Primary and secondary log breakdown simulation

ResearchSpace Repository

Show simple item record

dc.contributor.author Todoroki, Christine Louisa en
dc.date.accessioned 2006-11-30T01:20:02Z en
dc.date.available 2006-11-30T01:20:02Z en
dc.date.issued 1997 en
dc.identifier.citation Thesis (PhD--Engineering Science)--University of Auckland, 1997. en
dc.identifier.uri http://hdl.handle.net/2292/73 en
dc.description Subscription resource available via Digital Dissertations only. en
dc.description.abstract Log breakdown by sawing can be viewed as a multi-phase process that converts logs into boards by a series of cutting operations. In the primary phase, logs are sawn into s labs of wood known as flitches or cants. These are further processed by secondary operations, that resaw, edge (cut lengthwise) and trim (cut widthwise) the raw material, resulting in the manufacture of the board product whose value is influenced by its composite dimensions and quality (as indicated by a grade). Board grade is in turn determined by the number, type, size, and location of defects. Owing to its biological origins, each log, and subsequent board, is unique. Furthermore, as each sawmill, and processing centre within the mill, has a unique configuration, the problem of determining how each log entering a mill should be sawn is very complex. Effective computer simulation of log breakdown processes must therefore entail detailed descriptions of both geometry and quality of individual logs. Appropriate strategies at each breakdown phase are also required. In this thesis models for emulating log breakdown are developed in conjunction with an existing sawing simulation system which requires, as input, detailed three-dimensional descriptions of both internal and external log characteristics. Models based on heuristic and enumerative procedures, and those based upon the principles of dynamic programming (DP) are formulated, encoded, and compared. Log breakdown phases are considered both independently and in a combined integrated approach-working backwards from the board product through to the primary log breakdown phase. This approach permits methodology developed for the later processes to be embedded within the primary phase thus permitting the determination of a global rather than local solution to the log breakdown problem whose objective is to seek the highest possible solution quality within the minimum possible time. Simulation results indicate that solution quality and processing speeds are influenced by both solution methodology and degree of data complexity. When the structure of either factor is simplified, solutions are generated more rapidly-but with an accompanying reduction in solution quality. A promising compromise that combines DP techniques with mathematical functions based on a subset of the original data is presented. en
dc.language.iso en en
dc.publisher ResearchSpace@Auckland en
dc.relation.ispartof PhD Thesis - University of Auckland en
dc.relation.isreferencedby UoA755013 en
dc.rights Subscription resource available via Digital Dissertations only. Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. en
dc.rights.uri https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm en
dc.source.uri http://wwwlib.umi.com/dissertations/fullcit/9913695 en
dc.subject.other OPERATIONS RESEARCH (0796) en
dc.subject.other AGRICULTURE, WOOD TECHNOLOGY (0746) en
dc.subject.other ENGINEERING, SYSTEM SCIENCE (0790) en
dc.title Primary and secondary log breakdown simulation en
dc.type Thesis en
thesis.degree.discipline Engineering Science en
thesis.degree.grantor The University of Auckland en
thesis.degree.level Doctoral en
thesis.degree.name PhD en
dc.rights.holder Copyright: The author en
pubs.local.anzsrc 09 - Engineering en
pubs.org-id Faculty of Engineering en


Files in this item

There are no files associated with this item.

Find Full text

This item appears in the following Collection(s)

Show simple item record

Share

Search ResearchSpace


Advanced Search

Browse

Statistics