On Asymptotic Strategy-Proofness of Classical Social Choice Rules

ResearchSpace/Manakin Repository

Show simple item record

dc.contributor.author Slinko, Arkadii en
dc.date.accessioned 2009-08-28T03:20:29Z en
dc.date.available 2009-08-28T03:20:29Z en
dc.date.issued 2000-10 en
dc.identifier.citation Department of Mathematics - Research Reports-458 (2000) en
dc.identifier.issn 1173-0889 en
dc.identifier.uri http://hdl.handle.net/2292/4970 en
dc.description.abstract We show that, when the number of voters $n$ tends to infinity, all classical social choice rules are asymptotically strategy-proof with the proportion of manipulable profiles being of order $O(1/sqrt{n})$. en
dc.publisher Department of Mathematics, The University of Auckland, New Zealand en
dc.relation.ispartofseries Research Reports - Department of Mathematics en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.source.uri http://www.math.auckland.ac.nz/Research/Reports/view.php?id=458 en
dc.title On Asymptotic Strategy-Proofness of Classical Social Choice Rules en
dc.type Technical Report en
dc.subject.marsden Fields of Research::230000 Mathematical Sciences::230100 Mathematics en
dc.rights.holder The author(s) en

Full text options

This item appears in the following Collection(s)

Show simple item record


Search ResearchSpace

Advanced Search