Heat transfer in rough-wall turbulent thermal convection in the ultimate regime

Show simple item record

dc.contributor.author MacDonald, Michael en
dc.contributor.author Hutchins, N en
dc.contributor.author Lohse, D en
dc.contributor.author Chung, D en
dc.date.accessioned 2019-10-29T00:12:12Z en
dc.date.issued 2019-07 en
dc.identifier.citation Physical Review Fluids 4(7):11 pages Article number 071501 Jul 2019 en
dc.identifier.issn 2469-990X en
dc.identifier.uri http://hdl.handle.net/2292/48665 en
dc.description.abstract Heat and momentum transfer in wall-bounded turbulent flow, coupled with the effects of wall roughness, is one of the outstanding questions in turbulence research. In the standard Rayleigh-Bénard problem for natural thermal convection, it is notoriously difficult to reach the so-called ultimate regime in which the near-wall boundary layers are turbulent. Following the analyses proposed by Kraichnan [Phys. Fluids 5, 1374 (1962)10.1063/1.1706533] and Grossmann and Lohse [Phys. Fluids 23, 045108 (2011)10.1063/1.3582362], we instead utilize recent direct numerical simulations of forced convection over a rough wall in a minimal channel [MacDonald, J. Fluid Mech. 861, 138 (2019)10.1017/jfm.2018.900] to directly study these turbulent boundary layers. We focus on the heat transport (in dimensionless form, the Nusselt number Nu) or equivalently the heat transfer coefficient (the Stanton number Ch). Extending the analyses of Kraichnan and Grossmann and Lohse, we assume logarithmic temperature profiles with a roughness-induced shift to predict an effective scaling of Nu∼Ra0.42, where Ra is the dimensionless temperature difference, corresponding to Ch∼Re-0.16, where Re is the centerline Reynolds number. This is pronouncedly different from the skin-friction coefficient Cf, which in the fully rough turbulent regime is independent of Re, due to the dominant pressure drag. In rough-wall turbulence, the absence of the analog to pressure drag in the temperature advection equation is the origin for the very different scaling properties of the heat transfer as compared to the momentum transfer. This analysis suggests that, unlike momentum transfer, the asymptotic ultimate regime, where Nu∼Ra1/2, will never be reached for heat transfer at finite Rayleigh number. en
dc.language English en
dc.publisher American Physical Society en
dc.relation.ispartofseries Physical Review Fluids en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.rights.uri https://journals.aps.org/authors/transfer-of-copyright-agreement en
dc.subject Science & Technology en
dc.subject Physical Sciences en
dc.subject Physics, Fluids & Plasmas en
dc.subject Physics en
dc.subject DIRECT NUMERICAL-SIMULATION en
dc.subject RAYLEIGH-BENARD CONVECTION en
dc.subject SURFACE-ROUGHNESS en
dc.subject PRANDTL NUMBER en
dc.subject CHANNEL FLOW en
dc.subject REYNOLDS en
dc.subject TRANSPORT en
dc.subject TEMPERATURE en
dc.subject PROFILES en
dc.subject PLATES en
dc.title Heat transfer in rough-wall turbulent thermal convection in the ultimate regime en
dc.type Journal Article en
dc.identifier.doi 10.1103/PhysRevFluids.4.071501 en
pubs.issue 7 en
pubs.volume 4 en
dc.rights.holder Copyright: American Physical Society en
pubs.publication-status Published en
dc.rights.accessrights http://purl.org/eprint/accessRights/OpenAccess en
pubs.subtype Article en
pubs.subtype Rapid Communication en
pubs.elements-id 777034 en
pubs.org-id Engineering en
pubs.org-id Mechanical Engineering en
pubs.arxiv-id 1907.02504 en
pubs.number 071501 en
pubs.record-created-at-source-date 2019-11-04 en


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics