Transport properties of cell culture models of the alveolar epithelium

Show simple item record

dc.contributor.advisor Suresh, V en
dc.contributor.advisor Birch, N en
dc.contributor.author Ren, Hui en
dc.date.accessioned 2017-08-10T23:11:24Z en
dc.date.issued 2016 en
dc.identifier.uri http://hdl.handle.net/2292/35008 en
dc.description.abstract Alveolar epithelial cells are a main target of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), which are characterized by fluid accumulation and impaired ion transport in the lungs. This thesis characterizes cell culture models of the alveolar epithelium and studies ion transport under normal and ALI conditions. The human distal pulmonary epithelial cell line NCIH441 was found to express high levels of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase. Consistent with this phenotype the cell line formed a functional barrier with active ion transport as assessed by measurements of transepithelial electrical resistance (TEER), paracellular permeability and transepithelial potential difference (TEPD). Phenotypic and functional properties of NCI-H441 cells were optimized by varying cell seeding density and concentrations of dexamethasone and insulin-transferrin-selenium supplements to achieve in vivo-like polarized monolayers with high levels of electrical resistance, potential difference and expression of claudin-3 and α1-Na+-K+-ATPase. Treatment with inhibitors of sodium and chloride channels and the cyclic adenosine monophosphate (cAMP) agonist forskolin showed that sodium absorption through ENaC is the primary transport pathway for sodium under baseline and stimulated conditions. Transcellular chloride transport could not be detected at baseline while it was secreted through apical channels under forskolin stimulation. Under an oleic acid-induced ALI model, the tight epithelium became leaky as assessed by the deterioration and disappearance of the restrictive component of paracellular permeability and the absorptive sodium flux was impaired. These changes were associated with altered expression of tight junctions (decreased claudin-3 but elevated ZO-1) and ion transport proteins (downregulated α1-Na+-K+-ATPase and β-ENaC subunit). The extracellular signal regulated kinases (ERK) pathway was found to play a complex role in the regulation of TEER and TEPD. Under baseline conditions inhibition of ERK phosphorylation reduced the expression of α1-Na+-K+-ATPase and consequently TEPD, but had no effect on tight junction proteins and TEER. Oleic acid was found to activate the ERK pathway in a dose dependent manner. But inhibition of the pathway did not block the effects of oleic acid on the TEER and TEPD, suggesting that oleic acid mediated injury proceeds via an ERK-independent pathway. en
dc.publisher ResearchSpace@Auckland en
dc.relation.ispartof PhD Thesis - University of Auckland en
dc.relation.isreferencedby UoA99264959013402091 en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/nz/ en
dc.title Transport properties of cell culture models of the alveolar epithelium en
dc.type Thesis en
thesis.degree.discipline Bioengineering en
thesis.degree.grantor The University of Auckland en
thesis.degree.level Doctoral en
thesis.degree.name PhD en
dc.rights.holder Copyright: The author en
dc.rights.accessrights http://purl.org/eprint/accessRights/OpenAccess en
pubs.elements-id 646725 en
pubs.org-id Bioengineering Institute en
pubs.org-id ABI Associates en
pubs.org-id Engineering en
pubs.org-id Engineering Science en
pubs.org-id Science en
pubs.org-id Science Research en
pubs.org-id Maurice Wilkins Centre (2010-2014) en
pubs.record-created-at-source-date 2017-08-11 en
dc.identifier.wikidata Q111963395


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics