Metabarcoding monitoring analysis: the pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities

Show simple item record

dc.contributor.author Laroche, O en
dc.contributor.author Wood, SA en
dc.contributor.author Tremblay, Louis en
dc.contributor.author Lear, Gavin en
dc.contributor.author Ellis, JI en
dc.contributor.author Pochon, Xavier en
dc.date.accessioned 2017-08-02T03:32:48Z en
dc.date.issued 2017-05-17 en
dc.identifier.citation PeerJ 5 Article number e3347 17 May 2017 en
dc.identifier.issn 2167-8359 en
dc.identifier.uri http://hdl.handle.net/2292/34700 en
dc.description.abstract Sequencing environmental DNA (eDNA) is increasingly being used as an alternative to traditional morphological-based identification to characterize biological assemblages and monitor anthropogenic impacts in marine environments. Most studies only assess eDNA which, compared to eRNA, can persist longer in the environment after cell death. Therefore, eRNA may provide a more immediate census of the environment due to its relatively weaker stability, leading some researchers to advocate for the use of eRNA as an additional, or perhaps superior proxy for portraying ecological changes. A variety of pre-treatment techniques for screening eDNA and eRNA derived operational taxonomic units (OTUs) have been employed prior to statistical analyses, including removing singleton taxa (i.e., OTUs found only once) and discarding those not present in both eDNA and eRNA datasets. In this study, we used bacterial (16S ribosomal RNA gene) and eukaryotic (18S ribosomal RNA gene) eDNA- and eRNA-derived data from benthic communities collected at increasing distances along a transect from an oil production platform (Taranaki, New Zealand). Macro-infauna (visual classification of benthic invertebrates) and physico-chemical data were analyzed in parallel. We tested the effect of removing singleton taxa, and removing taxa not present in the eDNA and eRNA libraries from the same environmental sample (trimmed by shared OTUs), by comparing the impact of the oil production platform on alpha- and beta-diversity of the eDNA/eRNA-based biological assemblages, and by correlating these to the morphologically identified macro-faunal communities and the physico-chemical data. When trimmed by singletons, presence/absence information from eRNA data represented the best proxy to detect changes on species diversity for both bacteria and eukaryotes. However, assessment of quantitative beta-diversity from read abundance information of bacteria eRNA did not, contrary to eDNA, reveal any impact from the oil production activity. Overall, the data appeared more robust when trimmed by shared OTUs, showing a greater effect of the platform on alpha- and beta-diversity. Trimming by shared OTUs likely removes taxa derived from legacy DNA and technical artefacts introduced through reverse transcriptase, polymerase-chain-reaction and sequencing. Findings from our scoping study suggest that metabarcoding-based biomonitoring surveys should, if funds, time and expertise allow, be assessed using both eDNA and eRNA products. en
dc.publisher PeerJ Inc. en
dc.relation.ispartofseries PeerJ en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. Details obtained from http://www.sherpa.ac.uk/romeo/issn/2167-8359/ en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.rights.uri https://creativecommons.org/licenses/by/4.0/ en
dc.title Metabarcoding monitoring analysis: the pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities en
dc.type Journal Article en
dc.identifier.doi 10.7717/peerj.3347 en
pubs.volume 5 en
dc.description.version VoR - Version of Record en
dc.rights.holder Copyright: The authors en
dc.identifier.pmid 28533985 en
dc.rights.accessrights http://purl.org/eprint/accessRights/OpenAccess en
pubs.subtype Article en
pubs.elements-id 626313 en
pubs.org-id Science en
pubs.org-id Biological Sciences en
pubs.org-id Marine Science en
dc.identifier.eissn 2167-8359 en
pubs.number e3347 en
pubs.record-created-at-source-date 2017-05-18 en
pubs.online-publication-date 2017-05-17 en
pubs.dimensions-id 28533985 en


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics