Characterising hyperbolic hyperplanes of a non-singular quadric in PG(4,q)

Show simple item record Barwick, SG en Hui, AMW en Jackson, W-A en Schillewaert, Jeroen en 2019-10-08T08:45:42Z en 2019 en
dc.identifier.issn 1573-7586 en
dc.identifier.uri en
dc.description.abstract Let H be a non-empty set of hyperplanes in PG(4, q), q even, such that every point of PG(4, q) lies in either 0, 1 2 q3 or 1 2 (q3 + q2) hyperplanes of H, and every plane of PG(4, q) lies in 0 or at least 1 2 q hyperplanes of H. Then H is the set of all hyperplanes which meet a given non-singular quadric Q(4, q) in a hyperbolic quadric. en
dc.publisher Springer (part of Springer Nature) en
dc.relation.ispartofseries Designs, Codes and Cryptography en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. en
dc.rights.uri en
dc.subject math.CO en
dc.subject math.CO en
dc.title Characterising hyperbolic hyperplanes of a non-singular quadric in PG(4,q) en
dc.type Journal Article en
dc.identifier.doi 10.1007/s10623-019-00669-y en
pubs.volume online first en
dc.rights.holder Copyright: The author en en
dc.rights.accessrights en
pubs.subtype Article en
pubs.elements-id 775405 en Science en Mathematics en
pubs.arxiv-id 1906.04932 en
pubs.record-created-at-source-date 2019-08-05 en 2019-08-01 en

Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record


Search ResearchSpace