On a problem of L. Priese

Show simple item record

dc.contributor.author Tomescu, I en
dc.date.accessioned 2009-04-16T23:15:26Z en
dc.date.available 2009-04-16T23:15:26Z en
dc.date.issued 1996-11 en
dc.identifier.citation CDMTCS Research Reports CDMTCS-022 (1996) en
dc.identifier.issn 1178-3540 en
dc.identifier.uri http://hdl.handle.net/2292/3531 en
dc.description.abstract Lutz Priese raised the following conjecture: Almost all words of length n over a finite alphabet A with m letters contain as subwords all words of length [loglogn] over A as n→∞. In this note we prove that this property holds for subwords of length k(n) over A provided limn→∞k(n)/logn=0. en
dc.publisher Department of Computer Science, The University of Auckland, New Zealand en
dc.relation.ispartofseries CDMTCS Research Report Series en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.source.uri http://www.cs.auckland.ac.nz/staff-cgi-bin/mjd/secondcgi.pl?serial en
dc.title On a problem of L. Priese en
dc.type Technical Report en
dc.subject.marsden Fields of Research::280000 Information, Computing and Communication Sciences en
dc.rights.holder The author(s) en
dc.rights.accessrights http://purl.org/eprint/accessRights/OpenAccess en


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics