Branching Brownian motion: Almost sure growth along unscaled paths

ResearchSpace Repository

Show simple item record Harris, Simon en Roberts, M en 2019-06-19T21:39:49Z en 2008-11-11 en
dc.identifier.citation Arxiv (0811.1704v1). 11 Nov 2008. 20 pages en
dc.identifier.uri en
dc.description.abstract We give new results on the growth of the number of particles in a dyadic branching Brownian motion which follow within a fixed distance of a path $f:[0,\infty)\to \mathbb{R}$. We show that it is possible to count the number of particles without rescaling the paths. Our results reveal that the number of particles along certain paths can oscillate dramatically. The methods used are entirely probabilistic, taking advantage of the spine technique developed by, amongst others, Lyons et al, Kyprianou, and Hardy & Harris. en
dc.relation.ispartof Arxiv en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. en
dc.rights.uri en
dc.rights.uri en
dc.subject math.PR en
dc.subject math.PR en
dc.subject 60J80 en
dc.title Branching Brownian motion: Almost sure growth along unscaled paths en
dc.type Report en
dc.rights.holder Copyright: The authors en en
dc.rights.accessrights en
pubs.subtype Working Paper en
pubs.elements-id 761974 en Science en Statistics en
pubs.arxiv-id 0811.1704 en
pubs.number 0811.1704v1 en
pubs.record-created-at-source-date 2019-08-20 en

Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record


Search ResearchSpace

Advanced Search