A strong Schottky lemma on $n$ generators for $\mathrm{CAT}(0)$ spaces

Show simple item record

dc.contributor.author Conder, Matthew J
dc.contributor.author Schillewaert, Jeroen
dc.date.accessioned 2022-05-03T02:35:04Z
dc.date.available 2022-05-03T02:35:04Z
dc.date.issued 2021-3-29
dc.identifier.citation Arxiv, 29 Mar 2021
dc.identifier.uri https://hdl.handle.net/2292/58869
dc.description.abstract We give a criterion for a set of $n$ hyperbolic isometries of a $\mathrm{CAT}(0)$ metric space $X$ to generate a free group on $n$ generators. This extends a result by Alperin, Farb and Noskov who proved this for 2 generators under the additional assumption that $X$ is complete and has no fake zero angles. Moreover, when $X$ is locally compact, the group we obtain is also discrete.
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher.
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject math.GR
dc.subject math.GR
dc.subject math.GT
dc.subject math.MG
dc.subject 20F65
dc.title A strong Schottky lemma on $n$ generators for $\mathrm{CAT}(0)$ spaces
dc.type Journal Article
dc.date.updated 2022-04-04T02:01:03Z
dc.rights.holder Copyright: The author en
pubs.author-url http://arxiv.org/abs/2103.15257v2
dc.rights.accessrights http://purl.org/eprint/accessRights/OpenAccess en
pubs.elements-id 845484


Files in this item

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Browse

Statistics