031 en
pubs.begin-page 1 en
pubs.volume 253 en
dc.description.version Pre-print en
dc.rights.holder Copyright: The author en
pubs.end-page 49 en
dc.rights.accessrights en
pubs.subtype Article en
pubs.elements-id 617959 en Science en Mathematics en
pubs.arxiv-id 0902.1332 en
dc.identifier.eissn 1090-2082 en
pubs.record-created-at-source-date 2017-04-24 en

Full text options

Find Full text

This item appears in the following Collection(s)

Show simple item record


Search ResearchSpace

Advanced Search