Spontaneous activity drives local synaptic plasticity in vivo

Show simple item record

dc.contributor.author Winnubst, J en
dc.contributor.author Cheyne, Juliette en
dc.contributor.author Niculescu, D en
dc.contributor.author Lohmann, C en
dc.date.accessioned 2017-09-22T03:41:12Z en
dc.date.issued 2015-07 en
dc.identifier.citation Neuron 87(2):399-410 Jul 2015 en
dc.identifier.issn 0896-6273 en
dc.identifier.uri http://hdl.handle.net/2292/35748 en
dc.description.abstract Spontaneous activity fine-tunes neuronal connections in the developing brain. To explore the underlying synaptic plasticity mechanisms, we monitored naturally occurring changes in spontaneous activity at individual synapses with whole-cell patch-clamp recordings and simultaneous calcium imaging in the mouse visual cortex in vivo. Analyzing activity changes across large populations of synapses revealed a simple and efficient local plasticity rule: synapses that exhibit low synchronicity with nearby neighbors (<12 μm) become depressed in their transmission frequency. Asynchronous electrical stimulation of individual synapses in hippocampal slices showed that this is due to a decrease in synaptic transmission efficiency. Accordingly, experimentally increasing local synchronicity, by stimulating synapses in response to spontaneous activity at neighboring synapses, stabilized synaptic transmission. Finally, blockade of the high-affinity proBDNF receptor p75(NTR) prevented the depression of asynchronously stimulated synapses. Thus, spontaneous activity drives local synaptic plasticity at individual synapses in an "out-of-sync, lose-your-link" fashion through proBDNF/p75(NTR) signaling to refine neuronal connectivity. en
dc.format.medium Print en
dc.language eng en
dc.publisher Elsevier en
dc.relation.ispartofseries Neuron en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.subject Visual Cortex en
dc.subject Nerve Net en
dc.subject Neurons en
dc.subject Animals en
dc.subject Mice, Inbred C57BL en
dc.subject Animals, Newborn en
dc.subject Mice, Transgenic en
dc.subject Mice en
dc.subject Calcium en
dc.subject Quinoxalines en
dc.subject Luminescent Proteins en
dc.subject Excitatory Amino Acid Antagonists en
dc.subject Organ Culture Techniques en
dc.subject Patch-Clamp Techniques en
dc.subject Electric Stimulation en
dc.subject Signal Transduction en
dc.subject Action Potentials en
dc.subject Neuronal Plasticity en
dc.subject Models, Biological en
dc.subject Computer Simulation en
dc.subject In Vitro Techniques en
dc.title Spontaneous activity drives local synaptic plasticity in vivo en
dc.type Journal Article en
dc.identifier.doi 10.1016/j.neuron.2015.06.029 en
pubs.issue 2 en
pubs.begin-page 399 en
pubs.volume 87 en
dc.rights.holder Copyright: Elsevier en
dc.identifier.pmid 26182421 en
pubs.end-page 410 en
pubs.publication-status Published en
dc.rights.accessrights http://purl.org/eprint/accessRights/RestrictedAccess en
pubs.subtype Article en
pubs.elements-id 546555 en
pubs.org-id Medical and Health Sciences en
pubs.org-id Medical Sciences en
pubs.org-id Physiology Division en
dc.identifier.eissn 1097-4199 en
pubs.record-created-at-source-date 2017-09-22 en
pubs.dimensions-id 26182421 en


Files in this item

There are no files associated with this item.

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics