Minimum-Length Polygons of First-Class Simple Cube-Curves

Reference

Communication and Information Technology Research Technical Report 174, (2005)

Degree Grantor

Abstract

We consider simple cube-curves in the orthogonal 3D grid. The union of all cells contained in such a curve (also called the tube of this curve) is a polyhedrally bounded set. The curve's length is defined to be that of the minimum-length polygonal curve (MLP) fully contained and complete in the tube of the curve. So far only one general algorithm called rubber-band algorithm was known for the approximative calculation of such an MLP. A proof that this algorithm always converges to the correct curve, is still an open problem. This paper proves that the rubber-band algorithm is correct for the family of first-class simple cube-curves.

Description

You are granted permission for the non-commercial reproduction, distribution, display, and performance of this technical report in any format, BUT this permission is only for a period of 45 (forty-five) days from the most recent time that you verified that this technical report is still available from the original CITR web site; http://citr.auckland.ac.nz/techreports/ under terms that include this permission. All other rights are reserved by the author(s).

DOI

Related Link

Keywords

ANZSRC 2020 Field of Research Codes