Sodium-powered stators of the bacterial flagellar motor can generate torque in the presence of phenamil with mutations near the peptidoglycan-binding region.

Show simple item record

dc.contributor.author Ishida, Tsubasa en
dc.contributor.author Ito, Rie en
dc.contributor.author Clark, Jessica en
dc.contributor.author Matzke, Nicholas en
dc.contributor.author Sowa, Yoshiyuki en
dc.contributor.author Baker, Matthew AB en
dc.date.accessioned 2019-09-29T21:58:37Z en
dc.date.issued 2019-06 en
dc.identifier.issn 0950-382X en
dc.identifier.uri http://hdl.handle.net/2292/47990 en
dc.description.abstract The bacterial flagellar motor powers the rotation that propels the swimming bacteria. Rotational torque is generated by harnessing the flow of ions through ion channels known as stators which couple the energy from the ion gradient across the inner membrane to rotation of the rotor. Here, we used error-prone PCR to introduce single point mutations into the sodium-powered Vibrio alginolyticus/Escherichia coli chimeric stator PotB and selected for motors that exhibited motility in the presence of the sodium-channel inhibitor phenamil. We found single mutations that enable motility under phenamil occurred at two sites: (i) the transmembrane domain of PotB, corresponding to the TM region of the PomB stator from V. alginolyticus and (ii) near the peptidoglycan binding region that corresponds to the C-terminal region of the MotB stator from E. coli. Single cell rotation assays confirmed that individual flagellar motors could rotate in up to 100 µM phenamil. Using phylogenetic logistic regression, we found correlation between natural residue variation and ion source at positions corresponding to PotB F22Y, but not at other sites. Our results demonstrate that it is not only the pore region of the stator that moderates motility in the presence of ion-channel blockers. en
dc.format.medium Print-Electronic en
dc.language eng en
dc.relation.ispartofseries Molecular microbiology en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.subject Flagella en
dc.subject Escherichia coli en
dc.subject Vibrio alginolyticus en
dc.subject Sodium en
dc.subject Amiloride en
dc.subject Peptidoglycan en
dc.subject Bacterial Proteins en
dc.subject Escherichia coli Proteins en
dc.subject ATP-Binding Cassette Transporters en
dc.subject Sodium Channels en
dc.subject Sodium Channel Blockers en
dc.subject Phylogeny en
dc.subject Point Mutation en
dc.subject Torque en
dc.subject Molecular Motor Proteins en
dc.title Sodium-powered stators of the bacterial flagellar motor can generate torque in the presence of phenamil with mutations near the peptidoglycan-binding region. en
dc.type Journal Article en
dc.identifier.doi 10.1111/mmi.14246 en
pubs.issue 6 en
pubs.begin-page 1689 en
pubs.volume 111 en
dc.rights.holder Copyright: The author en
pubs.end-page 1699 en
pubs.publication-status Published en
dc.rights.accessrights http://purl.org/eprint/accessRights/RestrictedAccess en
pubs.subtype Research Support, Non-U.S. Gov't en
pubs.subtype Journal Article en
pubs.elements-id 770450 en
pubs.org-id Science en
pubs.org-id Biological Sciences en
dc.identifier.eissn 1365-2958 en
pubs.record-created-at-source-date 2019-03-31 en
pubs.dimensions-id 30927553 en


Files in this item

There are no files associated with this item.

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics