Form, function and physics: The ecology of biogenic stabilisation

Show simple item record

dc.contributor.author Paterson, DM en
dc.contributor.author Hope, Julie en
dc.contributor.author Kenworthy, J en
dc.contributor.author Biles, C en
dc.contributor.author Gerbersdorf, SU en
dc.date.accessioned 2019-11-07T21:29:12Z en
dc.date.issued 2018-10 en
dc.identifier.citation Journal of Soils and Sediments 18(10):3044-3054 Oct 2018 en
dc.identifier.issn 1439-0108 en
dc.identifier.uri http://hdl.handle.net/2292/48898 en
dc.description.abstract The objective of this work is to better understand the role that biological mediation plays in the behaviour of fine sediments. This research is supported by developments in ecological theory recognising organisms as "ecosystem engineers" and associated discussion of "niche construction", suggesting an evolutionary role for habitat modification by biological action. In addition, there is acknowledgement from engineering disciplines that something is missing from fine sediment transport predictions. Advances in technology continue to improve our ability to examine the small-scale 2d processes with large- scale effects in natural environments. Advanced molecular tools can be combined with state-of-the- art field and laboratory techniques to allow the discrimination of microbial biodiversity and the examination of their metabolic contribution to ecosystem function. This in turn can be related to highly-resolved measurements and visualization of flow dynamics Recent laboratory and field work have led to a paradigm shift whereby hydraulic research has to embrace biology and biogeochemistry to unravel the highly complex issues around on fine sediment dynamics. Examples are provided illustrating traditional and more recent approaches including using multiple stressors in fully factorial designs in both the laboratory and the field to highlight the complexity of the interaction between biology and sediment dynamics in time and space. The next phase is likely to rely on advances in molecular analysis, metagenomics and metabolomics, to assess the functional role of microbial assemblages in sediment behaviour, including the nature and rate of polymer production by bacteria, the mechanism of their influence on sediment behaviour. To fully understand how aquatic habitats will adjust to environmental change and to support the provision of various ecosystem services, we require a holistic approach. We must consider all aspects that control the distribution of sediment and the ETDC cycle including biological and chemical processes, not just the physical. In particular, the role of microbial assemblages is now recognized as a significant factor deserving greater attention across disciplines. en
dc.publisher Springer Verlag en
dc.relation.ispartofseries Journal of Soils and Sediments en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.rights.uri http://creativecommons.org/licenses/by/4.0/ en
dc.title Form, function and physics: The ecology of biogenic stabilisation en
dc.type Journal Article en
dc.identifier.doi 10.1007/s11368-018-2005-4 en
pubs.issue 10 en
pubs.begin-page 3044 en
pubs.volume 18 en
dc.rights.holder Copyright: The authors en
pubs.end-page 3054 en
dc.rights.accessrights http://purl.org/eprint/accessRights/OpenAccess en
pubs.subtype Article en
pubs.elements-id 737089 en
pubs.record-created-at-source-date 2018-04-18 en
pubs.online-publication-date 2018-04-13 en


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics