Spatio-temporal modelling of biological invasions : A GIS framework for simulating the spread of Lantana camara in Northland, New Zealand

ResearchSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Albrecht, Jochen en
dc.contributor.author Peng, Ming en
dc.date.accessioned 2007-07-09T11:12:50Z en
dc.date.available 2007-07-09T11:12:50Z en
dc.date.issued 2000 en
dc.identifier THESIS 01-091 en
dc.identifier.citation Thesis (PhD--Geography)--University of Auckland, 2000 en
dc.identifier.uri http://hdl.handle.net/2292/724 en
dc.description Full text is available to authenticated members of The University of Auckland only. en
dc.description.abstract This research demonstrates the ability of integrating spatial and dynamic models with a Geographic Information System (GIS) to predict and simulate the dynamics of biological invasion in both the spatial and temporal dimensions. In this spatio-temporal framework, GIS serves as a shell to integrate the spatial, dynamic and stochastic perspectives in a coherent workflow. It links decision tree analysis with GIS to reveal the spatial association between the invasive species Lantana camara and the heterogeneous landscape of Northland, New Zealand. The decision tree analysis quantifies the vulnerability of the environment for Lantana invasion, and identifies the most significant variables that influence its likely occurrence. GIS-generated maps illustrate and classify the spatial variation in Lantana invasion probabilities and also provided the spatial dimension of Lantana invasion for the framework. A stratified diffusion model quantifies the dynamics of Lantana invasion. Analysis of the model provides an estimate of the species’ spread and explains the nonlinear expansion observed in Lantana invasions. It proves that Lantana spreads with a relatively lower rate of neighbourhood diffusion and a relatively higher rate of long-distance dispersal. The spatial and temporal information derived in the two previous steps is combined to serve in simulation on a realistically heterogeneous percolation landscape. In the GIS implementation, the spread is related to the spatial probability information provided by a decision tree model. The stratified diffusion model determines the dynamics of dispersal. The pattern of the Lantana spread is simulated as a sequence of discrete steps, expressing the dynamic way that an individual may propagate under structurally heterogeneous conditions. In particular, new colonies of the species are limited to the dispersal ability of the species and the local variations in the landscape. This research develops a new methodology for modelling biological invasions and other ecological processes. It greatly expands the analytical capabilities of GIS and intersects the domains of raster GIS, percolation, ecology, diffusion-reaction systems and habitat management. The developed research overcomes some of the current modeling technical restrictions and supplies a flexible simulation management system to explore the spatial dynamics of ecological processes. en
dc.language.iso en en
dc.publisher ResearchSpace@Auckland en
dc.relation.ispartof PhD Thesis - University of Auckland en
dc.relation.isreferencedby UoA9995319414002091 en
dc.rights Restricted Item. Available to authenticated members of The University of Auckland. en
dc.rights Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.title Spatio-temporal modelling of biological invasions : A GIS framework for simulating the spread of Lantana camara in Northland, New Zealand en
dc.type Thesis en
thesis.degree.discipline Geography en
thesis.degree.grantor The University of Auckland en
thesis.degree.level Doctoral en
thesis.degree.name PhD en
dc.rights.holder Copyright: The author en


Full text options

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Advanced Search

Browse