Structural Characterisation of MenJ, a Novel Oxidoreductase Involved in Mycobacterium tuberculosis virulence

Show simple item record

dc.contributor.advisor Lott, JS en
dc.contributor.author Randall, George en
dc.date.accessioned 2019-08-23T03:18:25Z en
dc.date.issued 2019 en
dc.identifier.uri http://hdl.handle.net/2292/47552 en
dc.description Full Text is available to authenticated members of The University of Auckland only. en
dc.description.abstract According to the World Health Organisation, tuberculosis (TB) has recently become the leading cause of death due to infectious disease, surpassing HIV. Challenges to the treatment of TB include drug resistant strains of the causative pathogen, Mycobacterium tuberculosis (Mtb), and the latency of the bacterium that allows it to persist in a non-replicative, drug-insensitive state. To address these challenges, new therapeutics must be designed that target novel mechanisms essential for Mtb's survival. One such mechanism is the partial saturation of menaquinone, the lipoquinone that functions to ferry electrons across the electron transport chain during oxidative phosphorylation. The enzyme catalysing this reaction, MenJ, is non-essential for in vitro growth but is conditionally essential for Mtb's survival within host macrophages. Thus, inhibition of MenJ would potentially prevent Mtb from surviving within macrophages. MenJ is a FAD-containing protein, homologous to bacterial geranylgeranyl reductases. Despite Mtb utilising menaquinone as the sole lipoquinone in vivo, MenJ has been shown to recognise both menaquinone and ubiquinone in vitro and localise to the cell membrane. Understanding substrate recognition by regiospecificity and the mechanism of membrane adherence would be enabled by a high-resolution crystal structure of MenJ. The primary aim of this project was to produce protein crystals of MenJ from Mtb or Mycobacterium smegmatis suitable for X-ray diffraction analysis, which would be the first step in a target-based drug discovery approach to the design of MenJ inhibitors. en
dc.publisher ResearchSpace@Auckland en
dc.relation.ispartof Masters Thesis - University of Auckland en
dc.relation.isreferencedby UoA99265183414102091 en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. en
dc.rights Restricted Item. Full Text is available to authenticated members of The University of Auckland only. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/nz/ en
dc.title Structural Characterisation of MenJ, a Novel Oxidoreductase Involved in Mycobacterium tuberculosis virulence en
dc.type Thesis en
thesis.degree.discipline Biological Sciences en
thesis.degree.grantor The University of Auckland en
thesis.degree.level Masters en
dc.rights.holder Copyright: The author en
pubs.elements-id 779367 en
pubs.org-id Science en
pubs.org-id Biological Sciences en
pubs.record-created-at-source-date 2019-08-23 en
dc.identifier.wikidata Q112950025


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics