Sharma, RFlay, RBickerton, SMilne, Ian2014-06-1820132014http://hdl.handle.net/2292/22292This research addresses the need for an improved characterisation of the onset flow turbulence and the unsteady hydrodynamic blade loads on tidal turbines for the purposes of predicting fatigue life. A new, extensive set of parameters which characterise the magnitudes of the turbulent fluctuations, the anisotropy and the scales of the turbulence at a tidal energy site have been presented. A novel application of rapid distortion theory estimated the velocity fluctuations to be amplified by 15% due to the presence of the turbine. The turbulence was also predicted to be well correlated over the outer span of a turbine blade at the frequencies of interest. Together, these results enabled a set of non-dimensional parameters describing the turbulence induced forcing on a turbine blade to be established. A model-scale horizontal-axis turbine was used to investigate the unsteady blade load response in a still-water towing tank. A set of wind tunnel tests of the S814 foil were also conducted and used to demonstrate that the lift on the blades could have been degraded by 10% at the relatively low Reynolds numbers at which the turbine was tested, relative to full-scale. This was owing to dominant laminar separation bubbles. Single frequency planar oscillations of the turbine were used to quantify the contribution of hydrodynamic unsteadiness to the blade-root bending moment. For attached flow, the unsteady bending moment was found to amplify the steady loads by up to 15 %. The total hydrodynamic added mass was up to 2.7 times larger than from non-circulatory forcing and decreased with frequency. Dynamic inflow theory and a returning wake model were able to provide qualitative predictions of these results at low frequencies. At low tip-speed ratios, phenomena consistent with delayed separation and dynamic stall were characterised and the unsteady loading was up to 25% larger than the steady load. Linear superposition of the single frequency responses was also demonstrated to offer a reliable technique to model the response to a multi-frequency forcing and to a large eddy.Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher.https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htmhttp://creativecommons.org/licenses/by-nc-nd/3.0/nz/An Experimental Investigation of Turbulence and Unsteady Loading on Tidal TurbinesThesisCopyright: The Authorhttp://purl.org/eprint/accessRights/OpenAccessQ112903741