Resonant model-A new paradigm for modeling an action potential of biological cells.

Show simple item record

dc.contributor.author Sehgal, Sucheta en
dc.contributor.author Patel, Nitish en
dc.contributor.author Malik, Avinash en
dc.contributor.author Roop, Parthasarathi en
dc.contributor.author Trew, Mark en
dc.date.accessioned 2019-10-08T09:17:22Z en
dc.date.issued 2019-01 en
dc.identifier.citation PloS one 14(5):e0216999 Jan 2019 en
dc.identifier.issn 1932-6203 en
dc.identifier.uri http://hdl.handle.net/2292/48503 en
dc.description.abstract Organ level simulation of bioelectric behavior in the body benefits from flexible and efficient models of cellular membrane potential. These computational organ and cell models can be used to study the impact of pharmaceutical drugs, test hypotheses, assess risk and for closed-loop validation of medical devices. To move closer to the real-time requirements of this modeling a new flexible Fourier based general membrane potential model, called as a Resonant model, is developed that is computationally inexpensive. The new model accurately reproduces non-linear potential morphologies for a variety of cell types. Specifically, the method is used to model human and rabbit sinoatrial node, human ventricular myocyte and squid giant axon electrophysiology. The Resonant models are validated with experimental data and with other published models. Dynamic changes in biological conditions are modeled with changing model coefficients and this approach enables ionic channel alterations to be captured. The Resonant model is used to simulate entrainment between competing sinoatrial node cells. These models can be easily implemented in low-cost digital hardware and an alternative, resource-efficient implementations of sine and cosine functions are presented and it is shown that a Fourier term is produced with two additions and a binary shift. en
dc.format.medium Electronic-eCollection en
dc.language eng en
dc.relation.ispartofseries PloS one en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.rights.uri https://creativecommons.org/licenses/by/4.0/ en
dc.subject Sinoatrial Node en
dc.subject Muscle Cells en
dc.subject Myocytes, Cardiac en
dc.subject Animals en
dc.subject Rabbits en
dc.subject Humans en
dc.subject Electrophysiology en
dc.subject Membrane Potentials en
dc.subject Action Potentials en
dc.subject Heart Rate en
dc.subject Fourier Analysis en
dc.subject Computer Simulation en
dc.subject Cardiac Electrophysiology en
dc.subject Electrophysiological Phenomena en
dc.title Resonant model-A new paradigm for modeling an action potential of biological cells. en
dc.type Journal Article en
dc.identifier.doi 10.1371/journal.pone.0216999 en
pubs.issue 5 en
pubs.begin-page e0216999 en
pubs.volume 14 en
dc.rights.holder Copyright: The author en
pubs.publication-status Published en
dc.rights.accessrights http://purl.org/eprint/accessRights/OpenAccess en
pubs.subtype Research Support, Non-U.S. Gov't en
pubs.subtype research-article en
pubs.subtype Journal Article en
pubs.elements-id 773781 en
pubs.org-id Bioengineering Institute en
pubs.org-id ABI Associates en
pubs.org-id Engineering en
pubs.org-id Department of Electrical, Computer and Software Engineering en
dc.identifier.eissn 1932-6203 en
pubs.record-created-at-source-date 2019-05-23 en
pubs.dimensions-id 31116780 en


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics